Established infectious agents continue to be a major cause of human morbidity and mortality worldwide. However, the causative agent remains unknown for a wide range of diseases; many of these are suspected to be attributable to yet undiscovered microorganisms. The advent of unbiased high-throughput sequencing and bioinformatics has enabled rapid identification and molecular characterization of known and novel infectious agents in human disease. An exciting era of microbe discovery, now under way, holds great promise for the improvement of global health via the development of antimicrobial therapies, vaccination strategies, targeted public health measures, and probiotic-based preventions and therapies. Here, we review the history of pathogen discovery, discuss improvements and clinical applications for the detection of microbially associated diseases, and explore the challenges and strategies for establishing causation in human disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. 1.  2014. The placenta harbors a unique microbiome. Sci. Transl. Med. 6:237ra65 [Google Scholar]
  2. Liu CM, Osborne BJ, Hungate BA, Shahabi K, Huibner S. 2.  et al. 2014. The semen microbiome and its relationship with local immunology and viral load in HIV infection. PLOS Pathog 10:e1004262 [Google Scholar]
  3. Paisse S, Valle C, Servant F, Courtney M, Burcelin R. 3.  et al. 2016. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 56:1138–47 [Google Scholar]
  4. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. 4.  2015. The microbiome of the urinary tract—a role beyond infection. Nat. Rev. Urol. 12:81–90 [Google Scholar]
  5. 5. Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486:215–21 [Google Scholar]
  6. 6. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  7. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR. 7.  et al. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65:4799–807 [Google Scholar]
  8. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 8.  2007. The human microbiome project. Nature 449:804–10 [Google Scholar]
  9. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA. 9.  et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73 [Google Scholar]
  10. Cebra JJ. 10.  1999. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69:1046S–51S [Google Scholar]
  11. Buffie CG, Pamer EG. 11.  2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13:790–801 [Google Scholar]
  12. Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 12.  2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. PNAS 104:13780–85 [Google Scholar]
  13. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y. 13.  et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–36 [Google Scholar]
  14. Casadevall A, Pirofski L. 14.  2001. Host-pathogen interactions: the attributes of virulence. J. Infect. Dis. 184:337–44 [Google Scholar]
  15. Pirofski LA, Casadevall A. 15.  2012. Q and A: What is a pathogen? A question that begs the point. BMC Biol 10:6 [Google Scholar]
  16. Falkow S. 16.  2004. Molecular Koch's postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat. Rev. Microbiol. 2:67–72 [Google Scholar]
  17. Karin M, Lawrence T, Nizet V. 17.  2006. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–35 [Google Scholar]
  18. Lowe AM, Yansouni CP, Behr MA. 18.  2008. Causality and gastrointestinal infections: Koch, Hill, and Crohn's. Lancet Infect. Dis. 8:720–26 [Google Scholar]
  19. Blaser MJ, Chen Y, Reibman J. 19.  2008. Does Helicobacter pylori protect against asthma and allergy?. Gut 57:561–67 [Google Scholar]
  20. Wain H. 20.  1953. The story behind the word; some interesting origins of medical terms. J. Ohio State Med. Assoc 49613 [Google Scholar]
  21. Relman DA. 21.  2011. Microbial genomics and infectious diseases. N. Engl. J. Med. 365:347–57 [Google Scholar]
  22. Evans AS. 22.  1976. Causation and disease: the Henle-Koch postulates revisited. Yale J. Biol. Med. 49:175–95 [Google Scholar]
  23. Gradmann C. 23.  2014. A spirit of scientific rigour: Koch's postulates in twentieth-century medicine. Microbes Infect 16:885–92 [Google Scholar]
  24. Dethlefsen L, McFall-Ngai M, Relman DA. 24.  2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–18 [Google Scholar]
