1932

Abstract

Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051222-015009
2024-01-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051222-015009.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051222-015009&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Muench DE, Olsson A, Ferchen K, Pham G, Serafin RA et al. 2020. Mouse models of neutropenia reveal progenitor-stage-specific defects. Nature 582:781010914
    [Google Scholar]
  2. 2.
    Kwok I, Becht E, Xia Y, Ng M, Teh YC et al. 2020. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53:230318.e5
    [Google Scholar]
  3. 3.
    Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E et al. 2018. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48:236479.e8
    [Google Scholar]
  4. 4.
    Xie X, Shi Q, Wu P, Zhang X, Kambara H et al. 2020. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21:9111933
    [Google Scholar]
  5. 5.
    Person RE, Li F-Q, Duan Z, Benson KF, Wechsler J et al. 2003. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat. Genet. 34:330812
    [Google Scholar]
  6. 6.
    Zarebski A, Velu CS, Baktula AM, Bourdeau T, Horman SR et al. 2008. Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 28:337080
    [Google Scholar]
  7. 7.
    Elsner J, Roesler J, Emmendörffer A, Zeidler C, Lohmann-Matthes M-L, Welte K. 1992. Altered function and surface marker expression of neutrophils induced by rhG-CSF treatment in severe congenital neutropenia. Eur. J. Haematol. 48:11019
    [Google Scholar]
  8. 8.
    Manz MG, Boettcher S. 2014. Emergency granulopoiesis. Nat. Rev. Immunol. 14:530214
    [Google Scholar]
  9. 9.
    Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E et al. 1994. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:6173746
    [Google Scholar]
  10. 10.
    Giladi A, Paul F, Herzog Y, Lubling Y, Weiner A et al. 2018. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20:783646
    [Google Scholar]
  11. 11.
    Sreejit G, Abdel-Latif A, Athmanathan B, Annabathula R, Dhyani A et al. 2020. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141:13108094
    [Google Scholar]
  12. 12.
    Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A et al. 2018. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24:9232941.e8
    [Google Scholar]
  13. 13.
    Montaldo E, Lusito E, Bianchessi V, Caronni N, Scala S et al. 2022. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat. Immunol. 23:10147083
    [Google Scholar]
  14. 14.
    Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S et al. 2020. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182:6141940.e23
    [Google Scholar]
  15. 15.
    Aschenbrenner AC, Mouktaroudi M, Krämer B, Oestreich M, Antonakos N et al. 2021. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med. 13:17
    [Google Scholar]
  16. 16.
    Engblom C, Pfirschke C, Zilionis R, Da Silva Martins J, Bos SA et al. 2017. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358:6367eaal5081
    [Google Scholar]
  17. 17.
    Zhang J, Wu Q, Johnson CB, Pham G, Kinder JM et al. 2021. In situ mapping identifies distinct vascular niches for myelopoiesis. Nature 590:784645762
    [Google Scholar]
  18. 18.
    Herisson F, Frodermann V, Courties G, Rohde D, Sun Y et al. 2018. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21:9120917
    [Google Scholar]
  19. 19.
    Granick JL, Falahee PC, Dahmubed D, Borjesson DL, Miller LS, Simon SI. 2013. Staphylococcus aureus recognition by hematopoietic stem and progenitor cells via TLR2/MyD88/PGE2 stimulates granulopoiesis in wounds. Blood 122:10177078
    [Google Scholar]
  20. 20.
    Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q et al. 2020. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5:44eaay6017
    [Google Scholar]
  21. 21.
    Grieshaber-Bouyer R, Radtke FA, Cunin P, Stifano G, Levescot A et al. 2021. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12:12856
    [Google Scholar]
  22. 22.
    Wigerblad G, Cao Q, Brooks S, Naz F, Gadkari M et al. 2022. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. 209:477282
    [Google Scholar]
  23. 23.
    Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA et al. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:730997377
    [Google Scholar]
  24. 24.
    Mistry P, Nakabo S, O'Neil L, Goel RR, Jiang K et al. 2019. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. PNAS 116:502522228
    [Google Scholar]
  25. 25.
    Coit P, Yalavarthi S, Ognenovski M, Zhao W, Hasni S et al. 2015. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J. Autoimmun. 58:5966
    [Google Scholar]
  26. 26.
