Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Lengauer C, Kinzler KW, Vogelstein B. 1.  1998. Genetic instabilities in human cancers. Nature 396:643–49 [Google Scholar]
  2. Fuster MM, Esko JD. 2.  2005. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5:526–42 [Google Scholar]
  3. Jones PA, Laird PW. 3.  1999. Cancer epigenetics comes of age. Nat. Genet. 21:163–67 [Google Scholar]
  4. Cummings RD, Pierce JM. 4.  2014. The challenge and promise of glycomics. Chem. Biol. 21:1–15 [Google Scholar]
  5. Hunter T. 5.  2012. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. B 367:2513–16 [Google Scholar]
  6. Bucala R, Cerami A. 6.  1992. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv. Pharmacol. 23:1–34 [Google Scholar]
  7. Wautier JL, Schmidt AM. 7.  2004. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 95:233–38 [Google Scholar]
  8. Marth JD, Grewal PK. 8.  2008. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8:874–87 [Google Scholar]
  9. Moremen KW, Tiemeyer M, Nairn AV. 9.  2012. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13:448–62 [Google Scholar]
  10. Gorelik E, Galili U, Raz A. 10.  2001. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev 20:245–77 [Google Scholar]
  11. Schwarz HP, Dorner F. 11.  2003. Karl Landsteiner and his major contributions to haematology. Br. J. Haematol. 121:556–65 [Google Scholar]
  12. Stowell SR, Winkler AM, Maier CL, Arthur CM, Smith NH. 12.  et al. 2012. Initiation and regulation of complement during hemolytic transfusion reactions. Clin. Dev. Immunol. 2012:307093 [Google Scholar]
  13. Morgan WT, Watkins WM. 13.  1953. The inhibition of the haemagglutinins in plant seeds by human blood group substances and simple sugars. Br. J. Exp. Pathol. 34:94–103 [Google Scholar]
  14. Cummings RD. 14.  2009. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5:1087–104 [Google Scholar]
  15. Freeze HH, Aebi M. 15.  2005. Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 15:490–98 [Google Scholar]
  16. Neufeld EF. 16.  1991. Lysosomal storage diseases. Annu. Rev. Biochem. 60:257–80 [Google Scholar]
  17. Ohtsubo K, Marth JD. 17.  2006. Glycosylation in cellular mechanisms of health and disease. Cell 126:855–67 [Google Scholar]
  18. de Waard A, Hickman S, Kornfeld S. 18.  1976. Isolation and properties of β-galactoside binding lectins of calf heart and lung. J. Biol. Chem. 251:7581–87 [Google Scholar]
  19. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R. 19.  2005. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods 2:817–24 [Google Scholar]
  20. Liu FT, Rabinovich GA. 20.  2005. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5:29–41 [Google Scholar]
  21. Arthur CM, Baruffi MD, Cummings RD, Stowell SR. 21. 2015 Evolving mechanistic insights into galectin functions. Methods Mol. Biol. 1207:1–35 [Google Scholar]
  22. Boersema PJ, Geiger T, Wisniewski JR, Mann M. 22.  2013. Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood samples. Mol. Cell. Proteomics 12:158–71 [Google Scholar]
  23. Slade PG, Hajivandi M, Bartel CM, Gorfien SF. 23.  2012. Identifying the CHO secretome using mucin-type O-linked glycosylation and click-chemistry. J. Proteome Res. 11:6175–86 [Google Scholar]
  24. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB. 24.  et al. 2013. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32:1478–88 [Google Scholar]
  25. Hanisch FG, Breloy I. 25.  2009. Protein-specific glycosylation: signal patches and cis-controlling peptidic elements. Biol. Chem. 390:619–26 [Google Scholar]
  26. Finne J, Finne U, Deagostini-Bazin H, Goridis C. 26.  1983. Occurrence of α2–8 linked polysialosyl units in a neural cell adhesion molecule. Biochem. Biophys. Res. Commun. 112:482–87 [Google Scholar]
  27. Muhlenhoff M, Rollenhagen M, Werneburg S, Gerardy-Schahn R, Hildebrandt H. 27.  2013. Polysialic acid: versatile modification of NCAM, SynCAM 1 and neuropilin-2. Neurochem. Res. 38:1134–43 [Google Scholar]
  28. Foley DA, Swartzentruber KG, Lavie A, Colley KJ. 28.  2010. Structure and mutagenesis of neural cell adhesion molecule domains: evidence for flexibility in the placement of polysialic acid attachment sites. J. Biol. Chem. 285:27360–71 [Google Scholar]
  29. Rollenhagen M, Buettner FF, Reismann M, Jirmo AC, Grove M. 29.  et al. 2013. Polysialic acid on neuropilin-2 is exclusively synthesized by the polysialyltransferase ST8SiaIV and attached to mucin-type O-glycans located between the b2 and c domain. J. Biol. Chem. 288:22880–92 [Google Scholar]
  30. Endo T. 30.  2004. Structure, function and pathology of O-mannosyl glycans. Glycoconj. J. 21:3–7 [Google Scholar]
  31. Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T. 31.  et al. 2013. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341:896–99 [Google Scholar]
  32. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP. 32.  2012. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96 [Google Scholar]
  33. Kornfeld S, Mellman I. 33.  1989. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5:483–525 [Google Scholar]
  34. Dell A, Galadari A, Sastre F, Hitchen P. 34.  2010. Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int. J. Microbiol. 2010:148178 [Google Scholar]
  35. Bourdon MA, Krusius T, Campbell S, Schwartz NB, Ruoslahti E. 35.  1987. Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins. PNAS 84:3194–98 [Google Scholar]
  36. Doucey MA, Hess D, Cacan R, Hofsteenge J. 36.  1998. Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol. Biol. Cell 9:291–300 [Google Scholar]
  37. Buettner FF, Ashikov A, Tiemann B, Lehle L, Bakker H. 37.  2013. C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol. Cell 50:295–302 [Google Scholar]
  38. Puig B, Altmeppen H, Glatzel M. 38.  2014. The GPI-anchoring of PrP: implications in sorting and pathogenesis. Prion 8:11–18 [Google Scholar]
  39. Tsai YH, Liu X, Seeberger PH. 39.  2012. Chemical biology of glycosylphosphatidylinositol anchors. Angew. Chem. Int. Ed. Engl. 51:11438–56 [Google Scholar]
  40. Orlean P, Menon AK. 40.  2007. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48:993–1011 [Google Scholar]
  41. Lommel M, Strahl S. 41.  2009. Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19:816–28 [Google Scholar]
  42. Stanley P, Okajima T. 42.  2010. Roles of glycosylation in Notch signaling. Curr. Top. Dev. Biol. 92:131–64 [Google Scholar]
  43. Leonhard-Melief C, Haltiwanger RS. 43.  2010. O-Fucosylation of thrombospondin type 1 repeats. Methods Enzymol. 480:401–16 [Google Scholar]