  25. Bullman S, Lucey B, Sleator RD. 25.  2012. Molecular diagnostics: the changing culture of medical microbiology. Bioeng. Bugs 3:1–7 [Google Scholar]
  26. Relman DA, Loutit JS, Schmidt TM, Falkow S, Tompkins LS. 26.  1990. The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N. Engl. J. Med. 323:1573–80 [Google Scholar]
  27. Bullman S, Corcoran D, O'Leary J, Lucey B, Byrne D, Sleator RD. 27.  2011. Campylobacter ureolyticus: an emerging gastrointestinal pathogen?. FEMS Immunol. Med. Microbiol 61228–30 [Google Scholar]
  28. Bullman S, O'Leary J, Corcoran D, Sleator RD, Lucey B. 28.  2012. Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis. Epidemiol. Infect. 140:684–88 [Google Scholar]
  29. Welch DF, Pickett DA, Slater LN, Steigerwalt AG, Brenner DJ. 29.  1992. Rochalimaea henselae sp. nov., a cause of septicemia, bacillary angiomatosis, and parenchymal bacillary peliosis. J. Clin. Microbiol. 30:275–80 [Google Scholar]
  30. Regnery RL, Anderson BE, Clarridge JE 3rd, Rodriguez-Barradas MC, Jones DC, Carr JH. 30.  1992. Characterization of a novel Rochalimaea species, R. henselae sp. nov., isolated from blood of a febrile, human immunodeficiency virus-positive patient. J. Clin. Microbiol. 30265–74
  31. O'Leary J, Corcoran D, Lucey B. 31.  2009. Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens. J. Clin. Microbiol. 47:3449–53 [Google Scholar]
  32. Lisitsyn N, Lisitsyn N, Wigler M. 32.  1993. Cloning the differences between two complex genomes. Science 259:946–51 [Google Scholar]
  33. Hubank M, Schatz DG. 33.  1994. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 22:5640–48 [Google Scholar]
  34. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J. 34.  et al. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–69 [Google Scholar]
  35. van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ. 35.  et al. 2004. Identification of a new human coronavirus. Nat. Med. 10:368–73 [Google Scholar]
  36. Greninger AL, Chen EC, Sittler T, Scheinerman A, Roubinian N. 36.  et al. 2010. A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLOS ONE 5:e13381 [Google Scholar]
  37. Kistler AL, Gancz A, Clubb S, Skewes-Cox P, Fischer K. 37.  et al. 2008. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: identification of a candidate etiologic agent. Virol. J. 5:88 [Google Scholar]
  38. Chiu CY, Urisman A, Greenhow TL, Rouskin S, Yagi S. 38.  et al. 2008. Utility of DNA microarrays for detection of viruses in acute respiratory tract infections in children. J. Pediatr. 153:76–83 [Google Scholar]
  39. Wang D, Urisman A, Liu YT, Springer M, Ksiazek TG. 39.  et al. 2003. Viral discovery and sequence recovery using DNA microarrays. PLOS Biol 1:E2 [Google Scholar]
  40. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA. 40.  et al. 2002. Microarray-based detection and genotyping of viral pathogens. PNAS 99:15687–92 [Google Scholar]
  41. Weber G, Shendure J, Tanenbaum DM, Church GM, Meyerson M. 41.  2002. Identification of foreign gene sequences by transcript filtering against the human genome. Nat. Genet. 30:141–42 [Google Scholar]
  42. Xu Y, Stange-Thomann N, Weber G, Bo R, Dodge S. 42.  et al. 2003. Pathogen discovery from human tissue by sequence-based computational subtraction. Genomics 81:329–35 [Google Scholar]
  43. Kostic AD, Ojesina AI, Pedamallu CS, Jung J, Verhaak RG. 43.  et al. 2011. PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nat. Biotechnol. 29:393–96 [Google Scholar]
  44. Bhatt AS, Freeman SS, Herrera AF, Pedamallu CS, Gevers D. 44.  et al. 2013. Sequence-based discovery of Bradyrhizobium enterica in cord colitis syndrome. N. Engl. J. Med. 369:517–28 [Google Scholar]
  45. Herrera AF, Soriano G, Bellizzi AM, Hornick JL, Ho VT. 45.  et al. 2011. Cord colitis syndrome in cord-blood stem-cell transplantation. N. Engl. J. Med. 365:815–24 [Google Scholar]
  46. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA. 46.  et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–15 [Google Scholar]
  47. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F. 47.  et al. 2012. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–98 [Google Scholar]
