1932

Abstract

Combinations of leukocyte attractant ligands and cognate heptahelical receptors specify the systemic recruitment of circulating cells by triggering integrin-dependent adhesion to endothelial cells, supporting extravasation, and directing specific intratissue localization via gradient-driven chemotaxis. Chemoattractant receptors also control leukocyte egress from lymphoid organs and peripheral tissues. In this article, we summarize the fundamental mechanics of leukocyte trafficking, from the evolution of multistep models of leukocyte recruitment and navigation to the regulation of chemoattractant availability and function by atypical heptahelical receptors. To provide a more complete picture of the migratory circuits involved in leukocyte trafficking, we integrate a number of nonchemokine chemoattractant receptors into our discussion. Leukocyte chemoattractant receptors play key roles in the pathogenesis of autoimmune diseases, allergy, inflammatory disorders, and cancer. We review recent advances in our understanding of chemoattractant receptors in disease pathogenesis, with a focus on genome-wide association studies in humans and the translational implications of mechanistic studies in animal disease models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012513-104640
2015-01-24
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/pathol/10/1/annurev-pathol-012513-104640.html?itemId=/content/journals/10.1146/annurev-pathol-012513-104640&mimeType=html&fmt=ahah

Literature Cited

  1. Gowans JL, Knight EJ. 1.  1964. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. B 159:257–82 [Google Scholar]
  2. Stamper HB Jr, Woodruff JJ. 2.  1976. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J. Exp. Med. 144:828–33 [Google Scholar]
  3. Gallatin WM, Weissman IL, Butcher EC. 3.  1983. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30–34 [Google Scholar]
  4. Butcher EC. 4.  1991. Leukocyte–endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–36 [Google Scholar]
  5. Sanz MJ, Kubes P. 5.  2012. Neutrophil-active chemokines in in vivo imaging of neutrophil trafficking. Eur. J. Immunol. 42:278–83 [Google Scholar]
  6. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. 6.  2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7:678–89 [Google Scholar]
  7. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC. 7.  1998. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279:381–84 [Google Scholar]
  8. Lau EK, Allen S, Hsu AR, Handel TM. 8.  2004. Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv. Protein Chem. 68:351–91 [Google Scholar]
  9. Salanga CL, Handel TM. 9.  2011. Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp. Cell Res. 317:590–601 [Google Scholar]
  10. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I. 10.  et al. 2013. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339:328–32 [Google Scholar]
  11. Palanisamy V, Jakymiw A, Van Tubergen EA, D'Silva NJ, Kirkwood KL. 11.  2012. Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. J. Dent. Res. 91:651–58 [Google Scholar]
  12. Jenne CN, Urrutia R, Kubes P. 12.  2013. Platelets: bridging hemostasis, inflammation, and immunity. Int. J. Lab. Hematol. 35:254–61 [Google Scholar]
  13. Du XY, Zabel BA, Myles T, Allen SJ, Handel TM. 13.  et al. 2009. Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 284:751–58 [Google Scholar]
  14. Zabel BA, Kwitniewski M, Banas M, Zabieglo K, Murzyn K, Cichy J. 14.  2014. Chemerin regulation and role in host defense. Am. J. Clin. Exp. Immunol. 3:1–19 [Google Scholar]
  15. Catalfamo M, Karpova T, McNally J, Costes SV, Lockett SJ. 15.  et al. 2004. Human CD8+ T cells store RANTES in a unique secretory compartment and release it rapidly after TcR stimulation. Immunity 20:219–30 [Google Scholar]
  16. Oynebraten I, Barois N, Hagelsteen K, Johansen FE, Bakke O, Haraldsen G. 16.  2005. Characterization of a novel chemokine-containing storage granule in endothelial cells: evidence for preferential exocytosis mediated by protein kinase A and diacylglycerol. J. Immunol. 175:5358–69 [Google Scholar]