  44. Takeuchi H, Haltiwanger RS. 44.  2013. Enzymatic analysis of the protein O-glycosyltransferase, Rumi, acting toward epidermal growth factor-like (EGF) repeats. Methods Mol. Biol. 1022:119–28 [Google Scholar]
  45. Song E, Mechref Y. 45.  2013. LC-MS/MS identification of the O-glycosylation and hydroxylation of amino acid residues of collagen α-1 (II) chain from bovine cartilage. J. Proteome Res. 12:3599–609 [Google Scholar]
  46. Spiro RG. 46.  1969. Characterization and quantitative determination of the hydroxylysine-linked carbohydrate units of several collagens. J. Biol. Chem. 244:602–12 [Google Scholar]
  47. Schegg B, Hulsmeier AJ, Rutschmann C, Maag C, Hennet T. 47.  2009. Core glycosylation of collagen is initiated by two β(1-O)galactosyltransferases. Mol. Cell. Biol. 29:943–52 [Google Scholar]
  48. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. 48.  2011. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80:825–58 [Google Scholar]
  49. Bond MR, Hanover JA. 49.  2013. O-GlcNAc cycling: a link between metabolism and chronic disease. Annu. Rev. Nutr. 33:205–29 [Google Scholar]
  50. Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA. 50.  2003. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J. Cell Sci. 116:647–54 [Google Scholar]
  51. Cao W, Cao J, Huang J, Yao J, Yan G. 51.  et al. 2013. Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. PLOS ONE 8:e76399 [Google Scholar]
  52. Sakaidani Y, Nomura T, Matsuura A, Ito M, Suzuki E. 52.  et al. 2011. O-Linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat. Commun. 2:583 [Google Scholar]
  53. Slawson C, Hart GW. 53.  2011. O-GlcNAc signalling: implications for cancer cell biology. Nat. Rev. Cancer 11:678–84 [Google Scholar]
  54. Lomako J, Lomako WM, Whelan WJ. 54.  1988. A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J. 2:3097–103 [Google Scholar]
  55. Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. 55.  2012. Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441:763–87 [Google Scholar]
  56. Hauselmann I, Borsig L. 56.  2014. Altered tumor-cell glycosylation promotes metastasis. Front. Oncol. 4:28 [Google Scholar]
  57. Lau KS, Dennis JW. 57.  2008. N-Glycans in cancer progression. Glycobiology 18:750–60 [Google Scholar]
  58. Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. 58.  2014. Cell surface protein glycosylation in cancer. Proteomics 14:525–46 [Google Scholar]
  59. Dube DH, Bertozzi CR. 59.  2005. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4:477–88 [Google Scholar]
  60. Brooks SA, Carter TM, Royle L, Harvey DJ, Fry SA. 60.  et al. 2008. Altered glycosylation of proteins in cancer: What is the potential for new anti-tumour strategies. Anti-Cancer Agents Med. Chem. 8:2–21 [Google Scholar]
  61. Song EY, Kang SK, Lee YC, Park YG, Chung TH. 61.  et al. 2001. Expression of bisecting N-acetylglucosaminyltransferase-III in human hepatocarcinoma tissues, fetal liver tissues, and hepatoma cell lines of Hep3B and HepG2. Cancer Investig. 19:799–807 [Google Scholar]
  62. Mori S, Aoyagi Y, Yanagi M, Suzuki Y, Asakura H. 62.  1998. Serum N-acetylglucosaminyltransferase III activities in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 13:610–19 [Google Scholar]
  63. Ogawa J, Inoue H, Koide S. 63.  1996. Expression of α-1,3-fucosyltransferase type IV and VII genes is related to poor prognosis in lung cancer. Cancer Res. 56:325–29 [Google Scholar]
  64. Togayachi A, Kudo T, Ikehara Y, Iwasaki H, Nishihara S. 64.  et al. 1999. Up-regulation of Lewis enzyme (Fuc-TIII) and plasma-type α1,3fucosyltransferase (Fuc-TVI) expression determines the augmented expression of sialyl Lewis x antigen in non-small cell lung cancer. Int. J. Cancer 83:70–79 [Google Scholar]
  65. Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B. 65.  et al. 2011. Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 71:7683–93 [Google Scholar]
  66. Bresalier RS, Ho SB, Schoeppner HL, Kim YS, Sleisenger MH. 66.  et al. 1996. Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110:1354–67 [Google Scholar]
  67. Ishida H, Togayachi A, Sakai T, Iwai T, Hiruma T. 67.  et al. 2005. A novel β1,3-N-acetylglucosaminyltransferase (β3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramatically upregulated in colon cancer. FEBS Lett. 579:71–78 [Google Scholar]
  68. McManus JF. 68.  1948. Histological and histochemical uses of periodic acid. Stain Technol. 23:99–108 [Google Scholar]
  69. Hakomori S. 69.  1989. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res. 52:257–331 [Google Scholar]
  70. Warnock ML, Stoloff A, Thor A. 70.  1988. Differentiation of adenocarcinoma of the lung from mesothelioma. Periodic acid-Schiff, monoclonal antibodies B72.3, and Leu M1. Am. J. Pathol. 133:30–8 [Google Scholar]
  71. Bochner BS, Alvarez RA, Mehta P, Bovin NV, Blixt O. 71.  et al. 2005. Glycan array screening reveals a candidate ligand for Siglec-8. J. Biol. Chem. 280:4307–12 [Google Scholar]
  72. Arthur CM, Rodrigues LC, Baruffi MD, Sullivan HC, Heimburg-Molinaro J. 72.  et al.2015 Examining galectin binding specificity using glycan microarrays. Methods Mol. Biol. 1207:115–31 [Google Scholar]
  73. Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD. 73.  2009. Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16:36–47 [Google Scholar]
  74. Arthur CM, Cummings RD, Stowell SR. 74.  2014. Using glycan microarrays to understand immunity. Curr. Opin. Chem. Biol. 18:55–61 [Google Scholar]
  75. Rillahan CD, Paulson JC. 75.  2011. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80:797–823 [Google Scholar]
  76. Borgert A, Heimburg-Molinaro J, Song X, Lasanajak Y, Ju T. 76.  et al. 2012. Deciphering structural elements of mucin glycoprotein recognition. ACS Chem. Biol. 7:1031–39 [Google Scholar]
  77. Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I. 77.  et al. 2011. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int. J. Cancer 128:1860–71 [Google Scholar]
  78. Marcus DM, Perry L, Gilbert S, Preud'homme JL, Kyle R. 78.  1989. Human IgM monoclonal proteins that bind 3-fucosyllactosamine, asialo-GM1, and GM1. J. Immunol. 143:2929–32 [Google Scholar]
  79. Hong X, Ma MZ, Gildersleeve JC, Chowdhury S, Barchi JJ Jr. 79.  et al. 2013. Sugar-binding proteins from fish: selection of high affinity “lambodies” that recognize biomedically relevant glycans. ACS Chem. Biol. 8:152–60 [Google Scholar]
  80. Yu C, Ali S, St. Germain J, Liu Y, Yu X. 80.  et al. 2012. Purification and identification of cell surface antigens using lamprey monoclonal antibodies. J. Immunol. Methods 386:43–49 [Google Scholar]
  81. Han BW, Herrin BR, Cooper MD, Wilson IA. 81.  2008. Antigen recognition by variable lymphocyte receptors. Science 321:1834–37 [Google Scholar]