  48. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 48.  2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206 [Google Scholar]
  49. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J. 49.  et al. 2015. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–55 [Google Scholar]
  50. Feng H, Shuda M, Chang Y, Moore PS. 50.  2008. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–100 [Google Scholar]
  51. Feng H, Taylor JL, Benos PV, Newton R, Waddell K. 51.  et al. 2007. Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma. J. Virol. 81:11332–40 [Google Scholar]
  52. Palacios G, Druce J, Du L, Tran T, Birch C. 52.  et al. 2008. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 358:991–98 [Google Scholar]
  53. Briese T, Paweska JT, McMullan LK, Hutchison SK, Street C. 53.  et al. 2009. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLOS Pathog 5:e1000455 [Google Scholar]
  54. Naccache SN, Peggs KS, Mattes FM, Phadke R, Garson JA. 54.  et al. 2015. Diagnosis of neuroinvasive astrovirus infection in an immunocompromised adult with encephalitis by unbiased next-generation sequencing. Clin. Infect. Dis. 60:919–23 [Google Scholar]
  55. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D. 55.  et al. 2014. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 24:1180–92 [Google Scholar]
  56. Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H. 56.  et al. 2014. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N. Engl. J. Med. 370:2408–17 [Google Scholar]
  57. McMichael AJ. 57.  2004. Environmental and social influences on emerging infectious diseases: past, present and future. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359:1049–58 [Google Scholar]
  58. Saker L, Lee K, Cannito B, Gilmore A, Campbell-Lendrum DH. 58.  2004. Globalization and Infectious Diseases: A Review of the Linkages Geneva: UNICEF/UNDP/World Bank/WHO Special Programme Res. Train. Trop. Dis. [Google Scholar]
  59. Fauci AS. 59.  2001. Infectious diseases: considerations for the 21st century. Clin. Infect. Dis. 32:675–85 [Google Scholar]
  60. Popovic M, Sarngadharan MG, Read E, Gallo RC. 60.  1984. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500 [Google Scholar]
  61. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S. 61.  et al. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–71 [Google Scholar]
  62. 62. WHO Ebola Response Team. 2014. Ebola virus disease in West Africa–the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371:1481–95 [Google Scholar]
  63. Agua-Agum J, Ariyarajah A, Aylward B, Blake IM. 63. WHO Ebola Response Team, et al. 2015. West African Ebola epidemic after one year—slowing but not yet under control. N. Engl. J. Med. 372:584–87 [Google Scholar]
  64. Crosby AW. 64.  2003. America's Forgotten Pandemic: The Influenza of 1918 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  65. Dawood FS, Jain S, Finelli L, Shaw MW. 65. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team et al. 2009. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 360:2605–15 [Google Scholar]
  66. Pallen MJ, Wren BW. 66.  2007. Bacterial pathogenomics. Nature 449:835–42 [Google Scholar]
  67. Kruse H, Kirkemo A-M, Handeland K. 67.  2004. Wildlife as source of zoonotic infections. Emerg. Infect. Dis. 10:2067–72 [Google Scholar]
  68. Rappuoli R. 68.  2004. From Pasteur to genomics: progress and challenges in infectious diseases. Nat. Med. 10:1177–85 [Google Scholar]
  69. Lipkin WI. 69.  2013. The changing face of pathogen discovery and surveillance. Nat. Rev. Microbiol. 11:133–41 [Google Scholar]
  70. Tang P, Chiu C. 70.  2010. Metagenomics for the discovery of novel human viruses. Future Microbiol 5:177–89 [Google Scholar]
  71. Parato KA, Senger D, Forsyth PA, Bell JC. 71.  2005. Recent progress in the battle between oncolytic viruses and tumours. Nat. Rev. Cancer 5:965–76 [Google Scholar]
  72. McCoy L, Tsunoda I, Fujinami RS. 72.  2006. Multiple sclerosis and virus induced immune responses: Autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 39:9–19 [Google Scholar]
  73. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. 73.  2009. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–89 [Google Scholar]