  17. Zabel BA, Zuniga L, Ohyama T, Allen SJ, Cichy J. 17.  et al. 2006. Chemoattractants, extracellular proteases, and the integrated host defense response. Exp. Hematol. 34:1021–32 [Google Scholar]
  18. Mortier A, Van Damme J, Proost P. 18.  2012. Overview of the mechanisms regulating chemokine activity and availability. Immunol. Lett. 145:2–9 [Google Scholar]
  19. Proost P, Struyf S, Van Damme J. 19.  2006. Natural post-translational modifications of chemokines. Biochem. Soc. Trans. 34:997–1001 [Google Scholar]
  20. Mortier A, Van Damme J, Proost P. 20.  2008. Regulation of chemokine activity by posttranslational modification. Pharmacol. Ther. 120:197–217 [Google Scholar]
  21. Wolf M, Albrecht S, Marki C. 21.  2008. Proteolytic processing of chemokines: implications in physiological and pathological conditions. Int. J. Biochem. Cell Biol. 40:1185–98 [Google Scholar]
  22. Mortier A, Gouwy M, Van Damme J, Proost P. 22.  2011. Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Exp. Cell Res. 317:642–54 [Google Scholar]
  23. Heutinck KM, ten Berge IJ, Hack CE, Hamann J, Rowshani AT. 23.  2010. Serine proteases of the human immune system in health and disease. Mol. Immunol. 47:1943–55 [Google Scholar]
  24. Pham CT. 24.  2006. Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 6:541–50 [Google Scholar]
  25. Miadonna A, Tedeschi A, Brasca C, Folco G, Sala A, Murphy RC. 25.  1990. Mediator release after endobronchial antigen challenge in patients with respiratory allergy. J. Allergy Clin. Immunol. 85:906–13 [Google Scholar]
  26. Proudfoot AE. 26.  2006. The biological relevance of chemokine-proteoglycan interactions. Biochem. Soc. Trans. 34:422–26 [Google Scholar]
  27. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P. 27.  et al. 2003. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. USA 100:1885–90 [Google Scholar]
  28. Prossnitz ER, Gilbert TL, Chiang S, Campbell JJ, Qin S. 28.  et al. 1999. Multiple activation steps of the N-formyl peptide receptor. Biochemistry 38:2240–47 [Google Scholar]
  29. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY. 29.  et al. 2011. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–55 [Google Scholar]
  30. Ulvmar MH, Hub E, Rot A. 30.  2011. Atypical chemokine receptors. Exp. Cell Res. 317:556–68 [Google Scholar]
  31. Bamberg CE, Mackay CR, Lee H, Zahra D, Jackson J. 31.  et al. 2010. The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J. Biol. Chem. 285:7633–44 [Google Scholar]
  32. Sanchez-Martin L, Sanchez-Mateos P, Cabanas C. 32.  2013. CXCR7 impact on CXCL12 biology and disease. Trends Mol. Med. 19:12–22 [Google Scholar]
  33. Monnier J, Lewen S, O'Hara E, Huang K, Tu H. 33.  et al. 2012. Expression, regulation, and function of atypical chemerin receptor CCRL2 on endothelial cells. J. Immunol. 189:956–67 [Google Scholar]
  34. Zabel BA, Nakae S, Zuniga L, Kim JY, Ohyama T. 34.  et al. 2008. Mast cell–expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 205:2207–20 [Google Scholar]
  35. Gonzalvo-Feo S, Del Prete A, Pruenster M, Salvi V, Wang L. 35.  et al. 2014. Endothelial cell–derived chemerin promotes dendritic cell transmigration. J. Immunol. 192:2366–73 [Google Scholar]
  36. Gether U. 36.  2000. Uncovering molecular mechanisms involved in activation of G protein–coupled receptors. Endocr. Rev. 21:90–113 [Google Scholar]
  37. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ. 37.  et al. 2012. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–83 [Google Scholar]
  38. Wu B, Chien EY, Mol CD, Fenalti G, Liu W. 38.  et al. 2010. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–71 [Google Scholar]
  39. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL. 39.  et al. 2012. Crystal structure of a lipid G protein–coupled receptor. Science 335:851–55 [Google Scholar]
  40. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. 40.  2013. Molecular signatures of G-protein-coupled receptors. Nature 494:185–94 [Google Scholar]
  41. Monteclaro FS, Charo IF. 41.  1996. The amino-terminal extracellular domain of the MCP-1 receptor, but not the RANTES/MIP-1α receptor, confers chemokine selectivity: evidence for a two-step mechanism for MCP-1 receptor activation. J. Biol. Chem. 271:19084–92 [Google Scholar]
