Next-generation sequencing has substantially enhanced our understanding of the genetics of primary brain tumors by uncovering several novel driver genetic alterations. How many of these genetic modifications contribute to the pathogenesis of brain tumors is not well understood. An exciting paradigm emerging in cancer biology is that oncogenes actively reprogram cellular metabolism to enable tumors to survive and proliferate. We discuss how some of these genetic alterations in brain tumors rewire metabolism. Furthermore, metabolic alterations directly impact epigenetics well beyond classical mechanisms of tumor pathogenesis. Metabolic reprogramming in brain tumors is also influenced by the tumor microenvironment contributing to drug resistance and tumor recurrence. Altered cancer metabolism can be leveraged to noninvasively image brain tumors, which facilitates improved diagnosis and the evaluation of treatment effectiveness. Many of these aspects of altered metabolism provide novel therapeutic opportunities to effectively treat primary brain tumors.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Vander Heiden MG, Cantley LC, Thompson CB. 1.  2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33 [Google Scholar]
  2. Ward PS, Thompson CB. 2.  2012. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308 [Google Scholar]
  3. Lunt SY, Vander Heiden MG. 3.  2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441–64 [Google Scholar]
  4. Kacem K, Lacombe P, Seylaz J, Bonvento G. 4.  1998. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23:1–10 [Google Scholar]
  5. Barros LF. 5.  2013. Metabolic signaling by lactate in the brain. Trends Neurosci 36:396–404 [Google Scholar]
  6. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP. 6.  2009. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11:747–52 [Google Scholar]
  7. Halim ND, McFate T, Mohyeldin A, Okagaki P, Korotchkina LG. 7.  et al. 2010. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58:1168–76 [Google Scholar]
  8. Yudkoff M, Nissim I, Daikhin Y, Lin ZP, Nelson D. 8.  et al. 1993. Brain glutamate metabolism: neuronal-astroglial relationships. Dev. Neurosci. 15:343–50 [Google Scholar]
  9. Nelson D, Cox MM. 9.  2012. Lehninger Principles of Biochemistry New York: W.H. Freeman
  10. Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB. 10.  et al. 2011. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13:620–32 [Google Scholar]
  11. Crane CA, Austgen K, Haberthur K, Hofmann C, Moyes KW. 11.  et al. 2014. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. PNAS 111:12823–28 [Google Scholar]
  12. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N. 12.  et al. 2011. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208:313–26 [Google Scholar]
  13. Gershon TR, Crowther AJ, Tikunov A, Garcia I, Annis R. 13.  et al. 2013. Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab 1:2 [Google Scholar]
  14. Wolf A, Agnihotri S, Munoz D, Guha A. 14.  2011. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol. Dis. 44:84–91 [Google Scholar]
  15. Di Magno L, Manzi D, D'Amico D, Coni S, Macone A. 15.  et al. 2014. Druggable glycolytic requirement for Hedgehog-dependent neuronal and medulloblastoma growth. Cell Cycle 13:3404–13 [Google Scholar]
  16. Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL. 16.  et al. 2009. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol. Cancer Res. 7:1438–45 [Google Scholar]
  17. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z. 17.  et al. 2013. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24:213–28 [Google Scholar]
  18. Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM. 18.  et al. 2013. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409 [Google Scholar]
  19. Yamada K, Noguchi T. 19.  1999. Regulation of pyruvate kinase M gene expression. Biochem. Biophys. Res. Commun. 256:257–62 [Google Scholar]
  20. Wolf A, Agnihotri S, Munoz D, Guha A. 20.  2011. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol. Dis. 44:84–91 [Google Scholar]
  21. Mazurek S. 21.  2011. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43:969–80 [Google Scholar]
  22. Gui DY, Lewis CA, Vander Heiden MG. 22.  2013. Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci. Signal. 6:pe7 [Google Scholar]
  23. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE. 23.  et al. 2008. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–33 [Google Scholar]
  24. Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. 24.  2010. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol 12:1102–12 [Google Scholar]
  25. Goidts V, Bageritz J, Puccio L, Nakata S, Zapatka M. 25.  et al. 2012. RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene 31:3235–43 [Google Scholar]
  26. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY. 26.  et al. 2015. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57:95–107 [Google Scholar]
