Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Snippert HJ, Clevers H. 1.  2011. Tracking adult stem cells. EMBO Rep 12:113–22 [Google Scholar]
  2. Hsu YC, Fuchs E. 2.  2012. A family business: Stem cell progeny join the niche to regulate homeostasis. Nat. Rev. Mol. Cell Biol. 13:103–14 [Google Scholar]
  3. Blanpain C, Fuchs E. 3.  2014. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 344:1242281 [Google Scholar]
  4. Yamanaka S, Blau HM. 4.  2010. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–12 [Google Scholar]
  5. Wu J, Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC. 5.  2016. Stem cells and interspecies chimaeras. Nature 540:51–59 [Google Scholar]
  6. Shi Y, Inoue H, Wu JC, Yamanaka S. 6.  2017. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16:115–30 [Google Scholar]
  7. Doulatov S, Daley GQ. 7.  2013. Development. A stem cell perspective on cellular engineering. Science 342:700–2 [Google Scholar]
  8. McKernan R, Watt FM. 8.  2013. What is the point of large-scale collections of human induced pluripotent stem cells?. Nat. Biotechnol. 31:875–77 [Google Scholar]
  9. Dow LE, Lowe SW. 9.  2012. Life in the fast lane: mammalian disease models in the genomics era. Cell 148:1099–109 [Google Scholar]
  10. HogenEsch H, Nikitin AY. 10.  2012. Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models. J. Control Release 164:183–86 [Google Scholar]
  11. Day CP, Merlino G, Van Dyke T. 11.  2015. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163:39–53 [Google Scholar]
  12. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH. 12.  et al. 2012. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–35 [Google Scholar]
  13. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ. 13.  et al. 2010. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36 [Google Scholar]
  14. Flesken-Nikitin A, Hwang C-I, Cheng C-Y, Michurina TV, Enikolopov G, Nikitin AY. 14.  2013. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 495:241–45 [Google Scholar]
  15. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J. 15.  et al. 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–67 [Google Scholar]
  16. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM. 16.  et al. 1999. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. PNAS 96:9118–23 [Google Scholar]
  17. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Salani S. 17.  et al. 2006. Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 24:975–85 [Google Scholar]
  18. Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN. 18.  et al. 2009. High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27:2220–28 [Google Scholar]
  19. Crabb DW, Matsumoto M, Chang D, You M. 19.  2004. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc. Nutr. Soc. 63:49–63 [Google Scholar]
  20. Clevers H. 20.  2016. Modeling development and disease with organoids. Cell 165:1586–97 [Google Scholar]
  21. Cohnheim J. 21.  1867. Ueber entzundung und eiterung. Path Anat. Physiol. Klin. Med. 40:1–79 [Google Scholar]
  22. Visvader JE. 22.  2011. Cells of origin in cancer. Nature 469:314–22 [Google Scholar]
  23. Medema JP, Vermeulen L. 23.  2011. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474:318–26 [Google Scholar]
  24. O'Neil A, Petersen CP, Choi E, Engevik AC, Goldenring JR. 24.  2017. Unique cellular lineage composition of the first gland of the mouse gastric corpus. J. Histochem. Cytochem. 65:47–58 [Google Scholar]
  25. Quante M, Bhagat G, Abrams JA, Marache F, Good P. 25.  et al. 2012. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21:36–51 [Google Scholar]
  26. Reid BJ, Weinstein WM. 26.  1987. Barrett's esophagus and adenocarcinoma. Annu. Rev. Med. 38:477–92 [Google Scholar]
  27. Wang X, Ouyang H, Yamamoto Y, Kumar PA, Wei TS. 27.  et al. 2011. Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell 145:1023–35 [Google Scholar]
  28. Karam SM, Leblond CP. 28.  1993. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat. Rec. 236:259–79 [Google Scholar]
  29. Hayakawa Y, Ariyama H, Stancikova J, Sakitani K, Asfaha S. 29.  et al. 2015. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell 28:800–14 [Google Scholar]
  30. Matsuo J, Kimura S, Yamamura A, Koh CP, Hossain MZ. 30.  et al. 2017. Identification of stem cells in the epithelium of the stomach corpus and antrum of mice. Gastroenterology 152:218–31.e14 [Google Scholar]
  31. Stange DE, Koo B-K, Huch M, Sibbel G, Basak O. 31.  et al. 2013. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155:357–68 [Google Scholar]