  42. Ludwig A, Ehlert JE, Flad HD, Brandt E. 42.  2000. Identification of distinct surface-expressed and intracellular CXC–chemokine receptor 2 glycoforms in neutrophils: N-Glycosylation is essential for maintenance of receptor surface expression. J. Immunol. 165:1044–52 [Google Scholar]
  43. Broxmeyer HE, Kim CH. 43.  1999. Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp. Hematol. 27:1113–23 [Google Scholar]
  44. Ali H, Richardson RM, Haribabu B, Snyderman R. 44.  1999. Chemoattractant receptor cross-desensitization. J. Biol. Chem. 274:6027–30 [Google Scholar]
  45. Lefkowitz RJ. 45.  1998. G protein–coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273:18677–80 [Google Scholar]
  46. Campbell JJ, Foxman EF, Butcher EC. 46.  1997. Chemoattractant receptor cross talk as a regulatory mechanism in leukocyte adhesion and migration. Eur. J. Immunol. 27:2571–78 [Google Scholar]
  47. Foxman EF, Kunkel EJ, Butcher EC. 47.  1999. Integrating conflicting chemotactic signals: the role of memory in leukocyte navigation. J. Cell Biol. 147:577–88 [Google Scholar]
  48. Foxman EF, Campbell JJ, Butcher EC. 48.  1997. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139:1349–60 [Google Scholar]
  49. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I. 49.  et al. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–66 [Google Scholar]
  50. Lin F, Butcher EC. 50.  2008. Modeling the role of homologous receptor desensitization in cell gradient sensing. J. Immunol. 181:8335–43 [Google Scholar]
  51. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM. 51.  et al. 2013. International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66:1–79 [Google Scholar]
  52. Schall TJ, Proudfoot AE. 52.  2011. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat. Rev. Immunol. 11:355–63 [Google Scholar]
  53. Horuk R. 53.  2009. Chemokine receptor antagonists: overcoming developmental hurdles. Nat. Rev. Drug Discov. 8:23–33 [Google Scholar]
  54. Allegretti M, Cesta MC, Garin A, Proudfoot AE. 54.  2012. Current status of chemokine receptor inhibitors in development. Immunol. Lett. 145:68–78 [Google Scholar]
  55. Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ. 55.  et al. 2012. Pharmacological modulation of chemokine receptor function. Br. J. Pharmacol. 165:1617–43 [Google Scholar]
  56. Pizzichini E, Leff JA, Reiss TF, Hendeles L, Boulet LP. 56.  et al. 1999. Montelukast reduces airway eosinophilic inflammation in asthma: a randomized, controlled trial. Eur. Respir. J. 14:12–18 [Google Scholar]
  57. Anders HJ, Romagnani P, Mantovani A. 57.  2014. Pathomechanisms: homeostatic chemokines in health, tissue regeneration, and progressive diseases. Trends Mol. Med. 20:154–65 [Google Scholar]
  58. Kunkel EJ, Butcher EC. 58.  2002. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16:1–4 [Google Scholar]
  59. Morteau O, Gerard C, Lu B, Ghiran S, Rits M. 59.  et al. 2008. An indispensable role for the chemokine receptor CCR10 in IgA antibody-secreting cell accumulation. J. Immunol. 181:6309–15 [Google Scholar]
  60. Cyster JG, Schwab SR. 60.  2012. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30:69–94 [Google Scholar]
  61. Golan K, Kollet O, Lapidot T. 61.  2013. Dynamic cross talk between S1P and CXCL12 regulates hematopoietic stem cells migration, development and bone remodeling. Pharmaceuticals 6:1145–69 [Google Scholar]
  62. Broxmeyer HE. 62.  2008. Chemokines in hematopoiesis. Curr. Opin. Hematol. 15:49–58 [Google Scholar]
  63. Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M. 63.  et al. 2012. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 26:63–72 [Google Scholar]
  64. Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV. 64.  et al. 2011. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands. Immunity 34:590–601 [Google Scholar]
  65. Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M. 65.  et al. 2005. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6:889–94 [Google Scholar]
  66. Bromley SK, Thomas SY, Luster AD. 66.  2005. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6:895–901 [Google Scholar]