    Crainiciuc G, Palomino-Segura M, Molina-Moreno M, Sicilia J, Aragones DG et al. 2022. Behavioural immune landscapes of inflammation. Nature 601:789341521
    [Google Scholar]
  27. 27.
    Dekkers JF, Alieva M, Cleven A, Keramati F, Wezenaar AKL et al. 2023. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat. Biotechnol. 41:16069
    [Google Scholar]
  28. 28.
    Molina-Moreno M, González-Díaz I, Sicilia J, Crainiciuc G, Palomino-Segura M et al. 2022. ACME: automatic feature extraction for cell migration examination through intravital microscopy imaging. Med. Image Anal. 77:102358
    [Google Scholar]
  29. 29.
    Palomino-Segura M, Sicilia J, Ballesteros I, Hidalgo A. 2023. Strategies of neutrophil diversification. Nat. Immunol. 24:57584
    [Google Scholar]
  30. 30.
    Wang C, Lutes LK, Barnoud C, Scheiermann C. 2022. The circadian immune system. Sci. Immunol. 7:72eabm2465
    [Google Scholar]
  31. 31.
    Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R et al. 2013. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153:5102535
    [Google Scholar]
  32. 32.
    Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M et al. 2019. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50:2390402.e10
    [Google Scholar]
  33. 33.
    Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y et al. 2020. Programmed “disarming” of the neutrophil proteome reduces the magnitude of inflammation. Nat. Immunol. 21:213544
    [Google Scholar]
  34. 34.
    Zhang D, Chen G, Manwani D, Mortha A, Xu C et al. 2015. Neutrophil ageing is regulated by the microbiome. Nature 525:757052832
    [Google Scholar]
  35. 35.
    Casanova-Acebes M, Nicolás-Ávila JA, Li JL, García-Silva S, Balachander A et al. 2018. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215:11277895
    [Google Scholar]
  36. 36.
    Ballesteros I, Rubio-Ponce A, Genua M, Lusito E, Kwok I et al. 2020. Co-option of neutrophil fates by tissue environments. Cell 183:5128297.e18
    [Google Scholar]
  37. 37.
    Puga I, Cols M, Barra CM, He B, Cassis L et al. 2012. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13:217080
    [Google Scholar]
  38. 38.
    Quail DF, Amulic B, Aziz M, Barnes BJ, Eruslanov E et al. 2022. Neutrophil phenotypes and functions in cancer: a consensus statement. J. Exp. Med. 219:6e20220011
    [Google Scholar]
  39. 39.
    Hedrick CC, Malanchi I. 2022. Neutrophils in cancer: heterogeneous and multifaceted. Nat. Rev. Immunol. 22:317387
    [Google Scholar]
  40. 40.
    Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D et al. 2019. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50:5131734.e10
    [Google Scholar]
  41. 41.
    Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. 2016. Extracellular matrix structure. Adv. Drug. Deliv. Rev. 97:427
    [Google Scholar]
  42. 42.
    Korkmaz B, Moreau T, Gauthier F. 2008. Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 90:222742
    [Google Scholar]
  43. 43.
    Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. 2021. Key matrix remodeling enzymes: functions and targeting in cancer. Cancers 13:61441
    [Google Scholar]
  44. 44.
    Wang S, Voisin M-B, Larbi KY, Dangerfield J, Scheiermann C et al. 2006. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203:6151932
    [Google Scholar]
  45. 45.
    Gaggar A, Jackson PL, Noerager BD, O'Reilly PJ, McQuaid DB et al. 2008. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J. Immunol. 180:8566269
    [Google Scholar]
  46. 46.
    Dangerfield J, Larbi KY, Huang M-T, Dewar A, Nourshargh S. 2002. PECAM-1 (CD31) homophilic interaction up-regulates α6β1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6 integrins to mediate leukocyte migration through the perivascular basement membrane. J. Exp. Med. 196:9120111
    [Google Scholar]
  47. 47.
    Kraus RF, Gruber MA, Kieninger M. 2021. The influence of extracellular tissue on neutrophil function and its possible linkage to inflammatory diseases. Immun. Inflamm. Dis. 9:4123751
    [Google Scholar]
  48. 48.
