1932

Abstract

Bacterial pathogens undergo remarkable adaptive change in response to the selective forces they encounter during host colonization and infection. Studies performed over the past few decades have demonstrated that many general evolutionary processes can be discerned during the course of host adaptation, including genetic diversification of lineages, clonal succession events, convergent evolution, and balanced fitness trade-offs. In some cases, elevated mutation rates resulting from mismatch repair or proofreading deficiencies accelerate evolution, and active mobile genetic elements or phages may facilitate genome plasticity. The host immune response provides another critical component of the fitness landscapes guiding adaptation, and selection operating on pathogens at this level may lead to immune evasion and the establishment of chronic infection. This review summarizes recent advances in this field, with a special focus on different forms of bacterial genome plasticity in the context of infection, and considers clinical consequences of adaptive changes for the host.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051122-111408
2024-01-24
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051122-111408.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051122-111408&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Darby EM, Trampari E, Siasat P, Gaya MS, Alav I et al. 2022. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21:528095
    [Google Scholar]
  2. 2.
    Baquero F, Martínez JL, Lanza VF, Rodríguez-Beltran J, Galán JC et al. 2021. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 34:e0005019
    [Google Scholar]
  3. 3.
    MacLean RC, San Millan A. 2019. The evolution of antibiotic resistance. Science 365:108283
    [Google Scholar]
  4. 4.
    Finlay BB, McFadden G. 2006. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124:76782
    [Google Scholar]
  5. 5.
    Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. 2016. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14:15062
    [Google Scholar]
  6. 6.
    Grote A, Earl AM. 2022. Within-host evolution of bacterial pathogens during persistent infection of humans. Curr. Opin. Microbiol. 70:102197
    [Google Scholar]
  7. 7.
    Tonkin-Hill G, Ling C, Chaguza C, Salter SJ, Hinfonthong P et al. 2022. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat. Microbiol. 7:1791804
    [Google Scholar]
  8. 8.
    Nimmo C, Brien K, Millard J, Grant AD, Padayatchi N et al. 2020. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 55:102747
    [Google Scholar]
  9. 9.
    Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B. 1997. Role of mutator alleles in adaptive evolution. Nature 387:7002
    [Google Scholar]
  10. 10.
    Oliver A, Mena A. 2010. Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin. Microbiol. Infect. 16:798808
    [Google Scholar]
  11. 11.
    Couce A, Caudwell LV, Feinauer C, Hindre T, Feugeas JP et al. 2017. Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria. PNAS 114:E902635
    [Google Scholar]
  12. 12.
    Giraud A, Matic I, Tenaillon O, Clara A, Radman M et al. 2001. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:26068
    [Google Scholar]
  13. 13.
    LeClerc JE, Li B, Payne WL, Cebula TA. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:120811
    [Google Scholar]
  14. 14.
    Joseph N, Duppatla V, Rao DN. 2006. Prokaryotic DNA mismatch repair. Prog. Nucleic Acid. Res. Mol. Biol. 81:149
    [Google Scholar]
  15. 15.
    Marshall CW, Gloag ES, Lim C, Wozniak DJ, Cooper VS. 2021. Rampant prophage movement among transient competitors drives rapid adaptation during infection. Sci. Adv. 7:eabh1489
    [Google Scholar]
  16. 16.
    Sentausa E, Basso P, Berry A, Adrait A, Bellement G et al. 2020. Insertion sequences drive the emergence of a highly adapted human pathogen. Microb. Genom. 6:mgen000265
    [Google Scholar]
  17. 17.
    Consuegra J, Gaffe J, Lenski RE, Hindre T, Barrick JE et al. 2021. Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria. Nat. Commun. 12:980
    [Google Scholar]
  18. 18.
    Klemm EJ, Gkrania-Klotsas E, Hadfield J, Forbester JL, Harris SR et al. 2016. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nat. Microbiol. 1:15023
    [Google Scholar]
  19. 19.