  67. Teijeira A, Russo E, Halin C. 67.  2014. Taking the lymphatic route: dendritic cell migration to draining lymph nodes. Semin. Immunopathol. 36:261–74 [Google Scholar]
  68. Kiefer F, Siekmann AF. 68.  2011. The role of chemokines and their receptors in angiogenesis. Cell. Mol. Life Sci. 68:2811–30 [Google Scholar]
  69. Issa ME, Muruganandan S, Ernst MC, Parlee SD, Zabel BA. 69.  et al. 2012. Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis. Am. J. Physiol. Cell Physiol. 302:C1621–31 [Google Scholar]
  70. Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC. 70.  et al. 2007. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282:28175–88 [Google Scholar]
  71. Ernst MC, Haidl ID, Zuniga LA, Dranse HJ, Rourke JL. 71.  et al. 2012. Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology 153:672–82 [Google Scholar]
  72. Metz-Boutigue MH, Shooshtarizadeh P, Prevost G, Haikel Y, Chich JF. 72.  2010. Antimicrobial peptides present in mammalian skin and gut are multifunctional defence molecules. Curr. Pharm. Des. 16:1024–39 [Google Scholar]
  73. Kulig P, Kantyka T, Zabel BA, Banas M, Chyra A. 73.  et al. 2011. Regulation of chemerin chemoattractant and antibacterial activity by human cysteine cathepsins. J. Immunol. 187:1403–10 [Google Scholar]
  74. Banas M, Zabieglo K, Kasetty G, Kapinska-Mrowiecka M, Borowczyk J. 74.  et al. 2013. Chemerin is an antimicrobial agent in human epidermis. PLOS ONE 8:e58709 [Google Scholar]
  75. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR. 75.  et al. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–77 [Google Scholar]
  76. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW. 76.  et al. 1996. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–62 [Google Scholar]
  77. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C. 77.  et al. 1996. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–25 [Google Scholar]
  78. Miller LH, Mason SJ, Clyde DF, McGinniss MH. 78.  1976. The resistance factor to Plasmodium vivax in blacks—the Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295:302–4 [Google Scholar]
  79. Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A. 79.  et al. 1993. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261:1182–84 [Google Scholar]
  80. Tournamille C, Colin Y, Cartron JP, Le Van Kim C. 80.  1995. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat. Genet. 10:224–28 [Google Scholar]
  81. Vergara C, Tsai YJ, Grant AV, Rafaels N, Gao L. 81.  et al. 2008. Gene encoding Duffy antigen/receptor for chemokines is associated with asthma and IgE in three populations. Am. J. Respir. Crit. Care Med. 178:1017–22 [Google Scholar]
  82. He W, Neil S, Kulkarni H, Wright E, Agan BK. 82.  et al. 2008. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe 4:52–62 [Google Scholar]
  83. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J. 83.  et al. 2003. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat. Genet. 34:70–74 [Google Scholar]
  84. Kallikourdis M, Trovato AE, Anselmi F, Sarukhan A, Roselli G. 84.  et al. 2013. The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse. Blood 122:666–73 [Google Scholar]
  85. Dale DC, Bolyard AA, Kelley ML, Westrup EC, Makaryan V. 85.  et al. 2011. The CXCR4 antagonist plerixafor is a potential therapy for myelokathexis, WHIM syndrome. Blood 118:4963–66 [Google Scholar]
  86. McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O'Brien S. 86.  et al. 2011. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 118:4957–62 [Google Scholar]
  87. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J. 87.  et al. 2000. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43:30–47 [Google Scholar]
  88. Kurko J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z. 88.  2013. Genetics of rheumatoid arthritis—a comprehensive review. Clin. Rev. Allergy Immunol. 45:170–79 [Google Scholar]
  89. Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C. 89.  et al. 2010. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat. Genet. 42:515–19 [Google Scholar]
  90. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S. 90.  et al. 2010. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42:508–14 [Google Scholar]
