1932

Abstract

Tauopathies are a diverse group of progressive and fatal neurodegenerative diseases characterized by aberrant tau inclusions in the central nervous system. Tau protein forms pathologic fibrillar aggregates that are typically closely associated with neuronal cell death, leading to varied clinical phenotypes including dementia, movement disorders, and motor neuron disease. In this review, we describe the clinicopathologic features of tauopathies and highlight recent advances in understanding the mechanisms that lead to spread of pathologic aggregates through interconnected neuronal pathways. The cell-to-cell propagation of tauopathy is then linked to posttranslational modifications, tau fibril structural variants, and the breakdown of cellular protein quality control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051222-120750
2024-01-24
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051222-120750.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051222-120750&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kovacs GG, Ghetti B, Goedert M. 2022. Classification of diseases with accumulation of Tau protein. Neuropathol. Appl. Neurobiol. 48:3e12792
    [Google Scholar]
  2. 2.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. 2006. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112:4389404
    [Google Scholar]
  3. 3.
    Braak H, Thal DR, Ghebremedhin E, Del Tredici K. 2011. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70:1196069
    [Google Scholar]
  4. 4.
    Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM et al. 2016. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann. Neurol. 80:224758
    [Google Scholar]
  5. 5.
    Schöll M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M et al. 2016. PET imaging of Tau deposition in the aging human brain. Neuron 89:597182
    [Google Scholar]
  6. 6.
    Binder LI, Frankfurter A, Rebhun LI. 1985. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 101:4137178
    [Google Scholar]
  7. 7.
    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. 1989. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3:451926
    [Google Scholar]
  8. 8.
    Panda D, Samuel JC, Massie M, Feinstein SC, Wilson L. 2003. Differential regulation of microtubule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative disease. PNAS 100:16954853
    [Google Scholar]
  9. 9.
    Fischer I, Baas PW. 2020. Resurrecting the mysteries of big tau. Trends Neurosci. 43:7493504
    [Google Scholar]
  10. 10.
    Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ et al. 2020. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain J. Neurol. 143:5157287
    [Google Scholar]
  11. 11.
    Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. 2015. Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol. Appl. Neurobiol. 41:12446
    [Google Scholar]
  12. 12.
    Forrest SL, Kril JJ, Stevens CH, Kwok JB, Hallupp M et al. 2018. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain J. Neurol. 141:252134
    [Google Scholar]
  13. 13.
    Darwich NF, Phan JM, Kim B, Suh E, Papatriantafyllou JD et al. 2020. Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science 370:6519eaay8826
    [Google Scholar]
  14. 14.
    Jay TR, von Saucken VE, Landreth GE. 2017. TREM2 in neurodegenerative diseases. Mol. Neurodegener. 12:156
    [Google Scholar]
  15. 15.
    Nguyen AT, Wang K, Hu G, Wang X, Miao Z et al. 2020. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease. Acta Neuropathol. 140:447793
    [Google Scholar]
  16. 16.
    Prokop S, Miller KR, Labra SR, Pitkin RM, Hoxha K et al. 2019. Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples. Acta Neuropathol. 138:461330
    [Google Scholar]
  17. 17.
    Kim B, Suh E, Nguyen AT, Prokop S, Mikytuck B et al. 2022. TREM2 risk variants are associated with atypical Alzheimer's disease. Acta Neuropathol. 144:61085102
    [Google Scholar]
  18. 18.
    Spillantini MG, Goedert M. 2013. Tau pathology and neurodegeneration. Lancet Neurol. 12:660922
    [Google Scholar]
  19. 19.
    Matsuo ES, Shin RW, Billingsley ML, Van deVoorde A, O'Connor M et al. 1994. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau. Neuron 13:49891002
    [Google Scholar]
  20. 20.
    Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR et al. 2020. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180:463344.e12
    [Google Scholar]
  21. 21.
    Wegmann S, Biernat J, Mandelkow E. 2021. A current view on Tau protein phosphorylation in Alzheimer's disease. Curr. Opin. Neurobiol. 69:13138
    [Google Scholar]
  22. 22.
    Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S et al. 2020. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer's disease. Cell 183:61699713.e13
    [Google Scholar]
  23. 23.
    Köpke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I. 1993. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem. 268:322437484
    [Google Scholar]
  24. 24.
    Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM. 1993. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:6108999
    [Google Scholar]
  25. 25.
    Moloney CM, Lowe VJ, Murray ME. 2021. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: a clinicopathologic perspective for biomarker research. Alzheimers Dement. 17:9155474
    [Google Scholar]
  26. 26.
    Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP et al. 2011. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2:252
    [Google Scholar]
  27. 27.
    Min S-W, Cho S-H, Zhou Y, Schroeder S, Haroutunian V et al. 2010. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:695366
    [Google Scholar]
  28. 28.
    Shin M-K, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K et al. 2021. Reducing acetylated tau is neuroprotective in brain injury. Cell 184:10271532.e23
    [Google Scholar]
  29. 29.
    Hyeon Kim J, Lee J, Hoon Choi W, Park S, Hyeong Park S et al. 2021. CHIP-mediated hyperubiquitylation of tau promotes its self-assembly into the insoluble tau filaments. Chem. Sci. 12:155599610
    [Google Scholar]
  30. 30.
    Yan Y, Wang X, Chaput D, Shin M-K, Koh Y et al. 2022. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 185:21391330.e19
    [Google Scholar]
  31. 31.
    Jack CR Jr., Bennett DA, Blennow K, Carrillo MC, Dunn B et al. 2018. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 14:453562
    [Google Scholar]
  32. 32.
    Katz DI, Bernick C, Dodick DW, Mez J, Mariani ML et al. 2021. National Institute of Neurological Disorders and Stroke consensus diagnostic criteria for traumatic encephalopathy syndrome. Neurology 96:1884863
    [Google Scholar]
  33. 33.
    Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. Science 216:454213644
    [Google Scholar]
  34. 34.
    Duyckaerts C, Sazdovitch V, Ando K, Seilhean D, Privat N et al. 2018. Neuropathology of iatrogenic Creutzfeldt-Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology. Acta Neuropathol. 135:220112
    [Google Scholar]
  35. 35.
    Jaunmuktane Z, Mead S, Ellis M, Wadsworth JDF, Nicoll AJ et al. 2015. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525:756824750
    [Google Scholar]
  36. 36.
    Purro SA, Farrow MA, Linehan J, Nazari T, Thomas DX et al. 2018. Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone. Nature 564:773641519
    [Google Scholar]
  37. 37.
    Jaunmuktane Z, Banerjee G, Paine S, Parry-Jones A, Rudge P et al. 2021. Alzheimer's disease neuropathological change three decades after iatrogenic amyloid-β transmission. Acta Neuropathol. 142:121115
    [Google Scholar]
  38. 38.
    Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D et al. 2018. Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy. Brain J. Neurol. 141:255067
    [Google Scholar]
  39. 39.
    Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. 2011. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10:978596
    [Google Scholar]
  40. 40.
    Crutch SJ, Lehmann M, Schott JM, Rabinovici GD, Rossor MN, Fox NC. 2012. Posterior cortical atrophy. Lancet Neurol. 11:217078
    [Google Scholar]
  41. 41.
    Kovacs GG, Lukic MJ, Irwin DJ, Arzberger T, Respondek G et al. 2020. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 140:299119
    [Google Scholar]
  42. 42.
    De Boni U, Crapper DR. 1978. Paired helical filaments of the Alzheimer type in cultured neurones. Nature 271:564556668
    [Google Scholar]
  43. 43.
    Guo JL, Narasimhan S, Changolkar L, He Z, Stieber A et al. 2016. Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 213:12263554
    [Google Scholar]
  44. 44.
    Guo JL, Lee VM-Y. 2011. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286:171531731
    [Google Scholar]
  45. 45.
    Vandermeeren M, Mercken M, Vanmechelen E, Six J, van de Voorde A et al. 1993. Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J. Neurochem. 61:5182834
    [Google Scholar]
  46. 46.