  27. Yang W, Xia Y, Ji H, Zheng Y, Liang J. 27.  et al. 2011. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480:118–22 [Google Scholar]
  28. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A. 28.  et al. 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100 [Google Scholar]
  29. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N. 29.  et al. 2012. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96 [Google Scholar]
  30. Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG. 30.  et al. 2014. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56:400–13 [Google Scholar]
  31. Vacanti NM, Divakaruni AS, Green CR, Parker SJ, Henry RR. 31.  et al. 2014. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell 56:425–35 [Google Scholar]
  32. Yang C, Ko B, Hensley CT, Jiang L, Wasti AT. 32.  et al. 2014. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56:414–24 [Google Scholar]
  33. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J. 33.  et al. 2012. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–44 [Google Scholar]
  34. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H. 34.  et al. 2012. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–37 [Google Scholar]
  35. Jha MK, Jeon S, Suk K. 35.  2012. Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic disorders. Curr. Neuropharmacol. 10:393–403 [Google Scholar]
  36. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C. 36.  et al. 2007. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51 [Google Scholar]
  37. Duan Y, Zhao X, Ren W, Wang X, Yu KF. 37.  et al. 2013. Antitumor activity of dichloroacetate on C6 glioma cell: in vitro and in vivo evaluation. OncoTargets Ther 6:189–98 [Google Scholar]
  38. Prabhu A, Sarcar B, Miller CR, Kim SH, Nakano I. 38.  et al. 2015. Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro Oncol 9:1220–30 [Google Scholar]
  39. Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M. 39.  et al. 2010. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 285:36267–74 [Google Scholar]
  40. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. 40.  2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–80 [Google Scholar]
  41. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK. 41.  et al. 2014. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–14 [Google Scholar]
  42. Comerford SA, Huang Z, Du X, Wang Y, Cai L. 42.  et al. 2014. Acetate dependence of tumors. Cell 159:1591–602 [Google Scholar]
  43. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S. 43.  et al. 2015. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27:57–71 [Google Scholar]
  44. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M. 44.  et al. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104:19345–50 [Google Scholar]
  45. Wise DR, Thompson CB. 45.  2010. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35:427–33 [Google Scholar]
  46. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY. 46.  et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. PNAS 105:18782–87 [Google Scholar]
  47. Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. 47.  2009. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69:7986–93 [Google Scholar]
  48. Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY. 48.  et al. 2013. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–54 [Google Scholar]
  49. Jin L, Li D, Alesi GN, Fan J, Kang HB. 49.  et al. 2015. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 27:257–70 [Google Scholar]
  50. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P. 50.  et al. 2015. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7:274ra17 [Google Scholar]
  51. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O. 51.  et al. 2015. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17:1556–68 [Google Scholar]
  52. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H. 52.  et al. 2015. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Investig. 125:1591–602 [Google Scholar]
  53. Locasale JW. 53.  2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13:572–83 [Google Scholar]
  54. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D. 54.  et al. 2011. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–50 [Google Scholar]
  55. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR. 55.  et al. 2011. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43:869–74 [Google Scholar]
  56. Ye J, Mancuso A, Tong X, Ward PS, Fan J. 56.  et al. 2012. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. PNAS 109:6904–9 [Google Scholar]
  57. Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD. 57.  et al. 2012. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491:458–62 [Google Scholar]
  58. Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K. 58.  et al. 2013. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–46 [Google Scholar]
  59. Maddocks OD, Labuschagne CF, Adams PD, Vousden KH. 59.  2016. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61:210–21 [Google Scholar]