  91. Jiang L, Yin J, Ye L, Yang J, Hemani G. 91.  et al. 2014. Novel risk loci for rheumatoid arthritis in Han Chinese and congruence with risk variants in Europeans. Arthritis Rheum. 661121–32 [Google Scholar]
  92. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH. 92.  et al. 2008. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40:955–62 [Google Scholar]
  93. Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE. 93.  et al. 2010. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat. Genet. 42:614–18 [Google Scholar]
  94. Yang SK, Hong M, Zhao W, Jung Y, Baek J. 94.  et al. 2014. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 63:80–87 [Google Scholar]
  95. Lill CM, Schjeide BM, Graetz C, Ban M, Alcina A. 95.  et al. 2013. MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain 136:1778–82 [Google Scholar]
  96. Kemppinen AK, Kaprio J, Palotie A, Saarela J. 96.  2011. Systematic review of genome-wide expression studies in multiple sclerosis. BMJ Open 1:e000053 [Google Scholar]
  97. Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS. 97.  et al. 2011. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 43:329–32 [Google Scholar]
  98. Zhang J, Zhang Y, Yang J, Zhang L, Sun L. 98.  et al. 2014. Three SNPs in chromosome 11q23.3 are independently associated with systemic lupus erythematosus in Asians. Hum. Mol. Genet. 23:524–33 [Google Scholar]
  99. Lessard CJ, Li H, Adrianto I, Ice JA, Rasmussen A. 99.  et al. 2013. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren's syndrome. Nat. Genet. 45:1284–92 [Google Scholar]
  100. Wu X, Ye Y, Rosell R, Amos CI, Stewart DJ. 100.  et al. 2011. Genome-wide association study of survival in non–small cell lung cancer patients receiving platinum-based chemotherapy. J. Natl. Cancer Inst. 103:817–25 [Google Scholar]
  101. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE. 101.  et al. 2009. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41:199–204 [Google Scholar]
  102. Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S. 102.  et al. 2010. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 42:991–95 [Google Scholar]
  103. Strange A, Capon F, Spencer CC, Knight J, Weale ME. 103.  et al. 2010. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42:985–90 [Google Scholar]
  104. Huffmeier U, Uebe S, Ekici AB, Bowes J, Giardina E. 104.  et al. 2010. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42:996–99 [Google Scholar]
  105. Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE. 105.  et al. 2012. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44:1341–48 [Google Scholar]
  106. Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA. 106.  et al. 2012. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367:214–23 [Google Scholar]
  107. Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I. 107.  et al. 2013. Genome-wide association analysis identifies new susceptibility loci for Behcet's disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet. 45:202–7 [Google Scholar]
  108. Granada M, Wilk JB, Tuzova M, Strachan DP, Weidinger S. 108.  et al. 2012. A genome-wide association study of plasma total IgE concentrations in the Framingham Heart Study. J. Allergy Clin. Immunol. 129:840–45.e21 [Google Scholar]
  109. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L. 109.  et al. 2009. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41:776–82 [Google Scholar]
  110. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J. 110.  et al. 2010. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42:295–302 [Google Scholar]
  111. Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L. 111.  et al. 2008. Newly identified genetic risk variants for celiac disease related to the immune response. Nat. Genet. 40:395–402 [Google Scholar]
  112. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M. 112.  et al. 2011. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43:246–52 [Google Scholar]
  113. Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M. 113.  et al. 2010. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467:460–64 [Google Scholar]