  74. Fredricks DN, Relman DA. 74.  1998. Infectious agents and the etiology of chronic idiopathic diseases. Curr. Clin. Top. Infect. Dis. 18:180–200 [Google Scholar]
  75. Goonetilleke A, Harris JB. 75.  2004. Clostridial neurotoxins. J. Neurol. Neurosurg. Psychiatry 75:Suppl. 3iii35–39 [Google Scholar]
  76. Carapetis JR, Steer AC, Mulholland EK, Weber M. 76.  2005. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5:685–94 [Google Scholar]
  77. Kraus A, Groveman BR, Caughey B. 77.  2013. Prions and the potential transmissibility of protein misfolding diseases. Annu. Rev. Microbiol. 67:543–64 [Google Scholar]
  78. Prusiner SB. 78.  1982. Novel proteinaceous infectious particles cause scrapie. Science 216:136–44 [Google Scholar]
  79. Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R. 79.  et al. 2010. Prion protein and Aβ-related synaptic toxicity impairment. EMBO Mol. Med. 2:306–14 [Google Scholar]
  80. Colby DW, Prusiner SB. 80.  2011. De novo generation of prion strains. Nat. Rev. Microbiol. 9:771–77 [Google Scholar]
  81. Aguzzi A, Calella AM. 81.  2009. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89:1105–52 [Google Scholar]
  82. Lipkin WI. 82.  2010. Microbe hunting. Microbiol. Mol. Biol. Rev. 74:363–77 [Google Scholar]
  83. Mee BC, Carroll P, Donatello S, Connolly E, Griffin M. 83.  et al. 2011. Maintaining breast cancer specimen integrity and individual or simultaneous extraction of quality DNA, RNA, and proteins from Allprotect-stabilized and nonstabilized tissue samples. Biopreservation Biobanking 9:389–98 [Google Scholar]
  84. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J. 84.  et al. 2014. Relating the metatranscriptome and metagenome of the human gut. PNAS 111:E2329–38 [Google Scholar]
  85. Li P, Conley A, Zhang H, Kim HL. 85.  2014. Whole-transcriptome profiling of formalin-fixed, paraffin-embedded renal cell carcinoma by RNA-seq. BMC Genom 15:1087 [Google Scholar]
  86. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N. 86.  et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–10 [Google Scholar]
  87. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K. 87.  et al. 2014. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. PNAS 111:4274–79 [Google Scholar]
  88. Alberti A, Belser C, Engelen S, Bertrand L, Orvain C. 88.  et al. 2014. Comparison of library preparation methods reveals their impact on interpretation of metatranscriptomic data. BMC Genom 15:912 [Google Scholar]
  89. Naccache SN, Greninger AL, Lee D, Coffey LL, Phan T. 89.  et al. 2013. The perils of pathogen discovery: Origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. J. Virol. 87:11966–77 [Google Scholar]
  90. Woese CR, Fox GE, Zablen L, Uchida T, Bonen L. 90.  et al. 1975. Conservation of primary structure in 16S ribosomal RNA. Nature 254:83–86 [Google Scholar]
  91. Kembel SW, Wu M, Eisen JA, Green JL. 91.  2012. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLOS Comput. Biol. 8:e1002743 [Google Scholar]
  92. Vetrovsky T, Baldrian P. 92.  2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLOS ONE 8:e57923 [Google Scholar]
  93. Abubucker S, Segata N, Goll J, Schubert AM, Izard J. 93.  et al. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLOS Comput. Biol. 8:e1002358 [Google Scholar]
  94. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 94.  2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9:811–14 [Google Scholar]
  95. Vandeventer PE, Weigel KM, Salazar J, Erwin B, Irvine B. 95.  et al. 2011. Mechanical disruption of lysis-resistant bacterial cells by use of a miniature, low-power, disposable device. J. Clin. Microbiol. 49:2533–39 [Google Scholar]
  96. Rantakokko-Jalava K, Jalava J. 96.  2002. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J. Clin. Microbiol. 40:4211–17 [Google Scholar]
  97. Stuhlmeier R, Stuhlmeier KM. 97.  2003. Fast, simultaneous, and sensitive detection of staphylococci. J. Clin. Pathol. 56:782–85 [Google Scholar]
  98. Willner D, Daly J, Whiley D, Grimwood K, Wainwright CE, Hugenholtz P. 98.  2012. Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLOS ONE 7:e34605 [Google Scholar]