  32. Li X-B, Yang G, Zhu L, Tang Y-L, Zhang C. 32.  et al. 2016. Gastric Lgr5+ stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res 26:838–49 [Google Scholar]
  33. Qiao XT, Ziel JW, McKimpson W, Madison BB, Todisco A. 33.  et al. 2007. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology 133:1989–98 [Google Scholar]
  34. Hayakawa Y, Jin G, Wang H, Chen X, Westphalen CB. 34.  et al. 2015. CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut 64:544–53 [Google Scholar]
  35. Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R. 35.  et al. 2011. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9:317–29 [Google Scholar]
  36. Leblond CP, Stevens CE. 36.  1948. The constant renewal of the intestinal epithelium in the albino rat. Anat. Rec. 100:357–77 [Google Scholar]
  37. Cairnie AB, Lamerton LF, Steel GG. 37.  1965. Cell proliferation studies in the intestinal epithelium of the rat. I. Determination of the kinetic parameters. Exp. Cell Res. 39:528–38 [Google Scholar]
  38. Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA. 38.  2009. The stem cells of small intestinal crypts: Where are they?. Cell Prolif 42:731–50 [Google Scholar]
  39. Potten CS. 39.  1977. Extreme sensitivity of some intestinal crypt cells to X and γ irradiation. Nature 269:518–21 [Google Scholar]
  40. Sangiorgi E, Capecchi MR. 40.  2008. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40:915–20 [Google Scholar]
  41. Montgomery RK, Carlone DL. 41.  2011. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. PNAS 108:179–84 [Google Scholar]
  42. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. 42.  2011. Interconversion between intestinal stem cell populations in distinct niches. Science 334:1420–24 [Google Scholar]
  43. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL. 43.  et al. 2012. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149:146–58 [Google Scholar]
  44. Cheng H, Leblond CP. 44.  1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am. J. Anat. 141:503–19 [Google Scholar]
  45. Barker N, Bartfeld S, Clevers H. 45.  2010. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7:656–70 [Google Scholar]
  46. Gracz AD, Magness ST. 46.  2014. Defining hierarchies of stemness in the intestine: evidence from biomarkers and regulatory pathways. Gastrointest. Liver Physiol. 307:G260–73 [Google Scholar]
  47. Bjerknes M, Cheng H. 47.  1999. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116:7–14 [Google Scholar]
  48. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M. 48.  et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–7 [Google Scholar]
  49. van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A. 49.  et al. 2009. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136:903–12 [Google Scholar]
  50. van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. 50.  2009. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137:15–17 [Google Scholar]
  51. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ. 51.  et al. 2009. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–7 [Google Scholar]
  52. Levin TG, Powell AE, Davies PS, Silk AD, Dismuke AD. 52.  et al. 2010. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology 139:2072–82.e5 [Google Scholar]
  53. Muñoz J, Stange DE, Schepers AG, van de Wetering M, Koo B-K. 53.  et al. 2012. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent “+4” cell markers. EMBO J 31:3079–91 [Google Scholar]
  54. Fafilek B, Krausova M, Vojtechova M, Pospichalova V, Tumova L. 54.  et al. 2013. Troy, a tumor necrosis factor receptor family member, interacts with Lgr5 to inhibit Wnt signaling in intestinal stem cells. Gastroenterology 144:381–91 [Google Scholar]
  55. Buczacki SJA, Zecchini HI, Nicholson AM, Russell R, Vermeulen L. 55.  et al. 2013. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65–69 [Google Scholar]
  56. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H. 56.  et al. 2009. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–11 [Google Scholar]
  57. Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R. 57.  et al. 2008. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. PNAS 105:12469–73 [Google Scholar]
  58. Gamwell LF, Collins O, Vanderhyden BC. 58.  2012. The mouse ovarian surface epithelium contains a population of LY6A (SCA-1) expressing progenitor cells that are regulated by ovulation-associated factors. Biol. Reprod. 87:80 [Google Scholar]