  114. Zeng Z, Shaffer JR, Wang X, Feingold E, Weeks DE. 114.  et al. 2013. Genome-wide association studies of pit-and-fissure- and smooth-surface caries in permanent dentition. J. Dent. Res. 92:432–37 [Google Scholar]
  115. Limou S, Coulonges C, Herbeck JT, van Manen D, An P. 115.  et al. 2010. Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS. J. Infect. Dis. 202:908–15 [Google Scholar]
  116. Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C. 116.  et al. 2010. CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J. Neuroinflamm. 7:87 [Google Scholar]
  117. Brion M, Sanchez-Salorio M, Corton M, de la Fuente M, Pazos B. 117.  et al. 2011. Genetic association study of age-related macular degeneration in the Spanish population. Acta Ophthalmol. 89:e12–22 [Google Scholar]
  118. Sadik CD, Luster AD. 118.  2012. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 91:207–15 [Google Scholar]
  119. Islam SA, Luster AD. 119.  2012. T cell homing to epithelial barriers in allergic disease. Nat. Med. 18:705–15 [Google Scholar]
  120. Murphy CT, Nally K, Shanahan F, Melgar S. 120.  2012. Shining a light on intestinal traffic. Clin. Dev. Immunol. 2012:808157 [Google Scholar]
  121. Pelletier D, Hafler DA. 121.  2012. Fingolimod for multiple sclerosis. N. Engl. J. Med. 366:339–47 [Google Scholar]
  122. Compston A, Coles A. 122.  2008. Multiple sclerosis. Lancet 372:1502–17 [Google Scholar]
  123. Steinman L, Zamvil SS. 123.  2005. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol. 26:565–71 [Google Scholar]
  124. Steinman L. 124.  2001. Multiple sclerosis: a two-stage disease. Nat. Immunol. 2:762–64 [Google Scholar]
  125. Garin A, Proudfoot AE. 125.  2011. Chemokines as targets for therapy. Exp. Cell Res. 317:602–12 [Google Scholar]
  126. Koelink PJ, Overbeek SA, Braber S, de Kruijf P, Folkerts G. 126.  et al. 2012. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol. Ther. 133:1–18 [Google Scholar]
  127. Lande R, Gafa V, Serafini B, Giacomini E, Visconti A. 127.  et al. 2008. Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-β. J. Neuropathol. Exp. Neurol. 67:388–401 [Google Scholar]
  128. Graham KL, Zabel BA, Loghavi S, Zuniga LA, Ho PP. 128.  et al. 2009. Chemokine-like receptor-1 expression by central nervous system–infiltrating leukocytes and involvement in a model of autoimmune demyelinating disease. J. Immunol. 183:6717–23 [Google Scholar]
  129. Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P. 129.  et al. 2011. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 208:327–39 [Google Scholar]
  130. Minten C, Alt C, Gentner M, Frei E, Deutsch U. 130.  et al. 2014. DARC shuttles inflammatory chemokines across the blood-brain barrier during autoimmune central nervous system inflammation. Brain 137:1454–69 [Google Scholar]
  131. Wang L, Du C, Lv J, Wei W, Cui Y, Xie X. 131.  2011. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 187:2336–45 [Google Scholar]
  132. Kihara Y, Yokomizo T, Kunita A, Morishita Y, Fukayama M. 132.  et al. 2010. The leukotriene B4 receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis. Biochem. Biophys. Res. Commun. 394:673–78 [Google Scholar]
  133. Winer RA, Qin X, Harrington T, Moorman J, Zahran H. 133.  2012. Asthma incidence among children and adults: findings from the Behavioral Risk Factor Surveillance System Asthma Call-Back Survey—United States, 2006–2008. J. Asthma 49:16–22 [Google Scholar]
  134. Galli SJ, Tsai M. 134.  2012. IgE and mast cells in allergic disease. Nat. Med. 18:693–704 [Google Scholar]
  135. James JM, Crespo JF. 135.  2007. Allergic reactions to foods by inhalation. Curr. Allergy Asthma Rep. 7:167–74 [Google Scholar]
  136. Nials AT, Uddin S. 136.  2008. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis. Models Mech. 1:213–20 [Google Scholar]
  137. Schmudde I, Laumonnier Y, Kohl J. 137.  2013. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma. Semin. Immunol. 25:2–11 [Google Scholar]
  138. Medoff BD, Thomas SY, Luster AD. 138.  2008. T cell trafficking in allergic asthma: the ins and outs. Annu. Rev. Immunol. 26:205–32 [Google Scholar]
  139. Mionnet C, Buatois V, Kanda A, Milcent V, Fleury S. 139.  et al. 2010. CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat. Med. 16:1305–12 [Google Scholar]