    Gabrielaite M, Johansen HK, Molin S, Nielsen FC, Marvig RL. 2020. Gene loss and acquisition in lineages of Pseudomonas aeruginosa evolving in cystic fibrosis patient airways. mBio 11:e02359-20
    [Google Scholar]
  20. 20.
    Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al. 2008. Dynamics of Pseudomonas aeruginosa genome evolution. PNAS 105:31005
    [Google Scholar]
  21. 21.
    Rau MH, Marvig RL, Ehrlich GD, Molin S, Jelsbak L. 2012. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environ. Microbiol. 14:220011
    [Google Scholar]
  22. 22.
    Viberg LT, Sarovich DS, Kidd TJ, Geake JB, Bell SC et al. 2017. Within-host evolution of Burkholderia pseudomallei during chronic infection of seven Australasian cystic fibrosis patients. mBio 8:e00356-17
    [Google Scholar]
  23. 23.
    Lee AH, Flibotte S, Sinha S, Paiero A, Ehrlich RL et al. 2017. Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs. Genome Res. 27:65062
    [Google Scholar]
  24. 24.
    Giulieri SG, Baines SL, Guerillot R, Seemann T, Goncalves da Silva A et al. 2018. Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia. Genome Med. 10:65
    [Google Scholar]
  25. 25.
    Giulieri SG, Guerillot R, Duchene S, Hachani A, Daniel D et al. 2022. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 11:e77195
    [Google Scholar]
  26. 26.
    Gloag ES, Marshall CW, Snyder D, Lewin GR, Harris JS et al. 2019. Pseudomonas aeruginosa interstrain dynamics and selection of hyperbiofilm mutants during a chronic infection. mBio 10:e01698-19
    [Google Scholar]
  27. 27.
    Yang Y, Nguyen M, Khetrapal V, Sonnert ND, Martin AL et al. 2022. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 607:56370
    [Google Scholar]
  28. 28.
    Conlan S, Park M, Deming C, Thomas PJ, Young AC et al. 2016. Plasmid dynamics in KPC-positive Klebsiella pneumoniae during long-term patient colonization. mBio 7:e00742-16
    [Google Scholar]
  29. 29.
    Conlan S, Lau AF, Deming C, Spalding CD, Lee-Lin S et al. 2019. Plasmid dissemination and selection of a multidrug-resistant Klebsiella pneumoniae strain during transplant-associated antibiotic therapy. mBio 10:e00652-19
    [Google Scholar]
  30. 30.
    Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N et al. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35:3240
    [Google Scholar]
  31. 31.
    Foster PL, Lee H, Popodi E, Townes JP, Tang H. 2015. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. PNAS 112:E599099
    [Google Scholar]
  32. 32.
    Dettman JR, Sztepanacz JL, Kassen R. 2016. The properties of spontaneous mutations in the opportunistic pathogen Pseudomonas aeruginosa. BMC Genom. 17:27
    [Google Scholar]
  33. 33.
    Echols H, Goodman MF. 1991. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60:477511
    [Google Scholar]
  34. 34.
    Oertell K, Harcourt EM, Mohsen MG, Petruska J, Kool ET, Goodman MF. 2016. Kinetic selection versus free energy of DNA base pairing in control of polymerase fidelity. PNAS 113:E227785
    [Google Scholar]
  35. 35.
    Kunkel TA. 2004. DNA replication fidelity. J. Biol. Chem. 279:1689598
    [Google Scholar]
  36. 36.
    Niccum BA, Lee H, Mohammed Ismail W, Tang H, Foster PL 2018. The spectrum of replication errors in the absence of error correction assayed across the whole genome of Escherichia coli. Genetics 209:104354
    [Google Scholar]
  37. 37.
    Bebenek A, Ziuzia-Graczyk I. 2018. Fidelity of DNA replication—a matter of proofreading. Curr. Genet. 64:98596
    [Google Scholar]
  38. 38.