  60. Yun J, Johnson JL, Hanigan CL, Locasale JW. 60.  2012. Interactions between epigenetics and metabolism in cancers. Front. Oncol. 2:163 [Google Scholar]
  61. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. 61.  2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302 [Google Scholar]
  62. Garrow TA, Brenner AA, Whitehead VM, Chen XN, Duncan RG. 62.  et al. 1993. Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J. Biol. Chem. 268:11910–16 [Google Scholar]
  63. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T. 63.  et al. 2012. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–44 [Google Scholar]
  64. Kume A, Koyata H, Sakakibara T, Ishiguro Y, Kure S, Hiraga K. 64.  1991. The glycine cleavage system. Molecular cloning of the chicken and human glycine decarboxylase cDNAs and some characteristics involved in the deduced protein structures. J. Biol. Chem. 266:3323–29 [Google Scholar]
  65. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S. 65.  et al. 2012. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148:259–72 [Google Scholar]
  66. Ye J, Fan J, Venneti S, Wan YW, Pawel BR. 66.  et al. 2014. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 12:1406–17 [Google Scholar]
  67. Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K. 67.  et al. 2015. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520:363–67 [Google Scholar]
  68. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H. 68.  et al. 2013. The somatic genomic landscape of glioblastoma. Cell 155:462–77 [Google Scholar]
  69. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. 69.  1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271:31372–78 [Google Scholar]
  70. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. 70.  2001. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–18 [Google Scholar]
  71. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH. 71.  et al. 2004. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–99 [Google Scholar]
  72. Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM. 72.  2002. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277:33895–900 [Google Scholar]
  73. Lee JV, Carrer A, Shah S, Snyder NW, Wei S. 73.  et al. 2014. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–19 [Google Scholar]
  74. Masui K, Tanaka K, Ikegami S, Villa GR, Yang H. 74.  et al. 2015. Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. PNAS 112:9406–11 [Google Scholar]
  75. Laplante M, Sabatini DM. 75.  2012. mTOR signaling in growth control and disease. Cell 149:274–93 [Google Scholar]
  76. Babic I, Anderson ES, Tanaka K, Guo D, Masui K. 76.  et al. 2013. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab 17:1000–8 [Google Scholar]
  77. Zoncu R, Efeyan A, Sabatini DM. 77.  2011. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:21–35 [Google Scholar]
  78. Rosario FJ, Kanai Y, Powell TL, Jansson T. 78.  2013. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J. Physiol. 591:609–25 [Google Scholar]
  79. Masui K, Tanaka K, Akhavan D, Babic I, Gini B. 79.  et al. 2013. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18:726–39 [Google Scholar]
  80. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA. 80.  et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360:765–73 [Google Scholar]
  81. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. 81.  et al. 2010. Addendum. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465:966 [Google Scholar]
  82. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD. 82.  et al. 2010. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–34 [Google Scholar]
  83. Krell D, Mulholland P, Frampton AE, Krell J, Stebbing J, Bardella C. 83.  2013. IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncol 9:1923–35 [Google Scholar]
  84. Venneti S, Huse JT. 84.  2015. The evolving molecular genetics of low-grade glioma. Adv. Anat. Pathol. 22:94–101 [Google Scholar]
  85. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G. 85.  et al. 2012. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–88 [Google Scholar]
  86. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK. 86.  et al. 2013. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–25 [Google Scholar]
  87. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S. 87.  et al. 2012. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–78 [Google Scholar]
  88. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F. 88.  et al. 2012. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–83 [Google Scholar]
  89. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K. 89.  et al. 2010. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–22 [Google Scholar]
  90. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS. 90.  et al. 2016. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–14 [Google Scholar]
  91. Venneti S, Felicella MM, Coyne T, Phillips JJ, Gorovets D. 91.  et al. 2013. Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. J. Neuropathol. Exp. Neurol. 4:298–306 [Google Scholar]