  82. Morelle W, Michalski JC. 82.  2007. Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2:1585–602 [Google Scholar]
  83. Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK. 83.  et al. 1989. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 49:197–204 [Google Scholar]
  84. Werther JL, Rivera-MacMurray S, Bruckner H, Tatematsu M, Itzkowitz SH. 84.  1994. Mucin-associated sialosyl-Tn antigen expression in gastric cancer correlates with an adverse outcome. Br. J. Cancer 69:613–16 [Google Scholar]
  85. Yamada T, Watanabe A, Yamada Y, Shino Y, Tanase M. 85.  et al. 1995. Sialosyl Tn antigen expression is associated with the prognosis of patients with advanced gastric cancer. Cancer 76:1529–36 [Google Scholar]
  86. Coon JS, Weinstein RS, Summers JL. 86.  1982. Blood group precursor T-antigen expression in human urinary bladder carcinoma. Am. J. Clin. Pathol. 77:692–99 [Google Scholar]
  87. Nakayama T, Watanabe M, Katsumata T, Teramoto T, Kitajima M. 87.  1995. Expression of sialyl Lewisa as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer 75:2051–56 [Google Scholar]
  88. Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O. 88.  et al. 1993. Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res. 53:3632–37 [Google Scholar]
  89. Ogawa J, Sano A, Inoue H, Koide S. 89.  1995. Expression of Lewis-related antigen and prognosis in stage I non–small cell lung cancer. Ann. Thorac. Surg. 59:412–15 [Google Scholar]
  90. Nakagoe T, Fukushima K, Nanashima A, Sawai T, Tsuji T. 90.  et al. 2001. Comparison of the expression of ABH/Lewis-related antigens in polypoid and non-polypoid growth types of colorectal carcinoma. J. Gastroenterol. Hepatol. 16:176–83 [Google Scholar]
  91. Jorgensen T, Berner A, Kaalhus O, Tveter KJ, Danielsen HE, Bryne M. 91.  1995. Up-regulation of the oligosaccharide sialyl LewisX: a new prognostic parameter in metastatic prostate cancer. Cancer Res. 55:1817–19 [Google Scholar]
  92. Yago K, Zenita K, Ginya H, Sawada M, Ohmori K. 92.  et al. 1993. Expression of α-(1,3)-fucosyltransferases which synthesize sialyl Lex and sialyl Lea, the carbohydrate ligands for E- and P-selectins, in human malignant cell lines. Cancer Res. 53:5559–65 [Google Scholar]
  93. Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B. 93.  1990. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 250:1132–35 [Google Scholar]
  94. Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK. 94.  et al. 1990. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250:1130–32 [Google Scholar]
  95. Lowe JB, Stoolman LM, Nair RP, Larsen RD, Berhend TL, Marks RM. 95.  1990. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 63:475–84 [Google Scholar]
  96. Barthel SR, Wiese GK, Cho J, Opperman MJ, Hays DL. 96.  et al. 2009. Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. PNAS 106:19491–96 [Google Scholar]
  97. Borsig L, Wong R, Hynes RO, Varki NM, Varki A. 97.  2002. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. PNAS 99:2193–98 [Google Scholar]
  98. Kim YJ, Borsig L, Varki NM, Varki A. 98.  1998. P-selectin deficiency attenuates tumor growth and metastasis. PNAS 95:9325–30 [Google Scholar]
  99. Lee JS, Ro JY, Sahin AA, Hong WK, Brown BW. 99.  et al. 1991. Expression of blood-group antigen A—a favorable prognostic factor in non-small-cell lung cancer. N. Engl. J. Med. 324:1084–90 [Google Scholar]
  100. Biondi C, Campi C, Escovich L, Garcia Borras S, Racca A, Cotorruelo C. 100.  2008. Loss of A, B and H antigens in oral cancer. Immunologia 27:127–31 [Google Scholar]
  101. Newman AJ Jr, Carlton CE Jr, Johnson S. 101.  1980. Cell surface A, B, or O(H) blood group antigens as an indicator of malignant potential in stage A bladder carcinoma. J. Urol. 124:27–29 [Google Scholar]
  102. Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. 102.  2014. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14:63–81 [Google Scholar]
  103. Peracaula R, Barrabes S, Sarrats A, Rudd PM, de Llorens R. 103.  2008. Altered glycosylation in tumours focused to cancer diagnosis. Dis. Markers 25:207–18 [Google Scholar]
  104. Goonetilleke KS, Siriwardena AK. 104.  2007. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33:266–70 [Google Scholar]
  105. Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P. 105.  1979. Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet. 5:957–71 [Google Scholar]
  106. Ballehaninna UK, Chamberlain RS. 106.  2012. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J. Gastrointest. Oncol. 3:105–19 [Google Scholar]
  107. Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. 107.  1981. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Investig. 68:1331–37 [Google Scholar]
  108. Yin BW, Lloyd KO. 108.  2001. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J. Biol. Chem. 276:27371–75 [Google Scholar]
  109. Su Z, Graybill WS, Zhu Y. 109.  2013. Detection and monitoring of ovarian cancer. Clin. Chim. Acta 415:341–45 [Google Scholar]
  110. Hammarstrom S. 110.  1999. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9:67–81 [Google Scholar]
  111. Duffy MJ. 111.  2001. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful?. Clin. Chem. 47:624–30 [Google Scholar]
  112. Ward AM, Catto JW, Hamdy FC. 112.  2001. Prostate specific antigen: biology, biochemistry and available commercial assays. Ann. Clin. Biochem. 38:633–51 [Google Scholar]
  113. Lilja H, Ulmert D, Vickers AJ. 113.  2008. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer 8:268–78 [Google Scholar]
  114. Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O'Kennedy RJ. 114.  2013. Aberrant PSA glycosylation—a sweet predictor of prostate cancer. Nat. Rev. Urol. 10:99–107 [Google Scholar]
  115. Terentiev AA, Moldogazieva NT. 115.  2013. Alpha-fetoprotein: a renaissance. Tumour Biol. 34:2075–91 [Google Scholar]
  116. Moriya S, Morimoto M, Numata K, Nozaki A, Shimoyama Y. 116.  et al. 2013. Fucosylated fraction of alpha-fetoprotein as a serological marker of early hepatocellular carcinoma. Anticancer Res. 33:997–1001 [Google Scholar]
  117. Hiraoka A, Nakahara H, Kawasaki H, Shimizu Y, Hidaka S. 117.  et al. 2012. Huge pancreatic acinar cell carcinoma with high levels of AFP and fucosylated AFP (AFP-L3). Intern. Med. 51:1341–49 [Google Scholar]
  118. Contessa JN, Bhojani MS, Freeze HH, Rehemtulla A, Lawrence TS. 118.  2008. Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res. 68:3803–9 [Google Scholar]
  119. Kumler I, Tuxen MK, Nielsen DL. 119.  2014. A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat. Rev. 40:259–70 [Google Scholar]