    Panza F, Lozupone M. 2022. The challenges of anti-tau therapeutics in Alzheimer disease. Nat. Rev. Neurol. 18:1057778
    [Google Scholar]
  47. 47.
    Teng E, Manser PT, Pickthorn K, Brunstein F, Blendstrup M et al. 2022. Safety and efficacy of semorinemab in individuals with prodromal to mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 79:875867
    [Google Scholar]
  48. 48.
    Jackson SJ, Kerridge C, Cooper J, Cavallini A, Falcon B et al. 2016. Short fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau. J. Neurosci. 36:376272
    [Google Scholar]
  49. 49.
    Kim D, Lim S, Haque MM, Ryoo N, Hong HS et al. 2015. Identification of disulfide cross-linked tau dimer responsible for tau propagation. Sci. Rep. 5:15231
    [Google Scholar]
  50. 50.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T et al. 2012. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2:700
    [Google Scholar]
  51. 51.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J et al. 2012. Identification of oligomers at early stages of tau aggregation in Alzheimer's disease. FASEB J. 26:5194659
    [Google Scholar]
  52. 52.
    Mirbaha H, Holmes BB, Sanders DW, Bieschke J, Diamond MI. 2015. Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J. Biol. Chem. 290:2414893903
    [Google Scholar]
  53. 53.
    Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM et al. 2018. Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 7:e36584
    [Google Scholar]
  54. 54.
    Mirbaha H, Chen D, Mullapudi V, Terpack SJ, White CL et al. 2022. Seed-competent tau monomer initiates pathology in a tauopathy mouse model. J. Biol. Chem. 298:8102163
    [Google Scholar]
  55. 55.
    Takeda S, Wegmann S, Cho H, DeVos SL, Commins C et al. 2015. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat. Commun. 6:8490
    [Google Scholar]
  56. 56.
    Falcon B, Cavallini A, Angers R, Glover S, Murray TK et al. 2015. Conformation determines the seeding potencies of native and recombinant Tau aggregates. J. Biol. Chem. 290:2104965
    [Google Scholar]
  57. 57.
    Gary C, Lam S, Hérard A-S, Koch JE, Petit F et al. 2019. Encephalopathy induced by Alzheimer brain inoculation in a non-human primate. Acta Neuropathol. Commun. 7:1126
    [Google Scholar]
  58. 58.
    He Z, McBride JD, Xu H, Changolkar L, Kim S et al. 2020. Transmission of tauopathy strains is independent of their isoform composition. Nat. Commun. 11:17
    [Google Scholar]
  59. 59.
    Stern AM, Yang Y, Jin S, Yamashita K, Meunier AL et al. 2023. Abundant Aβ fibrils in ultracentrifugal supernatants of aqueous extracts from Alzheimer's disease brains. Neuron 111:13201220.e4
    [Google Scholar]
  60. 60.
    Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J et al. 2016. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:4796812
    [Google Scholar]
  61. 61.
    Narasimhan S, Guo JL, Changolkar L, Stieber A, McBride JD et al. 2017. Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J. Neurosci. 37:471140623
    [Google Scholar]
  62. 62.
    Guo JL, Lee VMY. 2013. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 587:671723
    [Google Scholar]
  63. 63.
    Lövestam S, Schweighauser M, Matsubara T, Murayama S, Tomita T et al. 2021. Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. FEBS Open Bio. 11:49991013
    [Google Scholar]
  64. 64.
    Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG et al. 2022. Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. eLife 11:e76494
    [Google Scholar]
  65. 65.
    Boluda S, Iba M, Zhang B, Raible KM, Lee VM-Y, Trojanowski JQ. 2015. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration brains. Acta Neuropathol. 129:222137
    [Google Scholar]
  66. 66.
    Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S et al. 2013. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. PNAS 110:23953540
    [Google Scholar]
  67. 67.