  59. Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L. 59.  et al. 2014. miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 6:1000–7 [Google Scholar]
  60. Ng A, Tan S, Singh G, Rizk P, Swathi Y. 60.  et al. 2014. Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat. Cell Biol. 16:745–57 [Google Scholar]
  61. 61. Cancer Genome Atlas Res. Netw. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609–15 [Google Scholar]
  62. Wang Y, Hayward S, Cao M, Thayer K, Cunha G. 62.  2001. Cell differentiation lineage in the prostate. Differentiation 68:270–79 [Google Scholar]
  63. Bonkhoff H, Remberger K. 63.  1993. Widespread distribution of nuclear androgen receptors in the basal cell layer of the normal and hyperplastic human prostate. Virchows Arch. A Pathol. Anat. Histopathol. 422:35–38 [Google Scholar]
  64. Bonkhoff H, Stein U, Remberger K. 64.  1995. Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells. Hum. Pathol. 26:167–70 [Google Scholar]
  65. Sugimura Y, Cunha GR, Donjacour AA. 65.  1986. Morphogenesis of ductal networks in the mouse prostate. Biol. Reprod. 34:961–71 [Google Scholar]
  66. Leong KG, Wang BE, Johnson L, Gao WQ. 66.  2008. Generation of a prostate from a single adult stem cell. Nature 456:804–8 [Google Scholar]
  67. Wang GM, Kovalenko B, Wilson EL, Moscatelli D. 67.  2007. Vascular density is highest in the proximal region of the mouse prostate. Prostate 67:968–75 [Google Scholar]
  68. Salm SN, Burger PE, Coetzee S, Goto K, Moscatelli D, Wilson EL. 68.  2005. TGF-β maintains dormancy of prostatic stem cells in the proximal region of ducts. J. Cell Biol. 170:81–90 [Google Scholar]
  69. Zhou Z, Flesken-Nikitin A, Nikitin AY. 69.  2007. Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 67:5683–90 [Google Scholar]
  70. Xin L, Lawson DA, Witte ON. 70.  2005. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. PNAS 102:6942–47 [Google Scholar]
  71. Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D. 71.  et al. 2005. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. PNAS 102:7180–85 [Google Scholar]
  72. Goto K, Salm SN, Coetzee S, Xiong X, Burger PE. 72.  et al. 2006. Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 24:1859–68 [Google Scholar]
  73. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. 73.  2007. Isolation and functional characterization of murine prostate stem cells. PNAS 104:181–86 [Google Scholar]
  74. Cheng CY, Zhou Z, Nikitin AY. 74.  2013. Detection and organ-specific ablation of neuroendocrine cells by synaptophysin locus-based BAC cassette in transgenic mice. PLOS ONE 8:e60905 [Google Scholar]
  75. Choi N, Zhang B, Zhang L, Ittmann M, Xin L. 75.  2012. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21:253–65 [Google Scholar]
  76. Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y. 76.  et al. 2012. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat. Cell Biol. 14:1131–38 [Google Scholar]
  77. Wang ZA, Mitrofanova A, Bergren SK, Abate-Shen C, Cardiff RD. 77.  et al. 2013. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15:274–83 [Google Scholar]
  78. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H. 78.  et al. 2009. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500 [Google Scholar]
  79. Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H. 79.  2009. LinSca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69:8555–62 [Google Scholar]
  80. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM. 80.  et al. 2009. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. PNAS 106:268–73 [Google Scholar]
  81. Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K. 81.  2010. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten−/−TP53−/−prostate cancer model. Stem Cells 28:2129–40 [Google Scholar]
  82. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE. 82.  et al. 2004. Defining the epithelial stem cell niche in skin. Science 303:359–63 [Google Scholar]
  83. Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA. 83.  et al. 2006. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J. Clin. Investig. 116:249–60 [Google Scholar]
  84. Kloepper JE, Tiede S, Brinckmann J, Reinhardt DP, Meyer W. 84.  et al. 2008. Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp. Dermatol. 17:592–609 [Google Scholar]
  85. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. 85.  2004. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–48 [Google Scholar]