  120. Cole LA, Butler SA. 120.  2008. Hyperglycosylated human chorionic gonadotropin and human chorionic gonadotropin free β-subunit: tumor markers and tumor promoters. J. Reprod. Med. 53:499–512 [Google Scholar]
  121. Gendler SJ. 121.  2001. MUC1, the renaissance molecule. J. Mamm. Gland Biol. Neoplasia 6:339–53 [Google Scholar]
  122. Hollingsworth MA, Swanson BJ. 122.  2004. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4:45–60 [Google Scholar]
  123. Ju T, Otto VI, Cummings RD. 123.  2011. The Tn antigen—structural simplicity and biological complexity. Angew. Chem. Int. Ed. 50:1770–91 [Google Scholar]
  124. Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X. 124.  et al. 2013. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin. Appl. 7:618–31 [Google Scholar]
  125. O'Boyle KP, Markowitz AL, Khorshidi M, Lalezari P, Longenecker BM. 125.  et al. 1996. Specificity analysis of murine monoclonal antibodies reactive with Tn, sialylated Tn, T, and monosialylated (2→6) T antigens. Hybridoma 15:401–8 [Google Scholar]
  126. Hanisch FG, Uhlenbruck G, Egge H, Peter-Katalinic J. 126.  1989. A B72.3 second-generation-monoclonal antibody (CC49) defines the mucin-carried carbohydrate epitope Galβ(1–3) [NeuAcα(2–6)]GalNAc. Biol. Chem. 370:21–26 [Google Scholar]
  127. Fang L, Holford NH, Hinkle G, Cao X, Xiao JJ. 127.  et al. 2007. Population pharmacokinetics of humanized monoclonal antibody HuCC49ΔCH2 and murine antibody CC49 in colorectal cancer patients. J. Clin. Pharmacol. 47:227–37 [Google Scholar]
  128. Zhao P, Nairn AV, Hester S, Moremen KW, O'Regan RM. 128.  et al. 2012. Proteomic identification of glycosylphosphatidylinositol anchor-dependent membrane proteins elevated in breast carcinoma. J. Biol. Chem. 287:25230–40 [Google Scholar]
  129. Dolezal S, Hester S, Kirby PS, Nairn A, Pierce M, Abbott KL. 129.  2014. Elevated levels of glycosylphosphatidylinositol (GPI) anchored proteins in plasma from human cancers detected by C. septicum alpha toxin. Cancer Biomark. 14:55–62 [Google Scholar]
  130. Varki A. 130.  2010. Colloquium paper: uniquely human evolution of sialic acid genetics and biology. PNAS 107:Suppl. 28939–46 [Google Scholar]
  131. Padler-Karavani V, Hurtado-Ziola N, Pu M, Yu H, Huang S. 131.  et al. 2011. Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res. 71:3352–63 [Google Scholar]
  132. Ju T, Lanneau GS, Gautam T, Wang Y, Xia B. 132.  et al. 2008. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68:1636–46 [Google Scholar]
  133. Guda K, Moinova H, He J, Jamison O, Ravi L. 133.  et al. 2009. Inactivating germ-line and somatic mutations in polypeptide N-acetylgalactosaminyltransferase 12 in human colon cancers. PNAS 106:12921–25 [Google Scholar]
  134. Chen L, Zhang W, Fregien N, Pierce M. 134.  1998. The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products. Oncogene 17:2087–93 [Google Scholar]
  135. Noda K, Miyoshi E, Uozumi N, Yanagidani S, Ikeda Y. 135.  et al. 1998. Gene expression of α1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of α-fetoprotein. Hepatology 28:944–52 [Google Scholar]
  136. Park JH, Nishidate T, Kijima K, Ohashi T, Takegawa K. 136.  et al. 2010. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res. 70:2759–69 [Google Scholar]
  137. Gomes J, Marcos NT, Berois N, Osinaga E, Magalhaes A. 137.  et al. 2009. Expression of UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 in gastric mucosa, intestinal metaplasia, and gastric carcinoma. J. Histochem. Cytochem. 57:79–86 [Google Scholar]
  138. Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM. 138.  et al. 2007. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13:1070–77 [Google Scholar]
  139. Sewell R, Backstrom M, Dalziel M, Gschmeissner S, Karlsson H. 139.  et al. 2006. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281:3586–94 [Google Scholar]
  140. Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL. 140.  et al. 2014. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. PNAS 111:E4066–75 [Google Scholar]
  141. Mi R, Song L, Wang Y, Ding X, Zeng J. 141.  et al. 2012. Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing Tn antigen. J. Biol. Chem. 287:41523–33 [Google Scholar]
  142. Huang J, Che MI, Lin NY, Hung JS, Huang YT. 142.  et al. 2014. The molecular chaperone Cosmc enhances malignant behaviors of colon cancer cells via activation of Akt and ERK. Mol. Carcinog. 53:Suppl. 1E62–71 [Google Scholar]
  143. Hung JS, Huang J, Lin YC, Huang MJ, Lee PH. 143.  et al. 2014. C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget 5:2096–106 [Google Scholar]
  144. Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH. 144.  et al. 2013. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res. 73:5580–90 [Google Scholar]
  145. Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH. 145.  et al. 2014. C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLOS ONE 9:e94995 [Google Scholar]
  146. Hakomori S. 146.  1999. Antigen structure and genetic basis of histo-blood groups A, B and O: their changes associated with human cancer. Biochim. Biophys. Acta 1473:247–66 [Google Scholar]
  147. Dabelsteen E, Gao S. 147.  2005. ABO blood-group antigens in oral cancer. J. Dent. Res. 84:21–28 [Google Scholar]
  148. Iwai T, Kudo T, Kawamoto R, Kubota T, Togayachi A. 148.  et al. 2005. Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. PNAS 102:4572–77 [Google Scholar]
  149. Malagolini N, Dall'Olio F, Di Stefano G, Minni F, Marrano D, Serafini-Cessi F. 149.  1989. Expression of UDP-GalNAc:NeuAcα2,3Galβ-R β1,4(GalNAc to Gal) N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas. Cancer Res. 49:6466–70 [Google Scholar]
  150. Karasawa F, Shiota A, Goso Y, Kobayashi M, Sato Y. 150.  et al. 2012. Essential role of gastric gland mucin in preventing gastric cancer in mice. J. Clin. Investig. 122:923–34 [Google Scholar]
  151. Tu L, Banfield DK. 151.  2010. Localization of Golgi-resident glycosyltransferases. Cell. Mol. Life Sci. 67:29–41 [Google Scholar]
  152. Gill DJ, Chia J, Senewiratne J, Bard F. 152.  2010. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J. Cell Biol. 189:843–58 [Google Scholar]
  153. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M. 153.  et al. 2006. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16 [Google Scholar]
  154. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA. 154.  et al. 1999. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Investig. 104:155–62 [Google Scholar]