    Krokan HE, Bjoras M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5:a012583
    [Google Scholar]
  39. 39.
    van der Veen S, Tang CM. 2015. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat. Rev. Microbiol. 13:8394
    [Google Scholar]
  40. 40.
    Foster PL, Niccum BA, Popodi E, Townes JP, Lee H et al. 2018. Determinants of base-pair substitution patterns revealed by whole-genome sequencing of DNA mismatch repair defective Escherichia coli. Genetics 209:102942
    [Google Scholar]
  41. 41.
    Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11:44354
    [Google Scholar]
  42. 42.
    Niccum BA, Coplen CP, Lee H, Mohammed Ismail W, Tang H, Foster PL 2020. New complexities of SOS-induced “untargeted” mutagenesis in Escherichia coli as revealed by mutation accumulation and whole-genome sequencing. DNA Repair. 90:102852
    [Google Scholar]
  43. 43.
    Baharoglu Z, Mazel D. 2014. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol. Rev. 38:112645
    [Google Scholar]
  44. 44.
    Taft-Benz SA, Schaaper RM. 1998. Mutational analysis of the 3′→5′ proofreading exonuclease of Escherichia coli DNA polymerase III. Nucleic Acids Res. 26:400511
    [Google Scholar]
  45. 45.
    Launay A, Wu CJ, Dulanto Chiang A, Youn JH, Khil PP, Dekker JP 2021. In vivo evolution of an emerging zoonotic bacterial pathogen in an immunocompromised human host. Nat. Commun. 12:4495
    [Google Scholar]
  46. 46.
    Li GM. 2008. Mechanisms and functions of DNA mismatch repair. Cell Res. 18:8598
    [Google Scholar]
  47. 47.
    Thapa B, Schlegel HB. 2015. Calculations of pKa's and redox potentials of nucleobases with explicit waters and polarizable continuum solvation. J. Phys. Chem. A 119:513444
    [Google Scholar]
  48. 48.
    Hogg M, Wallace SS, Doublie S. 2005. Bumps in the road: how replicative DNA polymerases see DNA damage. Curr. Opin. Struct. Biol. 15:8693
    [Google Scholar]
  49. 49.
    Fromme JC, Verdine GL. 2002. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Nat. Struct. Biol. 9:54452
    [Google Scholar]
  50. 50.
    Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. 2019. The SOS system: a complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 60:36884
    [Google Scholar]
  51. 51.
    Kreuzer KN. 2013. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb. Perspect. Biol. 5:a012674
    [Google Scholar]
  52. 52.
    Moxon R, Bayliss C, Hood D. 2006. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40:30733
    [Google Scholar]
  53. 53.
    Rando OJ, Verstrepen KJ. 2007. Timescales of genetic and epigenetic inheritance. Cell 128:65568
    [Google Scholar]
  54. 54.
    van der Woude MW, Baumler AJ. 2004. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17:581611
    [Google Scholar]
  55. 55.
    Moxon ER, Rainey PB, Nowak MA, Lenski RE. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4:2433
    [Google Scholar]
  56. 56.
    van Ham SM, van Alphen L, Mooi FR, van Putten JP. 1993. Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 73:118796
    [Google Scholar]
  57. 57.
    Weiser JN, Love JM, Moxon ER. 1989. The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59:65765
    [Google Scholar]
  58. 58.
    Weiser JN, Maskell DJ, Butler PD, Lindberg AA, Moxon ER. 1990. Characterization of repetitive sequences controlling phase variation of Haemophilus influenzae lipopolysaccharide. J. Bacteriol. 172:33049
    [Google Scholar]
  59. 59.
    Lowrey LC, Kent LA, Rios BM, Ocasio AB, Cotter PA. 2023. An IS-mediated, RecA-dependent, bet-hedging strategy in Burkholderia thailandensis. eLife 12:e84327
    [Google Scholar]
  60. 60.