  92. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C. 92.  et al. 2013. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–30 [Google Scholar]
  93. Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS. 93.  et al. 2012. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26:2038–49 [Google Scholar]
  94. Chittaranjan S, Chan S, Yang C, Yang KC, Chen V. 94.  et al. 2014. Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity. Oncotarget 5:7960–79 [Google Scholar]
  95. Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S. 95.  et al. 2015. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 21:178–84 [Google Scholar]
  96. Shackelford DB, Shaw RJ. 96.  2009. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9:563–75 [Google Scholar]
  97. Mihaylova MM, Shaw RJ. 97.  2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13:1016–23 [Google Scholar]
  98. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A. 98.  et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214–26 [Google Scholar]
  99. Wang W, Xiao ZD, Li X, Aziz KE, Gan B. 99.  et al. 2015. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17:490–99 [Google Scholar]
  100. Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S. 100.  et al. 2014. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. PNAS 111:E435–44 [Google Scholar]
  101. Rios M, Foretz M, Viollet B, Prieto A, Fraga M. 101.  et al. 2013. AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors. Cancer Res 73:2628–38 [Google Scholar]
  102. Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM. 102.  et al. 2009. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. PNAS 106:12932–37 [Google Scholar]
  103. Zhang WB, Wang Z, Shu F, Jin YH, Liu HY. 103.  et al. 2010. Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J. Biol. Chem. 285:40461–71 [Google Scholar]
  104. Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J. 104.  et al. 2010. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell 37:620–32 [Google Scholar]
  105. Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo AR. 105.  et al. 2013. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153:1064–79 [Google Scholar]
  106. Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR. 106.  et al. 2009. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol. Cell 33:237–47 [Google Scholar]
  107. Shen CH, Yuan P, Perez-Lorenzo R, Zhang Y, Lee SX. 107.  et al. 2013. Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Mol. Cell 52:161–72 [Google Scholar]
  108. Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF. 108.  1992. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 6:2235–47 [Google Scholar]
  109. Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. 109.  2014. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin. Cancer Res. 20:5630–40 [Google Scholar]
  110. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A. 110.  et al. 2013. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3:512–19 [Google Scholar]
  111. Grimmer MR, Weiss WA. 111.  2006. Childhood tumors of the nervous system as disorders of normal development. Curr. Opin. Pediatr. 18:634–38 [Google Scholar]
  112. Osthus RC, Shim H, Kim S, Li Q, Reddy R. 112.  et al. 2000. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275:21797–800 [Google Scholar]
  113. Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE. 113.  et al. 2011. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14:131–42 [Google Scholar]
  114. David CJ, Chen M, Assanah M, Canoll P, Manley JL. 114.  2010. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–68 [Google Scholar]
  115. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K. 115.  et al. 2009. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–65 [Google Scholar]
  116. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV. 116.  et al. 2012. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15:157–70 [Google Scholar]
  117. Keith B, Johnson RS, Simon MC. 117.  2012. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12:9–22 [Google Scholar]
  118. Semenza GL, Roth PH, Fang HM, Wang GL. 118.  1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269:23757–63 [Google Scholar]
  119. Luo W, Hu H, Chang R, Zhong J, Knabel M. 119.  et al. 2011. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–44 [Google Scholar]
  120. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. 120.  2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–85 [Google Scholar]
  121. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J. 121.  et al. 2012. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–84 [Google Scholar]
  122. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ. 122.  et al. 2011. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. PNAS 108:19611–16 [Google Scholar]
  123. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB. 123.  et al. 2012. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–88 [Google Scholar]