  155. Shimodaira K, Nakayama J, Nakamura N, Hasebe O, Katsuyama T, Fukuda M. 155.  1997. Carcinoma-associated expression of core 2 β-1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: role of O-glycans in tumor progression. Cancer Res. 57:5201–6 [Google Scholar]
  156. Julien S, Lagadec C, Krzewinski-Recchi MA, Courtand G, Le Bourhis X, Delannoy P. 156.  2005. Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast Cancer Res. Treat. 90:77–84 [Google Scholar]
  157. Wang Y, Jobe SM, Ding X, Choo H, Archer DR. 157.  et al. 2012. Platelet biogenesis and functions require correct protein O-glycosylation. PNAS 109:16143–48 [Google Scholar]
  158. Lu Y, Chaney W. 158.  1993. Induction of N-acetylglucosaminyltransferase V by elevated expression of activated or proto-Ha-ras oncogenes. Mol. Cell. Biochem. 122:85–92 [Google Scholar]
  159. Dennis JW, Kosh K, Bryce DM, Breitman ML. 159.  1989. Oncogenes conferring metastatic potential induce increased branching of Asn-linked oligosaccharides in rat2 fibroblasts. Oncogene 4:853–60 [Google Scholar]
  160. Demetriou M, Nabi IR, Coppolino M, Dedhar S, Dennis JW. 160.  1995. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J. Cell Biol. 130:383–92 [Google Scholar]
  161. Yamamoto H, Swoger J, Greene S, Saito T, Hurh J. 161.  et al. 2000. β1,6-N-Acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res. 60:134–42 [Google Scholar]
  162. Kim YS, Ahn YH, Song KJ, Kang JG, Lee JH. 162.  et al. 2012. Overexpression and β-1,6-N-acetylglucosaminylation-initiated aberrant glycosylation of TIMP-1: a “double whammy” strategy in colon cancer progression. J. Biol. Chem. 287:32467–78 [Google Scholar]
  163. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. 163.  1980. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68 [Google Scholar]
  164. Inamori K, Gu J, Ohira M, Kawasaki A, Nakamura Y. 164.  et al. 2006. High expression of N-acetylglucosaminyltransferase V in favorable neuroblastomas: involvement of its effect on apoptosis. FEBS Lett. 580:627–32 [Google Scholar]
  165. Rebbaa A, Yamamoto H, Saito T, Meuillet E, Kim P. 165.  et al. 1997. Gene transfection-mediated overexpression of β1,4-N-acetylglucosamine bisecting oligosaccharides in glioma cell line U373 MG inhibits epidermal growth factor receptor function. J. Biol. Chem. 272:9275–79 [Google Scholar]
  166. Yokoe S, Takahashi M, Asahi M, Lee SH, Li W. 166.  et al. 2007. The Asn418-linked N-glycan of ErbB3 plays a crucial role in preventing spontaneous heterodimerization and tumor promotion. Cancer Res. 67:1935–42 [Google Scholar]
  167. Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ, Bellis SL. 167.  2002. Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. J. Biol. Chem. 277:32830–36 [Google Scholar]
  168. Dennis J, Waller C, Timpl R, Schirrmacher V. 168.  1982. Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300:274–76 [Google Scholar]
  169. Nadanaka S, Sato C, Kitajima K, Katagiri K, Irie S, Yamagata T. 169.  2001. Occurrence of oligosialic acids on integrin α5 subunit and their involvement in cell adhesion to fibronectin. J. Biol. Chem. 276:33657–64 [Google Scholar]
  170. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF. 170.  et al. 2011. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. PNAS 108:11332–37 [Google Scholar]
  171. De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR. 171.  et al. 2008. The role of the EGFR signaling in tumor microenvironment. J. Cell. Physiol. 214:559–67 [Google Scholar]
  172. Meuillet EJ, Kroes R, Yamamoto H, Warner TG, Ferrari J. 172.  et al. 1999. Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431. Cancer Res. 59:234–40 [Google Scholar]
  173. Kroes RA, He H, Emmett MR, Nilsson CL, Leach FE III. 173.  et al. 2010. Overexpression of ST6GalNAcV, a ganglioside-specific α2,6-sialyltransferase, inhibits glioma growth in vivo. PNAS 107:12646–51 [Google Scholar]
  174. Chen CY, Jan YH, Juan YH, Yang CJ, Huang MS. 174.  et al. 2013. Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. PNAS 110:630–35 [Google Scholar]
  175. Saeland E, van Vliet SJ, Backstrom M, van den Berg VC, Geijtenbeek TB. 175.  et al. 2007. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol. Immunother. 56:1225–36 [Google Scholar]
  176. Napoletano C, Rughetti A, Agervig Tarp MP, Coleman J, Bennett EP. 176.  et al. 2007. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res. 67:8358–67 [Google Scholar]
  177. van Vliet SJ, Bay S, Vuist IM, Kalay H, Garcia-Vallejo JJ. 177.  et al. 2013. MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-α secretion. J. Leukoc. Biol. 94:315–23 [Google Scholar]
  178. Ogata S, Maimonis PJ, Itzkowitz SH. 178.  1992. Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res. 52:4741–46 [Google Scholar]
  179. Engering A, Geijtenbeek TB, van Kooyk Y. 179.  2002. Immune escape through C-type lectins on dendritic cells. Trends Immunol. 23:480–85 [Google Scholar]
  180. Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V. 180.  et al. 2004. Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res. 64:3376–79 [Google Scholar]
  181. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP. 181.  et al. 2010. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16:295–301 [Google Scholar]
  182. van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. 182.  2007. Innate signaling and regulation of dendritic cell immunity. Curr. Opin. Immunol. 19:435–40 [Google Scholar]
  183. Stowell SR, Arthur CM, McBride R, Berger O, Razi N. 183.  et al. 2014. Microbial glycan microarrays define key features of host-microbial interactions. Nat. Chem. Biol. 10:470–76 [Google Scholar]
  184. Soldati R, Berger E, Zenclussen AC, Jorch G, Lode HN. 184.  et al. 2012. Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments. Int. J. Cancer 131:1131–41 [Google Scholar]
  185. Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S. 185.  et al. 2013. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res. 73:1107–17 [Google Scholar]
  186. Croci DO, Cerliani JP, Dalotto-Moreno T, Mendez-Huergo SP, Mascanfroni ID. 186.  et al. 2014. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156:744–58 [Google Scholar]
  187. Stowell SR, Karmakar S, Stowell CJ, Dias-Baruffi M, McEver RP, Cummings RD. 187.  2007. Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109:219–27 [Google Scholar]
  188. Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M. 188.  et al. 2008. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180:3091–102 [Google Scholar]
  189. Furtak V, Hatcher F, Ochieng J. 189.  2001. Galectin-3 mediates the endocytosis of β-1 integrins by breast carcinoma cells. Biochem. Biophys. Res. Commun. 289:845–50 [Google Scholar]