    Narasimhan S, Changolkar L, Riddle DM, Kats A, Stieber A et al. 2019. Human tau pathology transmits glial tau aggregates in the absence of neuronal tau. J. Exp. Med. 217:2e20190783
    [Google Scholar]
  68. 68.
    Martini-Stoica H, Cole AL, Swartzlander DB, Chen F, Wan Y-W et al. 2018. TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. J. Exp. Med. 215:9235577
    [Google Scholar]
  69. 69.
    Kim B, Mikytuck B, Suh E, Gibbons GS, Van Deerlin VM et al. 2021. Tau immunotherapy is associated with glial responses in FTLD-tau. Acta Neuropathol. 142:224357
    [Google Scholar]
  70. 70.
    Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ. 1993. Evidence for the experimental transmission of cerebral β-amyloidosis to primates. Int. J. Exp. Pathol. 74:544154
    [Google Scholar]
  71. 71.
    Maclean CJ, Baker HF, Ridley RM, Mori H. 2000. Naturally occurring and experimentally induced β-amyloid deposits in the brains of marmosets (Callithrix jacchus). J. Neural Transm. 107:7799814
    [Google Scholar]
  72. 72.
    Ridley RM, Baker HF, Windle CP, Cummings RM. 2006. Very long term studies of the seeding of β-amyloidosis in primates. J. Neural Transm. 113:9124351
    [Google Scholar]
  73. 73.
    Lam S, Petit F, Hérard A-S, Boluda S, Eddarkaoui S et al. 2021. Transmission of amyloid-beta and tau pathologies is associated with cognitive impairments in a primate. Acta Neuropathol. Commun. 9:1165
    [Google Scholar]
  74. 74.
    Stopschinski BE, Del Tredici K, Estill-Terpack S-J, Ghebremdehin E, Yu FF et al. 2021. Anatomic survey of seeding in Alzheimer's disease brains reveals unexpected patterns. Acta Neuropathol. Commun. 9:1164
    [Google Scholar]
  75. 75.
    Wegmann S, Bennett RE, Delorme L, Robbins AB, Hu M et al. 2019. Experimental evidence for the age dependence of tau protein spread in the brain. Sci. Adv. 5:6eaaw6404
    [Google Scholar]
  76. 76.
    Ferrer I, Andrés-Benito P, Garcia-Esparcia P, López-Gonzalez I, Valiente D et al. 2022. Differences in tau seeding in newborn and adult wild-type mice. Int. J. Mol. Sci. 23:94789
    [Google Scholar]
  77. 77.
    Crowther RA. 1991. Straight and paired helical filaments in Alzheimer disease have a common structural unit. PNAS 88:6228892
    [Google Scholar]
  78. 78.
    Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B et al. 2021. Structure-based classification of tauopathies. Nature 598:788035963
    [Google Scholar]
  79. 79.
    Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS et al. 2021. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30:7082
    [Google Scholar]
  80. 80.
    Xu H, O'Reilly M, Gibbons GS, Changolkar L, McBride JD et al. 2021. In vitro amplification of pathogenic tau conserves disease-specific bioactive characteristics. Acta Neuropathol. 141:2193215
    [Google Scholar]
  81. 81.
    Tarutani A, Lövestam S, Zhang X, Kotecha A, Robinson AC et al. 2023. Cryo-EM structures of tau filaments from SH-SY5Y cells seeded with brain extracts from cases of Alzheimer's disease and corticobasal degeneration. FEBS Open. Bio. 13:81394404
    [Google Scholar]
  82. 82.
    Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ et al. 2018. Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature 561:772113740
    [Google Scholar]
  83. 83.
    Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R et al. 2018. Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold. Acta Neuropathol. 136:5699708
    [Google Scholar]
  84. 84.
    Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ et al. 2019. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568:775242023
    [Google Scholar]
  85. 85.
    Zhang W, Tarutani A, Newell KL, Murzin AG, Matsubara T et al. 2020. Novel tau filament fold in corticobasal degeneration. Nature 580:780228387
    [Google Scholar]
  86. 86.