  86. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C. 86.  et al. 2004. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22:411–17 [Google Scholar]
  87. Jensen UB, Lowell S, Watt FM. 87.  1999. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126:2409–18 [Google Scholar]
  88. Legg J, Jensen UB, Broad S, Leigh I, Watt FM. 88.  2003. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 130:6049–63 [Google Scholar]
  89. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. 89.  2000. Stimulation of human epidermal differentiation by Delta-Notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10:491–500 [Google Scholar]
  90. Rompolas P, Mesa KR, Kawaguchi K, Park S, Gonzalez D. 90.  et al. 2016. Spatiotemporal coordination of stem cell commitment during epidermal homeostasis. Science 352:1471–74 [Google Scholar]
  91. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH. 91.  2007. A single type of progenitor cell maintains normal epidermis. Nature 446:185–89 [Google Scholar]
  92. Sada A, Jacob F, Leung E, Wang S, White BS. 92.  et al. 2016. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nat. Cell Biol. 18:619–31 [Google Scholar]
  93. Horsley V, O'Carroll D, Tooze R, Ohinata Y, Saitou M. 93.  et al. 2006. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126:597–609 [Google Scholar]
  94. Niemann C, Watt FM. 94.  2002. Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol 12:185–92 [Google Scholar]
  95. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH. 95.  et al. 2010. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–89 [Google Scholar]
  96. Brown K, Strathdee D, Bryson S, Lambie W, Balmain A. 96.  1998. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8:516–24 [Google Scholar]
  97. White AC, Lowry WE. 97.  2015. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol 25:11–20 [Google Scholar]
  98. Osawa M. 98.  2009. Melanocyte stem cells. StemBook F Gage, F Watt Cambridge, MA: Harvard Stem Cell Inst. [Google Scholar]
  99. Fernandes KJL, McKenzie IA, Mill P, Smith KM, Akhavan M. 99.  et al. 2004. A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 6:1082–93 [Google Scholar]
  100. Shih IM, Elder DE, Hsu MY, Herlyn M. 100.  1994. Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am. J. Pathol. 145:837–45 [Google Scholar]
  101. Hachiya A, Kobayashi A, Yoshida Y, Kitahara T, Takema Y, Imokawa G. 101.  2004. Biphasic expression of two paracrine melanogenic cytokines, stem cell factor and endothelin-1, in ultraviolet B-induced human melanogenesis. Am. J. Pathol. 165:2099–109 [Google Scholar]
  102. Nasti TH, Timares L. 102.  2012. Inflammasome activation of IL-1 family mediators in response to cutaneous photodamage. Photochem. Photobiol. 88:1111–25 [Google Scholar]
  103. Okano H, Sawamoto K. 103.  2008. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 363:2111–22 [Google Scholar]
  104. Dimou L, Götz M. 104.  2014. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol. Rev. 94:709–37 [Google Scholar]
  105. Vescovi AL, Galli R, Reynolds BA. 105.  2006. Brain tumour stem cells. Nat. Rev. Cancer 6:425–36 [Google Scholar]
  106. LeBlanc AK, Mazcko C, Brown DE, Koehler JW, Miller AD. 106.  et al. 2016. Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients. Neuro-oncology 18:1209–18 [Google Scholar]
  107. Huse JT, Holland EC. 107.  2009. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19:132–43 [Google Scholar]
  108. Stylli SS, Luwor RB, Ware TM, Tan F, Kaye AH. 108.  2015. Mouse models of glioma. J. Clin. Neurosci. 22:619–26 [Google Scholar]
  109. McNairn AJ, Guasch G. 109.  2011. Epithelial transition zones: merging microenvironments, niches, and cellular transformation. Eur. J. Dermatol. 21:Suppl. 221–28 [Google Scholar]
  110. McKelvie PA, Daniell M, McNab A, Loughnan M, Santamaria JD. 110.  2002. Squamous cell carcinoma of the conjunctiva: a series of 26 cases. Br. J. Ophthalmol. 86:168–73 [Google Scholar]
  111. Waring GO 3rd, Roth AM, Ekins MB. 111.  1984. Clinical and pathologic description of 17 cases of corneal intraepithelial neoplasia. Am. J. Ophthalmol. 97:547–59 [Google Scholar]
  112. Petignat P, Roy M. 112.  2007. Diagnosis and management of cervical cancer. BMJ 335:765–68 [Google Scholar]
  113. Schermer A, Galvin S, Sun TT. 113.  1986. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J. Cell Biol. 103:49–62 [Google Scholar]
  114. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S. 114.  et al. 1999. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J. Cell Biol. 145:769–82 [Google Scholar]