    Henderson IR, Owen P, Nataro JP. 1999. Molecular switches—the ON and OFF of bacterial phase variation. Mol. Microbiol. 33:91932
    [Google Scholar]
  61. 61.
    Jiang X, Hall AB, Arthur TD, Plichta DR, Covington CT et al. 2019. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science 363:18187
    [Google Scholar]
  62. 62.
    Yan W, Hall AB, Jiang X. 2022. Bacteroidales species in the human gut are a reservoir of antibiotic resistance genes regulated by invertible promoters. NPJ Biofilms Microbiomes 8:1
    [Google Scholar]
  63. 63.
    Vandecraen J, Chandler M, Aertsen A, Van Houdt R. 2017. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43:70930
    [Google Scholar]
  64. 64.
    Shropshire WC, Aitken SL, Pifer R, Kim J, Bhatti MM et al. 2021. IS26-mediated amplification of blaOXA-1 and blaCTX-M-15 with concurrent outer membrane porin disruption associated with de novo carbapenem resistance in a recurrent bacteraemia cohort. J. Antimicrob. Chemother. 76:38595
    [Google Scholar]
  65. 65.
    Hubbard ATM, Mason J, Roberts P, Parry CM, Corless C et al. 2020. Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of blaTEM-1B. Nat. Commun. 11:4915
    [Google Scholar]
  66. 66.
    Hoiseth SK, Corn PG, Anders J 1992. Amplification status of capsule genes in Haemophilus influenzae type b clinical isolates. J. Infect. Dis. 165:Suppl. 1S114
    [Google Scholar]
  67. 67.
    Kroll JS. 1992. The genetics of encapsulation in Haemophilus influenzae. J. Infect. Dis. 165:Suppl. 1S9396
    [Google Scholar]
  68. 68.
    Kroll JS, Loynds BM, Moxon ER. 1991. The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol. Microbiol. 5:154960
    [Google Scholar]
  69. 69.
    Worby CJ, Lipsitch M, Hanage WP. 2014. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLOS Comput. Biol. 10:e1003549
    [Google Scholar]
  70. 70.
    Ochman H, Wilson AC. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26:7486
    [Google Scholar]
  71. 71.
    Ochman H, Elwyn S, Moran NA. 1999. Calibrating bacterial evolution. PNAS 96:1263843
    [Google Scholar]
  72. 72.
    Biek R, Pybus OG, Lloyd-Smith JO, Didelot X. 2015. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30:30613
    [Google Scholar]
  73. 73.
    Ho SY, Lanfear R, Bromham L, Phillips MJ, Soubrier J et al. 2011. Time-dependent rates of molecular evolution. Mol. Ecol. 20:3087101
    [Google Scholar]
  74. 74.
    Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B et al. 2011. Helicobacter pylori genome evolution during human infection. PNAS 108:503338
    [Google Scholar]
  75. 75.
    Didelot X, Nell S, Yang I, Woltemate S, van der Merwe S, Suerbaum S. 2013. Genomic evolution and transmission of Helicobacter pylori in two South African families. PNAS 110:1388085
    [Google Scholar]
  76. 76.
    Eyre DW, Cule ML, Wilson DJ, Griffiths D, Vaughan A et al. 2013. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 369:1195205
    [Google Scholar]
  77. 77.
    Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. 2015. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob. Agents Chemother. 59:165663
    [Google Scholar]
  78. 78.
    Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O et al. 2011. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 43:48286
    [Google Scholar]
  79. 79.
    Charlesworth B. 2009. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10:195205
    [Google Scholar]
  80. 80.
    Falush D, Kraft C, Taylor NS, Correa P, Fox JG et al. 2001. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. PNAS 98:1505661
    [Google Scholar]
  81. 81.
    Kimura M. 1968. Evolutionary rate at the molecular level. Nature 217:62426
    [Google Scholar]
  82. 82.
    King JL, Jukes TH. 1969. Non-Darwinian evolution. Science 164:78898
    [Google Scholar]
  83. 83.