  190. Fukushi J, Makagiansar IT, Stallcup WB. 190.  2004. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and α3β1 integrin. Mol. Biol. Cell 15:3580–90 [Google Scholar]
  191. D'Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M. 191.  et al. 2013. VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLOS ONE 8:e67029 [Google Scholar]
  192. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V. 192.  et al. 2000. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 156:899–909 [Google Scholar]
  193. Dennis JW, Koch K, Yousefi S, VanderElst I. 193.  1990. Growth inhibition of human melanoma tumor xenografts in athymic nude mice by swainsonine. Cancer Res. 50:1867–72 [Google Scholar]
  194. Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW. 194.  2000. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6:306–12 [Google Scholar]
  195. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N. 195.  1995. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. PNAS 92:8754–58 [Google Scholar]
  196. Yamamoto H, Oviedo A, Sweeley C, Saito T, Moskal JR. 196.  2001. α2,6-Sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res. 61:6822–29 [Google Scholar]
  197. Petretti T, Kemmner W, Schulze B, Schlag PM. 197.  2000. Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 46:359–66 [Google Scholar]
  198. Kojima N, Handa K, Newman W, Hakomori S. 198.  1992. Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells. Biochem. Biophys. Res. Commun. 182:1288–95 [Google Scholar]
  199. Ohyama C, Tsuboi S, Fukuda M. 199.  1999. Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J. 18:1516–25 [Google Scholar]
  200. Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. 200.  2002. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J. Immunol. 168:1813–22 [Google Scholar]
  201. Sarafian V, Jadot M, Foidart JM, Letesson JJ, Van den Brule F. 201.  et al. 1998. Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells. Int. J. Cancer 75:105–11 [Google Scholar]
  202. Lotan R, Raz A. 202.  1983. Low colony formation in vivo and in culture as exhibited by metastatic melanoma cells selected for reduced homotypic aggregation. Cancer Res. 43:2088–93 [Google Scholar]
  203. Takenaka Y, Fukumori T, Raz A. 203.  2004. Galectin-3 and metastasis. Glycoconj. J. 19:543–49 [Google Scholar]
  204. Liu FT, Patterson RJ, Wang JL. 204.  2002. Intracellular functions of galectins. Biochim. Biophys. Acta 1572:263–73 [Google Scholar]
  205. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE. 205.  et al. 2012. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma. J. Exp. Med. 209:1985–2000 [Google Scholar]
  206. Wahrenbrock M, Borsig L, Le D, Varki N, Varki A. 206.  2003. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J. Clin. Investig. 112:853–62 [Google Scholar]
  207. Shao B, Wahrenbrock MG, Yao L, David T, Coughlin SR. 207.  et al. 2011. Carcinoma mucins trigger reciprocal activation of platelets and neutrophils in a murine model of Trousseau syndrome. Blood 118:4015–23 [Google Scholar]
  208. Samraj AN, Laubli H, Varki N, Varki A. 208.  2014. Involvement of a non-human sialic acid in human cancer. Front. Oncol. 4:33 [Google Scholar]
  209. Heneghan MA, McCarthy CF, Janulaityte D, Moran AP. 209.  2001. Relationship of anti-Lewis x and anti-Lewis y antibodies in serum samples from gastric cancer and chronic gastritis patients to Helicobacter pylori-mediated autoimmunity. Infect. Immun. 69:4774–81 [Google Scholar]
  210. Hunter T. 210.  2007. Treatment for chronic myelogenous leukemia: the long road to imatinib. J. Clin. Investig. 117:2036–43 [Google Scholar]
  211. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M. 211.  et al. 2005. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353:1659–72 [Google Scholar]
  212. Hakomori S. 212.  2001. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 491:369–402 [Google Scholar]
  213. Springer GF, Desai PR, Spencer BD, Tegtmeyer H, Carlstedt SC, Scanlon EF. 213.  1995. T/Tn antigen vaccine is effective and safe in preventing recurrence of advanced breast carcinoma. Cancer Detect. Prev. 19:374–80 [Google Scholar]
  214. Slovin SF, Ragupathi G, Musselli C, Fernandez C, Diani M. 214.  et al. 2005. Thomsen-Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother. 54:694–702 [Google Scholar]
  215. Miles D, Roche H, Martin M, Perren TJ, Cameron DA. 215.  et al. 2011. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16:1092–100 [Google Scholar]
  216. Ju T, Cummings RD. 216.  2002. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase. PNAS 99:16613–18 [Google Scholar]
  217. Schjoldager KT, Vakhrushev SY, Kong Y, Steentoft C, Nudelman AS. 217.  et al. 2012. Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. PNAS 109:9893–98 [Google Scholar]
  218. Ikehara Y, Kojima N, Kurosawa N, Kudo T, Kono M. 218.  et al. 1999. Cloning and expression of a human gene encoding an N-acetylgalactosamine-α2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9:1213–24 [Google Scholar]
  219. Brockhausen I, Yang J, Dickinson N, Ogata S, Itzkowitz SH. 219.  1998. Enzymatic basis for sialyl-Tn expression in human colon cancer cells. Glycoconj. J. 15:595–603 [Google Scholar]
  220. Almaraz RT, Tian Y, Bhattarcharya R, Tan E, Chen SH. 220.  et al. 2012. Metabolic flux increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol. Cell. Proteomics 11:M112.017558 [Google Scholar]
  221. Almaraz RT, Aich U, Khanna HS, Tan E, Bhattacharya R. 221.  et al. 2012. Metabolic oligosaccharide engineering with N-acyl functionalized ManNAc analogs: cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol. Bioeng. 109:992–1006 [Google Scholar]
  222. Bull C, Boltje TJ, Wassink M, de Graaf AM, van Delft FL. 222.  et al. 2013. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol. Cancer Ther. 12:1935–46 [Google Scholar]
  223. Sampathkumar SG, Jones MB, Meledeo MA, Campbell CT, Choi SS. 223.  et al. 2006. Targeting glycosylation pathways and the cell cycle: sugar-dependent activity of butyrate-carbohydrate cancer prodrugs. Chem. Biol. 13:1265–75 [Google Scholar]
  224. Duan X, Cai L, Lee LA, Chen H, Wang Q. 224.  2013. Incorporation of azide sugar analogue decreases tumorigenic potential of breast cancer cells by reducing cancer stem cell population. Sci. China Chem. 56:279–85 [Google Scholar]
  225. Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. 225.  2007. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin. Ther. Targets 11:1473–91 [Google Scholar]
  226. Fukuda MN, Ohyama C, Lowitz K, Matsuo O, Pasqualini R. 226.  et al. 2000. A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res. 60:450–56 [Google Scholar]