  140. Honjo A, Ogawa H, Azuma M, Tezuka T, Sone S. 140.  et al. 2013. Targeted reduction of CCR4+ cells is sufficient to suppress allergic airway inflammation. Respir. Investig. 51:241–49 [Google Scholar]
  141. Matsunaga Y, Fukuyama S, Okuno T, Sasaki F, Matsunobu T. 141.  et al. 2013. Leukotriene B4 receptor BLT2 negatively regulates allergic airway eosinophilia. FASEB J. 27:3306–14 [Google Scholar]
  142. Whitehead GS, Wang T, DeGraff LM, Card JW, Lira SA. 142.  et al. 2007. The chemokine receptor D6 has opposing effects on allergic inflammation and airway reactivity. Am. J. Respir. Crit. Care Med. 175:243–49 [Google Scholar]
  143. Chen K, Le Y, Liu Y, Gong W, Ying G. 143.  et al. 2010. A critical role for the G protein–coupled receptor mFPR2 in airway inflammation and immune responses. J. Immunol. 184:3331–35 [Google Scholar]
  144. Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W. 144.  et al. 2011. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J. Exp. Med. 208:593–604 [Google Scholar]
  145. Otero K, Vecchi A, Hirsch E, Kearley J, Vermi W. 145.  et al. 2010. Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood 116:2942–49 [Google Scholar]
  146. Idzko M, Hammad H, van Nimwegen M, Kool M, Muller T. 146.  et al. 2006. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J. Clin. Investig. 116:2935–44 [Google Scholar]
  147. Humbles AA, Lu B, Friend DS, Okinaga S, Lora J. 147.  et al. 2002. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl. Acad. Sci. USA 99:1479–84 [Google Scholar]
  148. Daubeuf F, Hachet-Haas M, Gizzi P, Gasparik V, Bonnet D. 148.  et al. 2013. An antedrug of the CXCL12 neutraligand blocks experimental allergic asthma without systemic effect in mice. J. Biol. Chem. 288:11865–76 [Google Scholar]
  149. Fregonese L, Silvestri M, Sabatini F, Rossi GA. 149.  2002. Cysteinyl leukotrienes induce human eosinophil locomotion and adhesion molecule expression via a CysLT1 receptor–mediated mechanism. Clin. Exp. Allergy 32:745–50 [Google Scholar]
  150. Wu AY, Chik SC, Chan AW, Li Z, Tsang KW, Li W. 150.  2003. Anti-inflammatory effects of high-dose montelukast in an animal model of acute asthma. Clin. Exp. Allergy 33:359–66 [Google Scholar]
  151. Dyer KD, Percopo CM, Xie Z, Yang Z, Kim JD. 151.  et al. 2010. Mouse and human eosinophils degranulate in response to platelet-activating factor (PAF) and lysoPAF via a PAF-receptor-independent mechanism: evidence for a novel receptor. J. Immunol. 184:6327–34 [Google Scholar]
  152. Mizutani N, Nabe T, Yoshino S. 152.  2014. IL-17A promotes the exacerbation of IL-33-induced airway hyperresponsiveness by enhancing neutrophilic inflammation via CXCR2 signaling in mice. J. Immunol. 192:1372–84 [Google Scholar]
  153. Jones CP, Pitchford SC, Lloyd CM, Rankin SM. 153.  2009. CXCR2 mediates the recruitment of endothelial progenitor cells during allergic airways remodeling. Stem Cells 27:3074–81 [Google Scholar]
  154. 154. Cancer Research UK 2014. Worldwide cancer key facts Cancer Research UK, London. http://www.cancerresearchuk.org/cancer-info/cancerstats/keyfacts/worldwide/ [Google Scholar]
  155. Zlotnik A, Burkhardt AM, Homey B. 155.  2011. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 11:597–606 [Google Scholar]
  156. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA. 156.  2010. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328:749–52 [Google Scholar]
  157. Pachynski RK, Zabel BA, Kohrt HE, Tejeda NM, Monnier J. 157.  et al. 2012. The chemoattractant chemerin suppresses melanoma by recruiting natural killer cell antitumor defenses. J. Exp. Med. 209:1427–35 [Google Scholar]
  158. Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D. 158.  et al. 2010. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat. Med. 16:98–105 [Google Scholar]
  159. Gerber PA, Hippe A, Buhren BA, Muller A, Homey B. 159.  2009. Chemokines in tumor-associated angiogenesis. Biol. Chem. 390:1213–23 [Google Scholar]
  160. Muller A, Homey B, Soto H, Ge N, Catron D. 160.  et al. 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56 [Google Scholar]