    Silva LM, Doyle AD, Greenwell-Wild T, Dutzan N, Tran CL et al. 2021. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 374:6575eabl5450
    [Google Scholar]
  49. 49.
    Ng LG, Qin JS, Roediger B, Wang Y, Jain R et al. 2011. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J. Investig. Dermatol. 131:10205868
    [Google Scholar]
  50. 50.
    Anderson DC, Schmalsteig FC, Finegold MJ, Hughes BJ, Rothlein R et al. 1985. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J. Infect. Dis. 152:466889
    [Google Scholar]
  51. 51.
    Mori R, Kondo T, Nishie T, Ohshima T, Asano M. 2004. Impairment of skin wound healing in β-1,4-galactosyltransferase-deficient mice with reduced leukocyte recruitment. Am. J. Pathol. 164:4130314
    [Google Scholar]
  52. 52.
    Kühl AA, Kakirman H, Janotta M, Dreher S, Cremer P et al. 2007. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology 133:6188292
    [Google Scholar]
  53. 53.
    Lekstrom-Himes JA, Gallin JI. 2000. Immunodeficiency diseases caused by defects in phagocytes. N. Engl. J. Med. 343:23170314
    [Google Scholar]
  54. 54.
    Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP. 2007. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. PNAS 104:512026267
    [Google Scholar]
  55. 55.
    Fischer A, Wannemacher J, Christ S, Koopmans T, Kadri S et al. 2022. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat. Immunol. 23:451831
    [Google Scholar]
  56. 56.
    Daseke MJ, Valerio FM, Kalusche WJ, Ma Y, DeLeon-Pennell KY, Lindsey ML. 2019. Neutrophil proteome shifts over the myocardial infarction time continuum. Basic Res. Cardiol. 114:537
    [Google Scholar]
  57. 57.
    Bastian OW, Koenderman L, Alblas J, Leenen LPH, Blokhuis TJ. 2016. Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after injury. Clin. Immunol. 164:7884
    [Google Scholar]
  58. 58.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:5891906
    [Google Scholar]
  59. 59.
    Erler JT, Bennewith KL, Cox TR, Lang G, Bird D et al. 2009. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:13544
    [Google Scholar]
  60. 60.
    Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC et al. 2011. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am. J. Pathol. 179:3145570
    [Google Scholar]
  61. 61.
    Nozawa H, Chiu C, Hanahan D. 2006. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. PNAS 103:331249398
    [Google Scholar]
  62. 62.
    He S, Lamers GE, Beenakker J-WM, Cui C, Ghotra VP et al. 2012. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 227:443145
    [Google Scholar]
  63. 63.
    Glogauer JE, Sun CX, Bradley G, Magalhaes MAO. 2015. Neutrophils increase oral squamous cell carcinoma invasion through an invadopodia-dependent pathway. Cancer Immunol. Res. 3:11121826
    [Google Scholar]
  64. 64.
    García-Mendoza MG, Inman DR, Ponik SM, Jeffery JJ, Sheerar DS et al. 2016. Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Res. 18:149
    [Google Scholar]
  65. 65.
    Albrengues J, Shields MA, Ng D, Park CG, Ambrico A et al. 2018. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361:6409eaao4227
    [Google Scholar]
  66. 66.
    Mayadas TN, Cullere X, Lowell CA. 2014. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 9:181218
    [Google Scholar]
  67. 67.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:5663153235
    [Google Scholar]
  68. 68.
    Herrero-Cervera A, Soehnlein O, Kenne E. 2022. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 19:217791
    [Google Scholar]
  69. 69.
    Ackermann M, Anders H-J, Bilyy R, Bowlin GL, Daniel C et al. 2021. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ. 28:11312539
    [Google Scholar]
  70. 70.
    Panday A, Sahoo MK, Osorio D, Batra S. 2015. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol. Immunol. 12:1523
    [Google Scholar]
  71. 71.
    Winterbourn CC, Kettle AJ, Hampton MB. 2016. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85:76592
    [Google Scholar]
  72. 72.