  227. Watkins WM, Morgan WT. 227.  1952. Neutralization of the anti-H agglutinin in eel serum by simple sugars. Nature 169:825–26 [Google Scholar]
  228. Kabat EA, Leskowitz S. 228.  1955. Immunochemical studies on blood group. XVII. Structural units involved in blood group A and B specificity. J. Am. Chem. Soc. 77:5159–64 [Google Scholar]
  229. Kabat EA, Schiffman G. 229.  1962. Immunochemical studies on blood groups. XXVIII. Further studies on the oligosaccharide determinants of blood group B and BP1 specificity. J. Immunol. 88:782–87 [Google Scholar]
  230. Nowell PC. 230.  1960. Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res. 20:462–66 [Google Scholar]
  231. Kornfeld S, Kornfeld R. 231.  1969. Solubilization and partial characterization of a phytohemagglutinin receptor site from human erythrocytes. PNAS 63:1439–46 [Google Scholar]
  232. Gesner BM, Ginsburg V. 232.  1964. Effect of glycosidases on the fate of transfused lymphocytes. PNAS 52:750–55 [Google Scholar]
  233. Pricer WE Jr, Hudgin RL, Ashwell G, Stockert RJ, Morell AG. 233.  1974. A membrane receptor protein for asialoglycoproteins. Methods Enzymol. 34:688–91 [Google Scholar]
  234. Hudgin RL, Pricer WE Jr, Ashwell G, Stockert RJ, Morell AG. 234.  1974. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J. Biol. Chem. 249:5536–43 [Google Scholar]
  235. Morell AG, Van den Hamer CJ, Scheinberg IH, Ashwell G. 235.  1966. Physical and chemical studies on ceruloplasmin. IV. Preparation of radioactive, sialic acid-free ceruloplasmin labeled with tritium on terminal D-galactose residues. J. Biol. Chem. 241:3745–49 [Google Scholar]
  236. Oh-Uti K. 236.  1949. Polysaccharides and a glycidamin in the tissue of gastric cancer. Tohoku J. Exp. Med. 51:297–304 [Google Scholar]
  237. Gasic G, Gasic T. 237.  1962. Removal and regeneration of the cell coating in tumour cells. Nature 196:170 [Google Scholar]
  238. Gasic G, Gasic T. 238.  1962. Removal of sialic acid from the cell coat in tumor cells and vascular endothelium, and its effects on metastasis. PNAS 48:1172–77 [Google Scholar]
  239. Burger MM, Goldberg AR. 239.  1967. Identification of a tumor-specific determinant on neoplastic cell surfaces. PNAS 57:359–66 [Google Scholar]
  240. Pollack RE, Burger MM. 240.  1969. Surface-specific characteristics of a contact-inhibited cell line containing the SV40 viral genome. PNAS 62:1074–76 [Google Scholar]
  241. Burger MM. 241.  1968. Isolation of a receptor complex for a tumor specific agglutinin from the neoplastic cell surface. Nature 219:499–500 [Google Scholar]
  242. Benjamin TL, Burger MM. 242.  1970. Absence of a cell membrane alteration function in non-transforming mutants of polyoma virus. PNAS 67:929–34 [Google Scholar]
  243. Inbar M, Sachs L. 243.  1969. Structural difference in sites on the surface membrane of normal and transformed cells. Nature 223:710–12 [Google Scholar]
  244. Inbar M, Sachs L. 244.  1969. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. PNAS 63:1418–25 [Google Scholar]
  245. Aub JC, Sanford BH, Wang LH. 245.  1965. Reactions of normal and leukemic cell surfaces to a wheat germ agglutinin. PNAS 54:400–2 [Google Scholar]
  246. Aub JC, Sanford BH, Cote MN. 246.  1965. Studies on reactivity of tumor and normal cells to a wheat germ agglutinin. PNAS 54:396–99 [Google Scholar]
  247. Hakomori SI, Murakami WT. 247.  1968. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. PNAS 59:254–61 [Google Scholar]
  248. Buck CA, Glick MC, Warren L. 248.  1971. Glycopeptides from the surface of control and virus-transformed cells. Science 172:169–71 [Google Scholar]
  249. Meezan E, Wu HC, Black PH, Robbins PW. 249.  1969. Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by Sephadex chromatography. Biochemistry 8:2518–24 [Google Scholar]
  250. Wu HC, Meezan E, Black PH, Robbins PW. 250.  1969. Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. I. Glucosamine-labeling patterns in 3T3, spontaneously transformed 3T3, and SV-40-transformed 3T3 cells. Biochemistry 8:2509–17 [Google Scholar]
  251. Warren L, Buck CA, Tuszynski GP. 251.  1978. Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behavior. Biochim. Biophys. Acta 516:97–127 [Google Scholar]
  252. Clamp JR, Jones JV. 252.  1968. The antigenicity of the oligosaccharide units of a soluble glycoprotein. Clin. Chim. Acta 21:165–69 [Google Scholar]
  253. Springer GF. 253.  1984. T and Tn, general carcinoma autoantigens. Science 224:1198–206 [Google Scholar]
  254. Springer GF, Desai PR, Banatwala I. 254.  1975. Blood group MN antigens and precursors in normal and malignant human breast glandular tissue. J. Natl. Cancer Inst. 54:335–39 [Google Scholar]
  255. Howard DR, Taylor CR. 255.  1980. An antitumor antibody in normal human serum: reaction of anti-T with breast carcinoma cells. Oncology 37:142–48 [Google Scholar]
  256. Springer GF, Desai PR. 256.  1977. Cross-reacting carcinoma-associated antigens with blood group and precursor specificities. Transplant. Proc. 9:1105–11 [Google Scholar]
  257. Hakomori S, Wang SM, Young WW Jr. 257.  1977. Isoantigenic expression of Forssman glycolipid in human gastric and colonic mucosa: its possible identity with “A-like antigen” in human cancer. PNAS 74:3023–27 [Google Scholar]
  258. Solter D, Knowles BB. 258.  1978. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). PNAS 75:5565–69 [Google Scholar]
  259. Knowles BB, Aden DP, Solter D. 259.  1978. Monoclonal antibody detecting a stage-specific embryonic antigen (SSEA-1) on preimplantation mouse embryos and teratocarcinoma cells. Curr. Top. Microbiol. Immunol. 81:51–53 [Google Scholar]
  260. Herlyn M, Sears HF, Steplewski Z, Koprowski H. 260.  1982. Monoclonal antibody detection of a circulating tumor-associated antigen. I. Presence of antigen in sera of patients with colorectal, gastric, and pancreatic carcinoma. J. Clin. Immunol. 2:135–40 [Google Scholar]
  261. Magnani JL, Steplewski Z, Koprowski H, Ginsburg V. 261.  1983. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res. 43:5489–92 [Google Scholar]
  262. Sears HF, Herlyn M, Del Villano B, Steplewski Z, Koprowski H. 262.  1982. Monoclonal antibody detection of a circulating tumor-associated antigen. II. A longitudinal evaluation of patients with colorectal cancer. J. Clin. Immunol. 2:141–49 [Google Scholar]
  263. Kabawat SE, Bast RC Jr, Bhan AK, Welch WR, Knapp RC, Colvin RB. 263.  1983. Tissue distribution of a coelomic-epithelium-related antigen recognized by the monoclonal antibody OC125. Int. J. Gynecol. Pathol. 2:275–85 [Google Scholar]