  99. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY. 99.  et al. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–60 [Google Scholar]
  100. Kernbauer E, Ding Y, Cadwell K. 100.  2014. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516:94–98 [Google Scholar]
  101. Oh J, Byrd AL, Deming C, Conlan S. 101. , NISC Comp. Seq. Program, et al. 2014. Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64 [Google Scholar]
  102. Underhill DM, Iliev ID. 102.  2014. The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14:405–16 [Google Scholar]
  103. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC. 103.  et al. 2011. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364:33–42 [Google Scholar]
  104. Hong C, Manimaran S, Shen Y, Perez-Rogers JF, Byrd AL. 104.  et al. 2014. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome 2:33 [Google Scholar]
  105. Naeem R, Rashid M, Pain A. 105.  2013. READSCAN: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation. Bioinformatics 29:391–92 [Google Scholar]
  106. Borozan I, Wilson S, Blanchette P, Laflamme P, Watt SN. 106.  et al. 2012. CaPSID: a bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes. BMC Bioinform 13:206 [Google Scholar]
  107. Bhaduri A, Qu K, Lee CS, Ungewickell A, Khavari PA. 107.  2012. Rapid identification of non-human sequences in high-throughput sequencing datasets. Bioinformatics 28:1174–75 [Google Scholar]
  108. Chen Y, Yao H, Thompson EJ, Tannir NM, Weinstein JN, Su X. 108.  2013. VirusSeq: software to identify viruses and their integration sites using next-generation sequencing of human cancer tissue. Bioinformatics 29:266–67 [Google Scholar]
  109. Schelhorn SE, Fischer M, Tolosi L, Altmuller J, Nurnberg P. 109.  et al. 2013. Sensitive detection of viral transcripts in human tumor transcriptomes. PLOS Comput. Biol. 9:e1003228 [Google Scholar]
  110. Wang Q, Jia P, Zhao Z. 110.  2013. VirusFinder: software for efficient and accurate detection of viruses and their integration sites in host genomes through next generation sequencing data. PLOS ONE 8:e64465 [Google Scholar]
  111. Rivers TM. 111.  1937. Viruses and Koch's Postulates. J. Bacteriol. 33:1–12 [Google Scholar]
  112. Falkow S. 112.  1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10:Suppl. 2S274–76 [Google Scholar]
  113. Fredricks DN, Relman DA. 113.  1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9:18–33 [Google Scholar]
  114. Karst SM, Wobus CE, Goodfellow IG, Green KY, Virgin HW. 114.  2014. Advances in norovirus biology. Cell Host Microbe 15:668–80 [Google Scholar]
  115. Lohmann V, Bartenschlager R. 115.  2014. On the history of hepatitis C virus cell culture systems. J. Med. Chem 571627–42 [Google Scholar]
  116. Cassetti MC, Durbin A, Harris E, Rico-Hesse R, Roehrig J. 116.  et al. 2010. Report of an NIAID workshop on dengue animal models. Vaccine 28:4229–34 [Google Scholar]
  117. Devitt E. 117.  2013. Lack of small animal model hinders MERS coronavirus research. Nat. Med. 19:952 [Google Scholar]
  118. Chayama K, Hayes CN, Hiraga N, Abe H, Tsuge M, Imamura M. 118.  2011. Animal model for study of human hepatitis viruses. J. Gastroenterol. Hepatol. 26:13–18 [Google Scholar]
  119. Rasmussen AL, Okumura A, Ferris MT, Green R, Feldmann F. 119.  et al. 2014. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science 346:987–91 [Google Scholar]
  120. Marshall BJ, Warren JR. 120.  1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–15 [Google Scholar]
  121. Marshall BJ, Armstrong JA, McGechie DB, Glancy RJ. 121.  1985. Attempt to fulfil Koch's postulates for pyloric Campylobacter. Med. J. Aust. 142:436–39 [Google Scholar]
  122. Palacios G, Hornig M, Cisterna D, Savji N, Bussetti AV. 122.  et al. 2009. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLOS ONE 4:e8540 [Google Scholar]
  123. Grant IH, Gold JW, Rosenblum M, Niedzwiecki D, Armstrong D. 123.  1990. Toxoplasma gondii serology in HIV-infected patients: the development of central nervous system toxoplasmosis in AIDS. AIDS 4:519–21 [Google Scholar]
  124. Shelburne SA 3rd, Darcourt J, White AC Jr., Greenberg SB, Hamill RJ. 124.  et al. 2005. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin. Infect. Dis. 40:1049–52 [Google Scholar]