    Sônego F, Castanheira FVeS, Ferreira RG, Kanashiro A, Leite CAVG et al. 2016. Paradoxical roles of the neutrophil in sepsis: protective and deleterious. Front. Immunol. 7:155
    [Google Scholar]
  73. 73.
    Veenith T, Martin H, Le Breuilly M, Whitehouse T, Gao-Smith F et al. 2022. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci. Rep. 12:110484
    [Google Scholar]
  74. 74.
    Laforge M, Elbim C, Frère C, Hémadi M, Massaad C et al. 2020. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol. 20:951516
    [Google Scholar]
  75. 75.
    Woodfin A, Voisin M-B, Beyrau M, Colom B, Caille D et al. 2011. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo. Nat. Immunol. 12:876169
    [Google Scholar]
  76. 76.
    Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. 2019. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol. 40:764864
    [Google Scholar]
  77. 77.
    Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT et al. 2003. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18:110920
    [Google Scholar]
  78. 78.
    Bjerregaard MD, Jurlander J, Klausen P, Borregaard N, Cowland JB. 2003. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 101:11432232
    [Google Scholar]
  79. 79.
    Niessen HWM, Kuijpers TW, Roos D, Verhoeven AJ. 1991. Release of azurophilic granule contents in fMLP-stimulated neutrophils requires two activation signals, one of which is a rise in cytosolic free Ca2+. Cell. Signal. 3:662533
    [Google Scholar]
  80. 80.
    Simard J-C, Girard D, Tessier PA. 2010. Induction of neutrophil degranulation by S100A9 via a MAPK-dependent mechanism. J. Leukocyte Biol. 87:590514
    [Google Scholar]
  81. 81.
    Ong CWM, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT et al. 2015. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLOS Pathog. 11:5e1004917
    [Google Scholar]
  82. 82.
    Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER et al. 2021. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 5:5116477
    [Google Scholar]
  83. 83.
    Pham CTN. 2008. Neutrophil serine proteases fine-tune the inflammatory response. Int. J. Biochem. Cell Biol. 40:6–7131733
    [Google Scholar]
  84. 84.
    Yang D, Han Z, Oppenheim JJ. 2017. Alarmins and immunity. Immunol. Rev. 280:14156
    [Google Scholar]
  85. 85.
    de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD et al. 2006. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12:1012037
    [Google Scholar]
  86. 86.
    Weber GF, Chousterman BG, He S, Fenn AM, Nairz M et al. 2015. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347:6227126065
    [Google Scholar]
  87. 87.
    Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I et al. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176:223141
    [Google Scholar]
  88. 88.
    Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18:213447
    [Google Scholar]
  89. 89.
    Tsourouktsoglou T-D, Warnatsch A, Ioannou M, Hoving D, Wang Q, Papayannopoulos V. 2020. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 31:5107602
    [Google Scholar]
  90. 90.
    Boeltz S, Amini P, Anders H-J, Andrade F, Bilyy R et al. 2019. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 26:3395408
    [Google Scholar]
  91. 91.
    Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. 2022. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc. Res. 118:13273753
    [Google Scholar]
  92. 92.
    Jorch SK, Kubes P. 2017. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23:327987
    [Google Scholar]
  93. 93.
    McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12:332433
    [Google Scholar]
  94. 94.
    Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z et al. 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13:446369
    [Google Scholar]
  95. 95.
    Silva CMS, Wanderley CWS, Veras FP, Sonego F, Nascimento DC et al. 2021. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood 138:25270213
    [Google Scholar]
  96. 96.
    Thomas GM, Carbo C, Curtis BR, Martinod K, Mazo IB et al. 2012. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 119:26633543
    [Google Scholar]
  97. 97.
    Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB et al. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J. Clin. Investig. 122:7266171
    [Google Scholar]
  98. 98.
    Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG et al. 2014. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15:11101725
    [Google Scholar]
  99. 99.
    Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA et al. 2009. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114:13261922
    [Google Scholar]
  100. 100.
    Alflen A, Aranda Lopez P, Hartmann A-K, Maxeiner J, Bosmann M et al. 2020. Neutrophil extracellular traps impair fungal clearance in a mouse model of invasive pulmonary aspergillosis. Immunobiology 225:1151867
    [Google Scholar]
  101. 101.
    Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR et al. 2011. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLOS ONE 6:9e23637
    [Google Scholar]
  102. 102.
    Jenne CN, Kubes P. 2015. Virus-induced NETs—critical component of host defense or pathogenic mediator?. PLOS Pathog. 11:1e1004546
    [Google Scholar]
  103. 103.
    Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M et al. 2012. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12:110916
    [Google Scholar]
  104. 104.
    Doss M, White MR, Tecle T, Gantz D, Crouch EC et al. 2009. Interactions of α-, β-, and θ-defensins with influenza A virus and surfactant protein D. J. Immunol. 182:12787887
    [Google Scholar]
  105. 105.
    Ellis GT, Davidson S, Crotta S, Branzk N, Papayannopoulos V, Wack A. 2015. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza–Streptococcus pneumoniae coinfection. EMBO Rep. 16:9120318
    [Google Scholar]
  106. 106.
    Jenne CN, Wong CHY, Zemp FJ, McDonald B, Rahman MM et al. 2013. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13:216980
    [Google Scholar]
  107. 107.
    Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP et al. 2011. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 179:1199210
    [Google Scholar]
  108. 108.
    Zhu L, Liu L, Zhang Y, Pu L, Liu J et al. 2018. High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza A infection. J. Infect. Dis. 217:342837
    [Google Scholar]
  109. 109.
    Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M et al. 2020. Neutrophil extracellular traps in COVID-19. JCI Insight 5:11e138999
    [Google Scholar]
  110. 110.
    Huckriede J, Anderberg SB, Morales A, de Vries F, Hultström M et al. 2021. Evolution of NETosis markers and DAMPs have prognostic value in critically ill COVID-19 patients. Sci. Rep. 11:115701
    [Google Scholar]
  111. 111.
    Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J et al. 2019. Atherosclerosis. Nat. Rev. Dis. Primers 5:156
    [Google Scholar]
  112. 112.
    Drechsler M, Megens RTA, van Zandvoort M, Weber C, Soehnlein O. 2010. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122:18183745
    [Google Scholar]
  113. 113.
    Ionita MG, van den Borne P, Catanzariti LM, Moll FL, de Vries J-PPM et al. 2010. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb. Vasc. Biol. 30:9184248
    [Google Scholar]
  114. 114.
    Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. 2020. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 17:632740
    [Google Scholar]
  115. 115.
    Ortega-Gomez A, Salvermoser M, Rossaint J, Pick R, Brauner J et al. 2016. Cathepsin G controls arterial but not venular myeloid cell recruitment. Circulation 134:16117688
    [Google Scholar]
  116. 116.
    Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. 2015. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349:624531620
    [Google Scholar]
  117. 117.
    Knight JS, Luo W, O'Dell AA, Yalavarthi S, Zhao W et al. 2014. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114:694756
    [Google Scholar]
  118. 118.
    Döring Y, Soehnlein O, Weber C. 2017. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ. Res. 120:473643
    [Google Scholar]
  119. 119.
    McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A et al. 2019. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566:774438387
    [Google Scholar]
  120. 120.
    Silvestre-Roig C, Braster Q, Wichapong K, Lee EY, Teulon JM et al. 2019. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 569:775523640
    [Google Scholar]
  121. 121.
    Mawhin M-A, Tilly P, Zirka G, Charles A-L, Slimani F et al. 2018. Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia. Cardiovasc. Res. 114:12165666
    [Google Scholar]
  122. 122.
    Schloss MJ, Horckmans M, Nitz K, Duchene J, Drechsler M et al. 2016. The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Mol. Med. 8:893748
    [Google Scholar]
  123. 123.
    Suárez-Barrientos A, López-Romero P, Vivas D, Castro-Ferreira F, Núñez-Gil I et al. 2011. Circadian variations of infarct size in acute myocardial infarction. Heart 97:1297076
    [Google Scholar]
  124. 124.
    Ma Y. 2021. Role of neutrophils in cardiac injury and repair following myocardial infarction. Cells 10:71676
    [Google Scholar]
  125. 125.