  264. Bast RC Jr, Klug TL, St. John E, Jenison E, Niloff JM. 264.  et al. 1983. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med. 309:883–87 [Google Scholar]
  265. Springer GF, Chandrasekaran EV, Desai PR, Tegtmeyer H. 265.  1988. Blood group Tn-active macromolecules from human carcinomas and erythrocytes: characterization of and specific reactivity with mono- and poly-clonal anti-Tn antibodies induced by various immunogens. Carbohydr. Res. 178:271–92 [Google Scholar]
  266. Aoyagi Y, Suzuki Y, Isemura M, Nomoto M, Sekine C. 266.  et al. 1988. The fucosylation index of alpha-fetoprotein and its usefulness in the early diagnosis of hepatocellular carcinoma. Cancer 61:769–74 [Google Scholar]
  267. Colcher DM, Milenic DE, Schlom J. 267.  1992. Generation and characterization of monoclonal antibody B72.3. Experimental and preclinical studies. Target. Diagn. Ther. 6:23–44 [Google Scholar]
  268. Nuti M, Teramoto YA, Mariani-Costantini R, Hand PH, Colcher D, Schlom J. 268.  1982. A monoclonal antibody (B72.3) defines patterns of distribution of a novel tumor-associated antigen in human mammary carcinoma cell populations. Int. J. Cancer 29:539–45 [Google Scholar]
  269. Colcher D, Hand PH, Nuti M, Schlom J. 269.  1981. A spectrum of monoclonal antibodies reactive with human mammary tumor cells. PNAS 78:3199–203 [Google Scholar]
  270. Johnson PJ, Poon TC, Hjelm NM, Ho CS, Blake C, Ho SK. 270.  2000. Structures of disease-specific serum alpha-fetoprotein isoforms. Br. J. Cancer 83:1330–37 [Google Scholar]
  271. Furness P. 271.  1996. βhCG as a prognostic marker in prostatic adenocarcinoma. J. Clin. Pathol. 49:693–94 [Google Scholar]
  272. Yoshimoto Y, Wolfsen AR, Odell WD. 272.  1979. Glycosylation, a variable in the production of hCG by cancers. Am. J. Med. 67:414–20 [Google Scholar]
  273. Duffy MJ, Duggan C, Keane R, Hill AD, McDermott E. 273.  et al. 2004. High preoperative CA 15-3 concentrations predict adverse outcome in node-negative and node-positive breast cancer: study of 600 patients with histologically confirmed breast cancer. Clin. Chem. 50:559–63 [Google Scholar]
  274. Duffy MJ, Shering S, Sherry F, McDermott E, O'Higgins N. 274.  2000. CA 15-3: a prognostic marker in breast cancer. Int. J. Biol. Markers 15:330–33 [Google Scholar]
  275. Parikh DA, Durbin-Johnson B, Urayama S. 275.  2014. Utility of serum CA19-9 levels in the diagnosis of pancreatic ductal adenocarcinoma in an endoscopic ultrasound referral population. J. Gastrointest. Cancer 45:74–79 [Google Scholar]
  276. Ballehaninna UK, Chamberlain RS. 276.  2013. Biomarkers for pancreatic cancer: promising new markers and options beyond CA 19-9. Tumour Biol. 34:3279–92 [Google Scholar]
  277. Narimatsu H, Iwasaki H, Nakayama F, Ikehara Y, Kudo T. 277.  et al. 1998. Lewis and secretor gene dosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res. 58:512–18 [Google Scholar]
  278. Beveridge RA. 278.  1999. Review of clinical studies of CA 27.29 in breast cancer management. Int. J. Biol. Markers 14:36–39 [Google Scholar]
  279. Saldova R, Struwe WB, Wynne K, Elia G, Duffy MJ, Rudd PM. 279.  2013. Exploring the glycosylation of serum CA125. Int. J. Mol. Sci. 14:15636–54 [Google Scholar]
  280. Petignat P, Joris F, Obrist R. 280.  2000. How CA 125 is used in routine clinical practice. Eur. J. Cancer 36:1933–37 [Google Scholar]
  281. Dnistrian AM, Schwartz MK, Greenberg EJ, Smith CA, Dorsa R, Schwartz DC. 281.  1991. CA 549 as a marker in breast cancer. Int. J. Biol. Markers 6:139–43 [Google Scholar]
  282. Amri R, Bordeianou LG, Sylla P, Berger DL. 282.  2013. Preoperative carcinoembryonic antigen as an outcome predictor in colon cancer. J. Surg. Oncol. 108:14–18 [Google Scholar]
  283. Salvini R, Bardoni A, Valli M, Trinchera M. 283.  2001. β1,3-Galactosyltransferase β3Gal-T5 acts on the GlcNAcβ1→3Galβ1→4GlcNAcβ1→R sugar chains of carcinoembryonic antigen and other N-linked glycoproteins and is down-regulated in colon adenocarcinomas. J. Biol. Chem. 276:3564–73 [Google Scholar]
  284. Haab BB, Porter A, Yue T, Li L, Scheiman J. 284.  et al. 2010. Glycosylation variants of mucins and CEACAMs as candidate biomarkers for the diagnosis of pancreatic cystic neoplasms. Ann. Surg. 251:937–45 [Google Scholar]
  285. Jantscheff P, Terracciano L, Lowy A, Glatz-Krieger K, Grunert F. 285.  et al. 2003. Expression of CEACAM6 in resectable colorectal cancer: a factor of independent prognostic significance. J. Clin. Oncol. 21:3638–46 [Google Scholar]
  286. Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. 286.  2010. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol. 28:92–98 [Google Scholar]
  287. Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J. 287.  et al. 2004. Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol. Cell. Proteomics 3:379–98 [Google Scholar]
  288. Hesse E, Musholt PB, Potter E, Petrich T, Wehmeier M. 288.  et al. 2005. Oncofoetal fibronectin—a tumour-specific marker in detecting minimal residual disease in differentiated thyroid carcinoma. Br. J. Cancer 93:565–70 [Google Scholar]
  289. Goldsmith JD, Pawel B, Goldblum JR, Pasha TL, Roberts S. 289.  et al. 2002. Detection and diagnostic utilization of placental alkaline phosphatase in muscular tissue and tumors with myogenic differentiation. Am. J. Surg. Pathol. 26:1627–33 [Google Scholar]
  290. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. 290.  1987. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317:909–16 [Google Scholar]
  291. Hernandez J, Thompson IM. 291.  2004. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 101:894–904 [Google Scholar]
  292. Moyer VA. 292.  2012. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157:120–34 [Google Scholar]
  293. Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA. 293.  et al. 2003. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13:457–70 [Google Scholar]
  294. Itzkowitz SH, Bloom EJ, Kokal WA, Modin G, Hakomori S, Kim YS. 294.  1990. Sialosyl-Tn. A novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer 66:1960–66 [Google Scholar]
  295. Ponnusamy MP, Venkatraman G, Singh AP, Chauhan SC, Johansson SL. 295.  et al. 2007. Expression of TAG-72 in ovarian cancer and its correlation with tumor stage and patient prognosis. Cancer Lett. 251:247–57 [Google Scholar]
  296. Springer GF. 296.  1997. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J. Mol. Med. 75:594–602 [Google Scholar]
  297. Aryal RP, Ju T, Cummings RD. 297.  2014. Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J. Biol. Chem. 289:11630–41 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error