  125. Abouya YL, Beaumel A, Lucas S, Dago-Akribi A, Coulibaly G. 125.  et al. 1992. Pneumocystis carinii pneumonia. An uncommon cause of death in African patients with acquired immunodeficiency syndrome.. Am. Rev. Respir. Dis. 145:617–20 [Google Scholar]
  126. Renne R, Zhong W, Herndier B, McGrath M, Abbey N. 126.  et al. 1996. Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat. Med. 2:342–46 [Google Scholar]
  127. Ferreira A, Marguti I, Bechmann I, Jeney V, Chora A. 127.  et al. 2011. Sickle hemoglobin confers tolerance to Plasmodium infection. Cell 145:398–409 [Google Scholar]
  128. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P. 128.  et al. 1991. Common west African HLA antigens are associated with protection from severe malaria. Nature 352:595–600 [Google Scholar]
  129. Flint J, Hill AV, Bowden DK, Oppenheimer SJ, Sill PR. 129.  et al. 1986. High frequencies of α-thalassaemia are the result of natural selection by malaria. Nature 321:744–50 [Google Scholar]
  130. Frodsham AJ, Hill AV. 130.  2004. Genetics of infectious diseases. Hum. Mol. Genet. 13:Suppl. 2R187–94 [Google Scholar]
  131. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S. 131.  et al. 2004. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 23:219–23 [Google Scholar]
  132. Höhler T, Kruger A, Gerken G, Schneider PM, Meyer Zum Büschenfelde K-H, Rittner C. 132.  1998. A tumor necrosis factor-α (TNF-α) promoter polymorphism is associated with chronic hepatitis B infection. Clin. Exp. Immunol. 111:579–82 [Google Scholar]
  133. Thomas HC, Foster GR, Sumiya M, McIntosh D, Jack DL. 133.  et al. 1996. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. Lancet 348:1417–19 [Google Scholar]
  134. Bellamy R, Ruwende C, Corrah T, McAdam KP, Thursz M. 134.  et al. 1999. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J. Infect. Dis. 179:721–24 [Google Scholar]
  135. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H. 135.  et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:104–8 [Google Scholar]
  136. Devkota S, Chang EB. 136.  2013. Diet-induced expansion of pathobionts in experimental colitis: implications for tailored therapies. Gut Microbes 4:172–74 [Google Scholar]
  137. Paine RT. 137.  1969. A note on trophic complexity and community stability. Am. Nat. 103:91–93 [Google Scholar]
  138. Hajishengallis G, Darveau RP, Curtis MA. 138.  2012. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10:717–25 [Google Scholar]
  139. Wang F, Meng W, Wang B, Qiao L. 139.  2014. Helicobacter pylori–induced gastric inflammation and gastric cancer. Cancer Lett 345:196–202 [Google Scholar]
  140. Harper DM, Demars LR. 140.  2014. Primary strategies for HPV infection and cervical cancer prevention. Clin. Obstet. Gynecol. 57:256–78 [Google Scholar]
  141. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X. 141.  et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15:1016–22 [Google Scholar]
  142. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM. 142.  et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–23 [Google Scholar]
  143. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M. 143.  et al. 2012. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306 [Google Scholar]
  144. Bhavsar AP, Auweter SD, Finlay BB. 144.  2010. Proteomics as a probe of microbial pathogenesis and its molecular boundaries. Future Microbiol 5:253–65 [Google Scholar]
  145. Han J, Antunes LCM, Finlay BB, Borcherst CH. 145.  2010. Metabolomics: towards understanding host-microbe interactions. Future Microbiol 5:153–61 [Google Scholar]
  146. Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A. 146.  et al. 2011. Autoantigen discovery with a synthetic human peptidome. Nat. Biotechnol. 29:535–41 [Google Scholar]
  147. Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD. 147.  et al. 2015. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348:aaa0698 [Google Scholar]
  148. Tigchelaar EF, Zhernakova A, Dekens JA, Hermes G, Baranska A. 148.  et al. 2015. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5:8e006772 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error