    Dickson DW. 2004. Sporadic tauopathies: Pick's disease, corticobasal degeneration, progressive supranuclear palsy and argyrophilic grain disease. The Neuropathology of Dementia JQ Trojanowski, MM Esiri, VM-Y Lee 22756. Cambridge: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  87. 87.
    Yang H, Hu H-Y. 2016. Sequestration of cellular interacting partners by protein aggregates: implication in a loss-of-function pathology. FEBS J. 283:20370517
    [Google Scholar]
  88. 88.
    Ginsberg SD, Crino PB, Lee VM, Eberwine JH, Trojanowski JQ. 1997. Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Ann. Neurol. 41:22009
    [Google Scholar]
  89. 89.
    Ginsberg SD, Galvin JE, Chiu TS, Lee VM, Masliah E, Trojanowski JQ. 1998. RNA sequestration to pathological lesions of neurodegenerative diseases. Acta Neuropathol. 96:548794
    [Google Scholar]
  90. 90.
    Bryan JB, Nagle BW, Doenges KH. 1975. Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. PNAS 72:9357074
    [Google Scholar]
  91. 91.
    Hasegawa M, Crowther RA, Jakes R, Goedert M. 1997. Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J. Biol. Chem. 272:523311824
    [Google Scholar]
  92. 92.
    Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. 1996. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 399:334449
    [Google Scholar]
  93. 93.
    Hochmair J, Exner C, Franck M, Dominguez-Baquero A, Diez L et al. 2022. Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates. EMBO J. 41:11e108882
    [Google Scholar]
  94. 94.
    Zwierzchowski-Zarate AN, Mendoza-Oliva A, Kashmer OM, Collazo-Lopez JE, White CL, Diamond MI. 2022. RNA induces unique tau strains and stabilizes Alzheimer's disease seeds. J. Biol. Chem. 298:8102132
    [Google Scholar]
  95. 95.
    Arseni D, Hasegawa M, Murzin AG, Kametani F, Arai M et al. 2022. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601:789113943
    [Google Scholar]
  96. 96.
    Jiang YX, Cao Q, Sawaya MR, Abskharon R, Ge P et al. 2022. Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature 605:79093049
    [Google Scholar]
  97. 97.
    Kaufman SK, Del Tredici K, Thomas TL, Braak H, Diamond MI. 2018. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer's disease and PART. Acta Neuropathol. 136:15767
    [Google Scholar]
  98. 98.
    Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. 2004. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11:983037
    [Google Scholar]
  99. 99.
    Beskow A, Grimberg KB, Bott LC, Salomons FA, Dantuma NP, Young P. 2009. A conserved unfoldase activity for the p97 AAA-ATPase in proteasomal degradation. J. Mol. Biol. 394:473246
    [Google Scholar]
  100. 100.
    Olszewski MM, Williams C, Dong KC, Martin A. 2019. The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome. Commun. Biol. 2:129
    [Google Scholar]
  101. 101.
    Lilienbaum A. 2013. Relationship between the proteasomal system and autophagy. Int. J. Biochem. Mol. Biol. 4:1126
    [Google Scholar]
  102. 102.
    Rock KL, Gramm C, Rothstein L, Clark K, Stein R et al. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:576171
    [Google Scholar]
  103. 103.
    Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP et al. 2017. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:5101534
    [Google Scholar]
  104. 104.
    Tekirdag K, Cuervo AM. 2018. Chaperone-mediated autophagy and endosomal microautophagy: jointed by a chaperone. J. Biol. Chem. 293:15541424
    [Google Scholar]
  105. 105.
    Hipp MS, Kasturi P, Hartl FU. 2019. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20:742135
    [Google Scholar]
  106. 106.
    Keck S, Nitsch R, Grune T, Ullrich O. 2003. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J. Neurochem. 85:111522
    [Google Scholar]
  107. 107.
    Keller JN, Hanni KB, Markesbery WR. 2000. Impaired proteasome function in Alzheimer's disease. J. Neurochem. 75:143639
    [Google Scholar]
  108. 108.