  124. Yan K, Yang K, Rich JN. 124.  2013. The evolving landscape of glioblastoma stem cells. Curr. Opin. Neurol. 26:701–7 [Google Scholar]
  125. Menendez JA. 125.  2015. Metabolic control of cancer cell stemness: lessons from iPS cells. Cell Cycle 14:3801–11 [Google Scholar]
  126. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y. 126.  et al. 2013. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat. Neurosci. 16:1373–82 [Google Scholar]
  127. Morfouace M, Lalier L, Bahut M, Bonnamain V, Naveilhan P. 127.  et al. 2012. Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications. J. Biol. Chem. 287:33664–74 [Google Scholar]
  128. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C. 128.  et al. 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82 [Google Scholar]
  129. Kathagen A, Schulte A, Balcke G, Phillips HS, Martens T. 129.  et al. 2013. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 126:763–80 [Google Scholar]
  130. Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K. 130.  et al. 2011. Metabolic state of glioma stem cells and nontumorigenic cells. PNAS 108:16062–67 [Google Scholar]
  131. Oburoglu L, Tardito S, Fritz V, de Barros SC, Merida P. 131.  et al. 2014. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15:169–84 [Google Scholar]
  132. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. 132.  2015. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–16 [Google Scholar]
  133. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G. 133.  et al. 2015. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402 [Google Scholar]
  134. Petrirena GJ, Goldman S, Delattre JY. 134.  2011. Advances in PET imaging of brain tumors: a referring physician's perspective. Curr. Opin. Oncol. 23:617–23 [Google Scholar]
  135. Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC, Rosen B. 135.  2014. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res 74:4622–37 [Google Scholar]
  136. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA. 136.  et al. 2012. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4:116ra4 [Google Scholar]
  137. Elkhaled A, Jalbert LE, Phillips JJ, Yoshihara HA, Parvataneni R. 137.  et al. 2012. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci. Transl. Med. 4:116ra5 [Google Scholar]
  138. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D. 138.  et al. 2012. 2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18:624–29 [Google Scholar]
  139. Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M. 139.  et al. 2010. Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res 70:1296–305 [Google Scholar]
  140. Park I, Larson PE, Zierhut ML, Hu S, Bok R. 140.  et al. 2010. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol 12:133–44 [Google Scholar]
  141. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL. 141.  et al. 2013. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5:198ra08 [Google Scholar]
  142. Chaumeil MM, Larson PE, Woods SM, Cai L, Eriksson P. 142.  et al. 2014. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Cancer Res 74:4247–57 [Google Scholar]
  143. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A. 143.  et al. 2010. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2:31ra4 [Google Scholar]
  144. Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D. 144.  et al. 2005. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Investig. New Drugs 23:357–61 [Google Scholar]
  145. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J. 145.  et al. 2008. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLOS Med 5:e8 [Google Scholar]
  146. Wu SH, Bi JF, Cloughesy T, Cavenee WK, Mischel PS. 146.  2014. Emerging function of mTORC2 as a core regulator in glioblastoma: metabolic reprogramming and drug resistance. Cancer Biol. Med. 11:255–63 [Google Scholar]
  147. Gini B, Zanca C, Guo D, Matsutani T, Masui K. 147.  et al. 2013. The mTOR kinase inhibitors, CC214-1 and CC214-2, preferentially block the growth of EGFRvIII-activated glioblastomas. Clin. Cancer Res. 19:5722–32 [Google Scholar]
  148. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S. 148.  et al. 2013. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–6 [Google Scholar]
  149. Kernytsky A, Wang F, Hansen E, Schalm S, Straley K. 149.  et al. 2015. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 125:296–303 [Google Scholar]
  150. 150. Am. Assoc. Cancer Res. 2015. IDH1 inhibitor shows promising early results. Cancer Discov. 5:4 [Google Scholar]
  151. Elhammali A, Ippolito JE, Collins L, Crowley J, Marasa J, Piwnica-Worms D. 151.  2014. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov 4:828–39 [Google Scholar]
  152. Tateishi K, Wakimoto H, Iafrate AJ, Tanaka S, Loebel F. 152.  et al. 2015. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28:773–84 [Google Scholar]
  153. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D. 153.  et al. 2016. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error