  115. Trudgill NJ, Suvarna SK, Royds JA, Riley SA. 115.  2003. Cell cycle regulation in patients with intestinal metaplasia at the gastro-oesophageal junction. Mol. Pathol. 56:313–17 [Google Scholar]
  116. Odze RD. 116.  2005. Pathology of the gastroesophageal junction. Semin. Diagn. Pathol. 22:256–65 [Google Scholar]
  117. Runck LA, Kramer M, Ciraolo G, Lewis AG, Guasch G. 117.  2010. Identification of epithelial label-retaining cells at the transition between the anal canal and the rectum in mice. Cell Cycle 9:3039–45 [Google Scholar]
  118. Herfs M, Vargas SO, Yamamoto Y, Howitt BE, Nucci MR. 118.  et al. 2013. A novel blueprint for ‘top down’ differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. J. Pathol. 229:460–68 [Google Scholar]
  119. Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR. 119.  et al. 2012. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. PNAS 109:10516–21 [Google Scholar]
  120. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T. 120.  et al. 2012. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–84 [Google Scholar]
  121. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI. 121.  et al. 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38 [Google Scholar]
  122. Seidman JD. 122.  2015. Serous tubal intraepithelial carcinoma localizes to the tubal-peritoneal junction: a pivotal clue to the site of origin of extrauterine high-grade serous carcinoma (ovarian cancer). Int. J. Gynecol. Pathol. 34:112–20 [Google Scholar]
  123. Schmoeckel E, Odai-Afotey AA, Schleibheimer M, Rottmann M, Flesken-Nikitin A. 123.  et al. 2017. LEF1 is preferentially expressed in the tubal-peritoneal junctions and is a reliable marker of tubal intraepithelial lesions. Modern Pathol 30:1241–50 [Google Scholar]
  124. Nikitin AY, Nafus MG, Zhou Z, Liao C-P, Roy-Burman P. 124.  2009. Prostate stem cells and cancer in animals. Stem Cells and Cancer RG Bagley, BA Teicher 199–216 Totowa, NJ: Humana Press [Google Scholar]
  125. Kreso A, Dick JE. 125.  2014. Evolution of the cancer stem cell model. Cell Stem Cell 14:275–91 [Google Scholar]
  126. Greaves M, Maley CC. 126.  2012. Clonal evolution in cancer. Nature 481:306–13 [Google Scholar]
  127. Flesken-Nikitin A, Odai-Afotey AA, Nikitin AY. 127.  2014. Role of the stem cell niche in the pathogenesis of epithelial ovarian cancers. Mol. Cell Oncol. 1:e963435 [Google Scholar]
  128. Kaiser J. 128.  2015. The cancer stem cell gamble. Science 347:226–29 [Google Scholar]
  129. Rycaj K, Tang DG. 129.  2015. Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res 75:4003–11 [Google Scholar]
  130. McGranahan N, Swanton C. 130.  2017. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–28 [Google Scholar]
  131. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. 131.  1989. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–9 [Google Scholar]
  132. Ksander BR, Kolovou PE, Wilson BJ, Saab KR, Guo Q. 132.  et al. 2014. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511:353–57 [Google Scholar]
  133. Ishimoto T, Oshima H, Oshima M, Kai K, Torii R. 133.  et al. 2010. CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis. Cancer Sci 101:673–78 [Google Scholar]
  134. Betton GR, Dormer CS, Wells T, Pert P. 134.  1988. Gastric ECL-cell hyperplasia and carcinoids in rodents following chronic administration of H2-antagonists SK&F 93479 and oxmetidine and omeprazole. Toxicol. Pathol. 16:288–98 [Google Scholar]
  135. Moolenbeek C, Ruitenberg EJ. 135.  1981. The “Swiss roll”: a simple technique for histological studies of the rodent intestine. Lab. Anim. 15:57–59 [Google Scholar]
  136. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM. 136.  et al. 2004. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64:2270–305 [Google Scholar]
  137. Kittel B, Ruehl-Fehlert C, Morawietz G, Klapwijk J, Elwell MR. 137.  et al. 2004. Revised guides for organ sampling and trimming in rats and mice—part 2. A joint publication of the RITA and NACAD groups. Exp. Toxicol. Pathol. 55:413–31 [Google Scholar]
  138. Latendresse JR, Warbrittion AR, Jonassen H, Creasy DM. 138.  2002. Fixation of testes and eyes using a modified Davidson's fluid: comparison with Bouin's fluid and conventional Davidson's fluid. Toxicol. Pathol. 30:524–33 [Google Scholar]
  139. Obokata H, Yamato M, Tsuneda S, Okano T. 139.  2011. Reproducible subcutaneous transplantation of cell sheets into recipient mice. Nat. Protoc. 6:1053–59 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error