    Liu J, Yang D, Wang X, Zhu Z, Wang T et al. 2019. Neutrophil extracellular traps and dsDNA predict outcomes among patients with ST-elevation myocardial infarction. Sci. Rep. 9:111599
    [Google Scholar]
  126. 126.
    Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M et al. 2014. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 123:114148
    [Google Scholar]
  127. 127.
    Calcagno DM, Zhang C, Toomu A, Huang K, Ninh VK et al. 2021. SiglecF(HI) marks late-stage neutrophils of the infarcted heart: a single-cell transcriptomic analysis of neutrophil diversification. J. Am. Heart Assoc. 10:4e019019
    [Google Scholar]
  128. 128.
    Sreejit G, Nooti SK, Jaggers RM, Athmanathan B, Ho Park K et al. 2022. Retention of the NLRP3 inflammasome–primed neutrophils in the bone marrow is essential for myocardial infarction–induced granulopoiesis. Circulation 145:13144
    [Google Scholar]
  129. 129.
    Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ et al. 2017. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38:318797
    [Google Scholar]
  130. 130.
    Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N et al. 2019. Pro-angiogenic macrophage phenotype to promote myocardial repair. J. Am. Coll. Cardiol. 73:2329903002
    [Google Scholar]
  131. 131.
    Grune J, Lewis AJM, Yamazoe M, Hulsmans M, Rohde D et al. 2022. Neutrophils incite and macrophages avert electrical storm after myocardial infarction. Nat. Cardiovasc. Res. 1:764964
    [Google Scholar]
  132. 132.
    Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH et al. 2019. Ischaemic stroke. Nat. Rev. Dis. Primers 5:170
    [Google Scholar]
  133. 133.
    Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe C-U et al. 2009. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40:5184957
    [Google Scholar]
  134. 134.
    Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR. 2015. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke 46:10291625
    [Google Scholar]
  135. 135.
    Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J et al. 2014. Neutrophils scan for activated platelets to initiate inflammation. Science 346:6214123438
    [Google Scholar]
  136. 136.
    Pircher J, Czermak T, Ehrlich A, Eberle C, Gaitzsch E et al. 2018. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat. Commun. 9:11523
    [Google Scholar]
  137. 137.
    Denorme F, Portier I, Rustad JL, Cody MJ, de Araujo CV et al. 2022. Neutrophil extracellular traps regulate ischemic stroke brain injury. J. Clin. Investig. 132:10e154225
    [Google Scholar]
  138. 138.
    Allen C, Thornton P, Denes A, McColl BW, Pierozynski A et al. 2012. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J. Immunol. 189:138192
    [Google Scholar]
  139. 139.
    Kang L, Yu H, Yang X, Zhu Y, Bai X et al. 2020. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 11:12488
    [Google Scholar]
  140. 140.
    Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J et al. 2013. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44:123498508
    [Google Scholar]
  141. 141.
    García-Culebras A, Durán-Laforet V, Peña-Martínez C, Moraga A, Ballesteros I et al. 2019. Role of TLR4 (Toll-like receptor 4) in N1/N2 neutrophil programming after stroke. Stroke 50:10292232
    [Google Scholar]
  142. 142.
    Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25:12182232
    [Google Scholar]
  143. 143.
    Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W et al. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21:893845
    [Google Scholar]
  144. 144.
    Wculek SK, Bridgeman VL, Peakman F, Malanchi I. 2020. Early neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility. iScience 23:7101277
    [Google Scholar]
  145. 145.
    Antonio N, Bønnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ et al. 2015. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 34:17221936
    [Google Scholar]
  146. 146.
    Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE et al. 2010. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 16:221923
    [Google Scholar]
  147. 147.
    Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I et al. 2020. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52:585671.e8
    [Google Scholar]
  148. 148.
    Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J et al. 2016. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 36:10207887
    [Google Scholar]
  149. 149.
    Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV et al. 2019. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569:77547378
    [Google Scholar]
  150. 150.
    Li P, Lu M, Shi J, Gong Z, Hua L et al. 2020. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat. Immunol. 21:11144455
    [Google Scholar]
  151. 151.
    Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ et al. 2021. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell 184:12316377.e21
    [Google Scholar]
  152. 152.
    Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A et al. 2014. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Investig. 124:12546680
    [Google Scholar]
  153. 153.
    Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M et al. 2019. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell 178:234660.e24
    [Google Scholar]
  154. 154.
    Mensurado S, Rei M, Lança T, Ioannou M, Gonçalves-Sousa N et al. 2018. Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through induction of oxidative stress. PLOS Biol. 16:5e2004990
    [Google Scholar]
  155. 155.
    Singhal S, Bhojnagarwala PS, O'Brien S, Moon EK, Garfall AL et al. 2016. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30:112035
    [Google Scholar]
  156. 156.
    Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J et al. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18:9140712
    [Google Scholar]
  157. 157.
    Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang J-Y et al. 2013. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 17:453448
    [Google Scholar]
  158. 158.
    Wang H, Wang Q, Venugopal J, Wang J, Kleiman K et al. 2018. Obesity-induced endothelial dysfunction is prevented by neutrophil extracellular trap inhibition. Sci. Rep. 8:14881
    [Google Scholar]
  159. 159.
    Hwang S, He Y, Xiang X, Seo W, Kim S-J et al. 2020. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets. Hepatology 72:241229
    [Google Scholar]
  160. 160.
    González-Terán B, Matesanz N, Nikolic I, Verdugo MA, Sreeramkumar V et al. 2016. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J. 35:553652
    [Google Scholar]
  161. 161.
    Rensen SS, Bieghs V, Xanthoulea S, Arfianti E, Bakker JA et al. 2012. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLOS ONE 7:12e52411
    [Google Scholar]
  162. 162.
    van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J et al. 2018. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 68:4134760
    [Google Scholar]
  163. 163.
    Caielli S, Athale S, Domic B, Murat E, Chandra M et al. 2016. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213:5697713
    [Google Scholar]
  164. 164.
    Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C et al. 2011. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3:7373ra19
    [Google Scholar]
  165. 165.
    Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S et al. 2013. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5:178178ra40
    [Google Scholar]
  166. 166.
    Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H et al. 2017. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2:10eaag3358
    [Google Scholar]
  167. 167.
    Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R et al. 2011. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187:153852
    [Google Scholar]
  168. 168.
    Van Avondt K, Strecker J-K, Tulotta C, Minnerup J, Schulz C, Soehnlein O. 2023. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 314:135775
    [Google Scholar]
  169. 169.
    Stout-Delgado HW, Du W, Shirali AC, Booth CJ, Goldstein DR. 2009. Aging promotes neutrophil-induced mortality by augmenting IL-17 production during viral infection. Cell Host Microbe 6:544656
    [Google Scholar]
  170. 170.
    Nomellini V, Brubaker AL, Mahbub S, Palmer JL, Gomez CR, Kovacs EJ. 2012. Dysregulation of neutrophil CXCR2 and pulmonary endothelial ICAM-1 promotes age-related pulmonary inflammation. Aging Dis. 3:323447
    [Google Scholar]
  171. 171.
    Barkaway A, Rolas L, Joulia R, Bodkin J, Lenn T et al. 2021. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity 54:71494510.e7
    [Google Scholar]
  172. 172.
    Lagnado A, Leslie J, Ruchaud-Sparagano M-H, Victorelli S, Hirsova P et al. 2021. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 40:9e106048
    [Google Scholar]
  173. 173.
    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG et al. 2017. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377:211121
    [Google Scholar]
  174. 174.
    Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M et al. 2018. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 10:436eaan8292
    [Google Scholar]
  175. 175.
    Filep JG. 2022. Targeting neutrophils for promoting the resolution of inflammation. Front. Immunol. 13:866747
    [Google Scholar]
  176. 176.
    Németh T, Sperandio M, Mócsai A. 2020. Neutrophils as emerging therapeutic targets. Nat. Rev. Drug Discov. 19:425375
    [Google Scholar]
  177. 177.
    Leitch AE, Lucas CD, Marwick JA, Duffin R, Haslett C, Rossi AG. 2012. Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation. Cell Death Differ. 19:12195061
    [Google Scholar]
  178. 178.
    Vago JP, Nogueira CRC, Tavares LP, Soriani FM, Lopes F et al. 2012. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J. Leukoc. Biol. 92:224958
    [Google Scholar]
  179. 179.