  161. Seo P, Stone JH. 161.  2007. Small-vessel and medium-vessel vasculitis. Arthritis Rheum. 57:1552–59 [Google Scholar]
  162. Jennette JC, Xiao H, Falk R, Gasim AM. 162.  2011. Experimental models of vasculitis and glomerulonephritis induced by antineutrophil cytoplasmic autoantibodies. Contrib. Nephrol. 169:211–20 [Google Scholar]
  163. Halbwachs L, Lesavre P. 163.  2012. Endothelium-neutrophil interactions in ANCA-associated diseases. J. Am. Soc. Nephrol. 23:1449–61 [Google Scholar]
  164. Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T. 164.  et al. 2014. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J. Am. Soc. Nephrol. 25:225–31 [Google Scholar]
  165. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R. 165.  2009. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20:289–98 [Google Scholar]
  166. Yuan J, Gou SJ, Huang J, Hao J, Chen M, Zhao MH. 166.  2012. C5a and its receptors in human anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res. Ther. 14:R140 [Google Scholar]
  167. Huugen D, van Esch A, Xiao H, Peutz-Kootstra CJ, Buurman WA. 167.  et al. 2007. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody–mediated glomerulonephritis in mice. Kidney Int. 71:646–54 [Google Scholar]
  168. Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. 168.  2007. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170:52–64 [Google Scholar]
  169. van der Veen BS, Petersen AH, Belperio JA, Satchell SC, Mathieson PW. 169.  et al. 2009. Spatiotemporal expression of chemokines and chemokine receptors in experimental anti-myeloperoxidase antibody–mediated glomerulonephritis. Clin. Exp. Immunol. 158:143–53 [Google Scholar]
  170. Hao J, Wang C, Yuan J, Chen M, Zhao MH. 170.  2013. A pro-inflammatory role of C5L2 in C5a-primed neutrophils for ANCA-induced activation. PLOS ONE 8:e66305 [Google Scholar]
  171. Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW. 171.  et al. 2013. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340:1456–59 [Google Scholar]
  172. Yonezawa T, Kurata R, Yoshida K, Murayama MA, Cui X, Hasegawa A. 172.  2013. Free fatty acids–sensing G protein–coupled receptors in drug targeting and therapeutics. Curr. Med. Chem. 20:3855–71 [Google Scholar]
  173. Justus CR, Dong L, Yang LV. 173.  2013. Acidic tumor microenvironment and pH-sensing G protein–coupled receptors. Front. Physiol. 4:354 [Google Scholar]
  174. Barnea G, Strapps W, Herrada G, Berman Y, Ong J. 174.  et al. 2008. The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 105:64–69 [Google Scholar]
  175. Kang HK, Lee HY, Kim MK, Park KS, Park YM. 175.  et al. 2005. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met inhibits human monocyte-derived dendritic cell maturation via formyl peptide receptor and formyl peptide receptor-like 2. J. Immunol. 175:685–92 [Google Scholar]
  176. Migeotte I, Riboldi E, Franssen JD, Gregoire F, Loison C. 176.  et al. 2005. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J. Exp. Med. 201:83–93 [Google Scholar]
  177. Vandenbroeck K. 177.  2012. Cytokine gene polymorphisms and human autoimmune disease in the era of genome-wide association studies. J. Interf. Cytokine Res. 32:139–51 [Google Scholar]
  178. Guergnon J, Combadiere C. 178.  2012. Role of chemokines polymorphisms in diseases. Immunol. Lett. 145:15–22 [Google Scholar]
  179. Poropatich K, Sullivan DJ Jr. 179.  2011. Human immunodeficiency virus type 1 long-term non-progressors: the viral, genetic and immunological basis for disease non-progression. J. Gen. Virol. 92:247–68 [Google Scholar]
  180. Reiche EM, Bonametti AM, Voltarelli JC, Morimoto HK, Watanabe MA. 180.  2007. Genetic polymorphisms in the chemokine and chemokine receptors: impact on clinical course and therapy of the human immunodeficiency virus type 1 infection (HIV-1). Curr. Med. Chem. 14:1325–34 [Google Scholar]
  181. Singh P, Kaur G, Sharma G, Mehra NK. 181.  2008. Immunogenetic basis of HIV-1 infection, transmission and disease progression. Vaccine 26:2966–80 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012513-104640
Loading
/content/journals/10.1146/annurev-pathol-012513-104640
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error