    Kimura M. 1991. The neutral theory of molecular evolution: a review of recent evidence. Jpn. J. Genet. 66:36786
    [Google Scholar]
  84. 84.
    Kuo CH, Moran NA, Ochman H. 2009. The consequences of genetic drift for bacterial genome complexity. Genome Res. 19:145054
    [Google Scholar]
  85. 85.
    Kryazhimskiy S, Plotkin JB. 2008. The population genetics of dN/dS. PLOS Genet. 4:e1000304
    [Google Scholar]
  86. 86.
    Rahman S, Kosakovsky Pond SL, Webb A, Hey J 2021. Weak selection on synonymous codons substantially inflates dN/dS estimates in bacteria. PNAS 118:e2023575118
    [Google Scholar]
  87. 87.
    Mugal CF, Wolf JB, Kaj I. 2014. Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol. Biol. Evol. 31:21231
    [Google Scholar]
  88. 88.
    Campbell F, Strang C, Ferguson N, Cori A, Jombart T. 2018. When are pathogen genome sequences informative of transmission events?. PLOS Pathog. 14:e1006885
    [Google Scholar]
  89. 89.
    Ailloud F, Didelot X, Woltemate S, Pfaffinger G, Overmann J et al. 2019. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 10:2273
    [Google Scholar]
  90. 90.
    Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H et al. 2015. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 18:30719
    [Google Scholar]
  91. 91.
    Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ et al. 2014. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat. Genet. 46:8287
    [Google Scholar]
  92. 92.
    Gerrish PJ, Lenski RE. 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102–103:12744
    [Google Scholar]
  93. 93.
    Rozen DE, de Visser JA, Gerrish PJ. 2002. Fitness effects of fixed beneficial mutations in microbial populations. Curr. Biol. 12:104045
    [Google Scholar]
  94. 94.
    Van Cleve J, Weissman DB. 2015. Measuring ruggedness in fitness landscapes. PNAS 112:734546
    [Google Scholar]
  95. 95.
    Cookson BT, Vandamme P, Carlson LC, Larson AM, Sheffield JV et al. 1994. Bacteremia caused by a novel Bordetella species, “B. hinzii. .” J. Clin. Microbiol. 32:256971
    [Google Scholar]
  96. 96.
    Vandamme P, Hommez J, Vancanneyt M, Monsieurs M, Hoste B et al. 1995. Bordetella hinzii sp. nov., isolated from poultry and humans. Int. J. Syst. Bacteriol. 45:3745
    [Google Scholar]
  97. 97.
    Register KB, Kunkle RA. 2009. Strain-specific virulence of Bordetella hinzii in poultry. Avian Dis. 53:5054
    [Google Scholar]
  98. 98.
    Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC et al. 2012. Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genom. 13:545
    [Google Scholar]
  99. 99.
    La Rosa R, Johansen HK, Molin S 2018. Convergent metabolic specialization through distinct evolutionary paths in Pseudomonas aeruginosa. mBio 9:e00269-18
    [Google Scholar]
  100. 100.
    Song H, Hwang J, Yi H, Ulrich RL, Yu Y et al. 2010. The early stage of bacterial genome-reductive evolution in the host. PLOS Pathog. 6:e1000922
    [Google Scholar]
  101. 101.
    Elsen S, Huber P, Bouillot S, Coute Y, Fournier P et al. 2014. A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 15:16476
    [Google Scholar]
  102. 102.
    Starkey M, Hickman JH, Ma L, Zhang N, De Long S et al. 2009. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J. Bacteriol. 191:3492503
    [Google Scholar]
  103. 103.
    Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S et al. 2018. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLOS Pathog. 14:e1006842
    [Google Scholar]
  104. 104.
    Hickman JW, Tifrea DF, Harwood CS. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. PNAS 102:1442227
    [Google Scholar]
  105. 105.