    Cowburn AS, Cadwallader KA, Reed BJ, Farahi N, Chilvers ER. 2002. Role of PI3-kinase-dependent Bad phosphorylation and altered transcription in cytokine-mediated neutrophil survival. Blood 100:7260716
    [Google Scholar]
  180. 180.
    McGrath EE, Marriott HM, Lawrie A, Francis SE, Sabroe I et al. 2011. TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. J. Leukoc. Biol. 90:585565
    [Google Scholar]
  181. 181.
    Fan Y, Teng Y, Loison F, Pang A, Kasorn A et al. 2021. Targeting multiple cell death pathways extends the shelf life and preserves the function of human and mouse neutrophils for transfusion. Sci. Transl. Med. 13:604eabb1069
    [Google Scholar]
  182. 182.
    Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. 2005. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:328594
    [Google Scholar]
  183. 183.
    de Oliveira S, Rosowski EE, Huttenlocher A. 2016. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16:637891
    [Google Scholar]
  184. 184.
    Moss RB, Mistry SJ, Konstan MW, Pilewski JM, Kerem E et al. 2013. Safety and early treatment effects of the CXCR2 antagonist SB-656933 in patients with cystic fibrosis. J. Cyst. Fibros. 12:324148
    [Google Scholar]
  185. 185.
    De Soyza A, Pavord I, Elborn JS, Smith D, Wray H et al. 2015. A randomised, placebo-controlled study of the CXCR2 antagonist AZD5069 in bronchiectasis. Eur. Respir. J. 46:4102132
    [Google Scholar]
  186. 186.
    Jurcevic S, Humfrey C, Uddin M, Warrington S, Larsson B, Keen C. 2015. The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions. Br. J. Clin. Pharmacol. 80:6132436
    [Google Scholar]
  187. 187.
    Opfermann P, Derhaschnig U, Felli A, Wenisch J, Santer D et al. 2015. A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia-reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin. Exp. Immunol. 180:113142
    [Google Scholar]
  188. 188.
    García-Prieto J, Villena-Gutiérrez R, Gómez M, Bernardo E, Pun-García A et al. 2017. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun. 8:14780
    [Google Scholar]
  189. 189.
    Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J et al. 2020. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 217:6e20200652
    [Google Scholar]
  190. 190.
    Adrover JM, McDowell SAC, He X-Y, Quail DF, Egeblad M. 2023. NETworking with cancer: the bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 41:350526
    [Google Scholar]
  191. 191.
    Knight JS, Zhao W, Luo W, Subramanian V, O'Dell AA et al. 2013. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Investig. 123:7298193
    [Google Scholar]
  192. 192.
    Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M et al. 2020. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 217:12e20201129
    [Google Scholar]
  193. 193.
    Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA et al. 2010. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. PNAS 107:21981318
    [Google Scholar]
  194. 194.
    Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D et al. 2014. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20:551117
    [Google Scholar]
  195. 195.
    Geng S, Zhang Y, Lee C, Li L. 2019. Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. Sci. Adv. 5:2eaav2309
    [Google Scholar]
  196. 196.
    Cao X, Hu Y, Luo S, Wang Y, Gong T et al. 2019. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm. Sin. B 9:357589
    [Google Scholar]
  197. 197.
    Linde IL, Prestwood TR, Qiu J, Pilarowski G, Linde MH et al. 2023. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 41:235672.e10
    [Google Scholar]
  198. 198.
    Aroca-Crevillén A, Adrover JM, Hidalgo A. 2020. Circadian features of neutrophil biology. Front. Immunol. 11:576
    [Google Scholar]
  199. 199.
    Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD et al. 2012. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. PNAS 109:258287
    [Google Scholar]
  200. 200.
    He W, Holtkamp S, Hergenhan SM, Kraus K, de Juan A et al. 2018. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity 49:6117590.e7
    [Google Scholar]
  201. 201.
    Gibbs J, Ince L, Matthews L, Mei J, Bell T et al. 2014. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20:891926
    [Google Scholar]
  202. 202.
    Winter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H et al. 2018. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab. 28:117582.e5
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051222-015009
Loading
/content/journals/10.1146/annurev-pathmechdis-051222-015009
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error