    David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG. 2002. Proteasomal degradation of tau protein. J. Neurochem. 83:117685
    [Google Scholar]
  109. 109.
    Liao EE, Yang M, Nathan Kochen N, Vunnam N, Braun AR et al. 2023. Proteasomal stimulation by MK886 and its derivatives can rescue tau-induced neurite pathology. Mol. Neurobiol. 60:613344
    [Google Scholar]
  110. 110.
    Guo Q, Lehmer C, Martínez-Sánchez A, Rudack T, Beck F et al. 2018. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172:4696705.e12
    [Google Scholar]
  111. 111.
    Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH et al. 2016. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22:14653
    [Google Scholar]
  112. 112.
    Yu A, Fox SG, Cavallini A, Kerridge C, O'Neill MJ et al. 2019. Tau protein aggregates inhibit the protein-folding and vesicular trafficking arms of the cellular proteostasis network. J. Biol. Chem. 294:19791730
    [Google Scholar]
  113. 113.
    Caccamo A, Magrì A, Medina DX, Wisely EV, López-Aranda MF et al. 2013. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell 12:337080
    [Google Scholar]
  114. 114.
    Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR et al. 2006. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15:343342
    [Google Scholar]
  115. 115.
    Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z et al. 2013. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLOS ONE 8:5e62459
    [Google Scholar]
  116. 116.
    Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. 2012. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain J. Neurol. 135:Part 7216977
    [Google Scholar]
  117. 117.
    Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C et al. 2005. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64:211322
    [Google Scholar]
  118. 118.
    Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P. 2011. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain. Neurobiol. Dis. 43:16878
    [Google Scholar]
  119. 119.
    Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ et al. 2016. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12:12246783
    [Google Scholar]
  120. 120.
    Caballero B, Bourdenx M, Luengo E, Diaz A, Sohn PD et al. 2021. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat. Commun. 12:12238
    [Google Scholar]
  121. 121.
    Balmik AA, Chidambaram H, Dangi A, Marelli UK, Chinnathambi S. 2020. HDAC6 ZnF UBP as the modifier of tau structure and function. Biochemistry 59:48454662
    [Google Scholar]
  122. 122.
    Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E et al. 2009. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18:21415370
    [Google Scholar]
  123. 123.
    Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU et al. 2003. Chaperones increase association of tau protein with microtubules. PNAS 100:272126
    [Google Scholar]
  124. 124.
    Gorantla NV, Chinnathambi S. 2021. Autophagic pathways to clear the tau aggregates in Alzheimer's disease. Cell. Mol. Neurobiol. 41:6117581
    [Google Scholar]
  125. 125.
    Ding H, Dolan PJ, Johnson GVW. 2008. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J. Neurochem. 106:5211930
    [Google Scholar]
  126. 126.
    Trzeciakiewicz H, Ajit D, Tseng J-H, Chen Y, Ajit A et al. 2020. An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline. Nat. Commun. 11:15522
    [Google Scholar]
  127. 127.
    Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. 2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:672738
    [Google Scholar]
  128. 128.
    Ju J-S, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D et al. 2009. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187:687588
    [Google Scholar]
  129. 129.
    Peters J, Walsh M, Franke W. 1990. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J. 9:6175767
    [Google Scholar]
  130. 130.
    van den Boom J, Meyer H. 2018. VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol. Cell 69:218294
    [Google Scholar]
  131. 131.
    Creekmore BC, Chang Y-W, Lee EB. 2021. The cryo-EM effect: structural biology of neurodegenerative disease proteostasis factors. J. Neuropathol. Exp. Neurol. 80:6494513
    [Google Scholar]
  132. 132.
    Saha I, Yuste-Checa P, Da Silva Padilha M, Guo Q, Körner R et al. 2023. The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system. Nat. Commun. 14:1560
    [Google Scholar]
  133. 133.
    Alzforum 2023. Mutations: MAPT. Alzforum https://www.alzforum.org/mutations/mapt
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051222-120750
Loading
/content/journals/10.1146/annurev-pathmechdis-051222-120750
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error