    Evans TJ. 2015. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol. 10:23139
    [Google Scholar]
  106. 106.
    Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75:82742
    [Google Scholar]
  107. 107.
    Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95108
    [Google Scholar]
  108. 108.
    McEvoy CR, Tsuji B, Gao W, Seemann T, Porter JL et al. 2013. Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS256 tempering of WalKR expression. Antimicrob. Agents Chemother. 57:324049
    [Google Scholar]
  109. 109.
    Kuroda M, Sekizuka T, Matsui H, Ohsuga J, Ohshima T, Hanaki H. 2019. IS256-mediated overexpression of the WalKR two-component system regulon contributes to reduced vancomycin susceptibility in a Staphylococcus aureus clinical isolate. Front. Microbiol. 10:1882
    [Google Scholar]
  110. 110.
    Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C et al. 2018. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359:115661
    [Google Scholar]
  111. 111.
    Nakamoto N, Sasaki N, Aoki R, Miyamoto K, Suda W et al. 2019. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat. Microbiol. 4:492503
    [Google Scholar]
  112. 112.
    Tanner JR, Kingsley RA. 2018. Evolution of Salmonella within hosts. Trends Microbiol. 26:98698
    [Google Scholar]
  113. 113.
    Chung H, Merakou C, Schaefers MM, Flett KB, Martini S et al. 2022. Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. Nat. Commun. 13:1231
    [Google Scholar]
  114. 114.
    Wheatley RM, Caballero JD, van der Schalk TE, De Winter FHR, Shaw LP et al. 2022. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. Nat. Commun. 13:6523
    [Google Scholar]
  115. 115.
    Wheatley R, Diaz Caballero J, Kapel N, de Winter FHR, Jangir P et al. 2021. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat. Commun. 12:2460
    [Google Scholar]
  116. 116.
    Khil PP, Dulanto Chiang A, Ho J, Youn JH, Lemon JK et al. 2019. Dynamic emergence of mismatch repair deficiency facilitates rapid evolution of ceftazidime-avibactam resistance in Pseudomonas aeruginosa acute infection. mBio 10:e01822-19
    [Google Scholar]
  117. 117.
    Lahiri SD, Walkup GK, Whiteaker JD, Palmer T, McCormack K et al. 2015. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J. Antimicrob. Chemother. 70:165058
    [Google Scholar]
  118. 118.
    Dulanto Chiang A, Patil PP, Beka L, Youn JH, Launay A et al. 2022. Hypermutator strains of Pseudomonas aeruginosa reveal novel pathways of resistance to combinations of cephalosporin antibiotics and beta-lactamase inhibitors. PLOS Biol. 20:e3001878
    [Google Scholar]
  119. 119.
    Oliver A, Canton R, Campo P, Baquero F, Blazquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:125154
    [Google Scholar]
  120. 120.
    Li Y, Mima T, Komori Y, Morita Y, Kuroda T et al. 2003. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 52:57275
    [Google Scholar]
  121. 121.
    Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA et al. 2021. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science 371:6531eaba0862
    [Google Scholar]
  122. 122.
    Silva KPT, Sundar G, Khare A. 2023. Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic. Nat. Commun. 14:3402
    [Google Scholar]
  123. 123.
    Khademi SMH, Sazinas P, Jelsbak L. 2019. Within-host adaptation mediated by intergenic evolution in Pseudomonas aeruginosa. Genome Biol. Evol. 11:138597
    [Google Scholar]
  124. 124.
    Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR et al. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. PNAS 103:848792
    [Google Scholar]
  125. 125.
    Chung JC, Becq J, Fraser L, Schulz-Trieglaff O, Bond NJ et al. 2012. Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J. Bacteriol. 194:485766
    [Google Scholar]
  126. 126.
    Marvig RL, Sommer LM, Molin S, Johansen HK. 2015. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47:5764
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051122-111408
Loading
/content/journals/10.1146/annurev-pathmechdis-051122-111408
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error