The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type–specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kimelman D, Xu W. 1.  2006. β-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–91 [Google Scholar]
  2. Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C. 2.  et al. 1998. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280:596–99 [Google Scholar]
  3. Liu C, Li Y, Semenov M, Han C, Baeg GH. 3.  et al. 2002. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–47 [Google Scholar]
  4. Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E. 4.  et al. 2002. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16:1066–76 [Google Scholar]
  5. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. 5.  1997. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–804 [Google Scholar]
  6. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R. 6.  et al. 1999. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9:207–10 [Google Scholar]
  7. Barrott JJ, Cash GM, Smith AP, Barrow JR, Murtaugh LC. 7.  2011. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia (Goltz syndrome). PNAS 108:12752–57 [Google Scholar]
  8. Zhai L, Chaturvedi D, Cumberledge S. 8.  2004. Drosophila Wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279:33220–27 [Google Scholar]
  9. Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K. 9.  2006. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125:509–22 [Google Scholar]
  10. Bartscherer K, Pelte N, Ingelfinger D, Boutros M. 10.  2006. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–33 [Google Scholar]
  11. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y. 11.  et al. 1996. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–30 [Google Scholar]
  12. Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S. 12.  et al. 2000. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–30 [Google Scholar]
  13. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. 13.  2000. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–38 [Google Scholar]
  14. Tamai K, Semenov M, Kato Y, Spokony R, Liu C. 14.  et al. 2000. LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–35 [Google Scholar]
  15. Tamai K, Zeng X, Liu C, Zhang X, Harada Y. 15.  et al. 2004. A mechanism for Wnt coreceptor activation. Mol. Cell 13:149–56 [Google Scholar]
  16. MacDonald BT, Tamai K, He X. 16.  2009. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17:9–26 [Google Scholar]
  17. Carmon KS, Gong X, Lin Q, Thomas A, Liu Q. 17.  2011. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. PNAS 108:11452–57 [Google Scholar]
  18. de Lau W, Barker N, Low TY, Koo BK, Li VS. 18.  et al. 2011. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–97 [Google Scholar]
  19. Hao HX, Xie Y, Zhang Y, Charlat O, Oster E. 19.  et al. 2012. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485:195–200 [Google Scholar]
  20. Koo BK, Spit M, Jordens I, Low TY, Stange DE. 20.  et al. 2012. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–69 [Google Scholar]
  21. Cadigan KM, Nusse R. 21.  1997. Wnt signaling: a common theme in animal development. Genes Dev 11:3286–305 [Google Scholar]
  22. Vincan E, Barker N. 22.  2008. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin. Exp. Metastasis 25:657–63 [Google Scholar]
  23. Oishi I, Suzuki H, Onishi N, Takada R, Kani S. 23.  et al. 2003. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–54 [Google Scholar]
  24. Sastre-Perona A, Santisteban P. 24.  2012. Role of the Wnt pathway in thyroid cancer. Front. Endocrinol. 3:31 [Google Scholar]
  25. Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P. 25.  2013. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J. Hepatol. 59:1107–17 [Google Scholar]
  26. Nishita M, Enomoto M, Yamagata K, Minami Y. 26.  2010. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol 20:346–54 [Google Scholar]
  27. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. 27.  2003. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol. 162:899–908 [Google Scholar]
  28. Acebron SP, Karaulanov E, Berger BS, Huang YL, Niehrs C. 28.  2014. Mitotic Wnt signaling promotes protein stabilization and regulates cell size. Mol. Cell 54:663–74 [Google Scholar]
  29. Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H. 29.  et al. 2007. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131:980–93 [Google Scholar]
  30. Kim NG, Xu C, Gumbiner BM. 30.  2009. Identification of targets of the Wnt pathway destruction complex in addition to β-catenin. PNAS 106:5165–70 [Google Scholar]
  31. Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. 31.  2015. Post-transcriptional Wnt signaling governs epididymal sperm maturation. Cell 163:1225–36 [Google Scholar]
  32. Xu C, Kim NG, Gumbiner BM. 32.  2009. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 8:4032–39 [Google Scholar]
  33. Kim H, Vick P, Hedtke J, Ploper D, De Robertis EM. 33.  2015. Wnt signaling translocates Lys48-linked polyubiquitinated proteins to the lysosomal pathway. Cell Rep 11:1151–59 [Google Scholar]
  34. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP. 34.  et al. 2010. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–48 [Google Scholar]
  35. Vinyoles M, Del Valle-Perez B, Curto J, Vinas-Castells R, Alba-Castellon L. 35.  et al. 2014. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol. Cell 53:444–57 [Google Scholar]
  36. Acebron SP, Niehrs C. 36.  2016. β-catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol 26:956–67 [Google Scholar]
  37. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y. 37.  et al. 2006. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–68 [Google Scholar]
  38. Wheelock MJ, Johnson KR. 38.  2003. Cadherins as modulators of cellular phenotype. Annu. Rev. Cell Dev. Biol. 19:207–35 [Google Scholar]
  39. D'Souza-Schorey C. 39.  2005. Disassembling adherens junctions: Breaking up is hard to do. Trends Cell Biol 15:19–26 [Google Scholar]
  40. Hinck L, Näthke IS, Papkoff J, Nelson WJ. 40.  1994. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J. Cell Biol. 125:1327–40 [Google Scholar]
  41. Chen YT, Stewart DB, Nelson WJ. 41.  1999. Coupling assembly of the E-cadherin/β-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 144:687–99 [Google Scholar]
  42. Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. 42.  2001. The cadherin cytoplasmic domain is unstructured in the absence of β-catenin. A possible mechanism for regulating cadherin turnover. J. Biol. Chem. 276:12301–9 [Google Scholar]
  43. Lilien J, Balsamo J. 43.  2005. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol. 17:459–65 [Google Scholar]
  44. Monga SP, Mars WM, Pediaditakis P, Bell A, Mulé K. 44.  et al. 2002. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res 62:2064–71 [Google Scholar]
  45. Zeng G, Apte U, Micsenyi A, Bell A, Monga SP. 45.  2006. Tyrosine residues 654 and 670 in β-catenin are crucial in regulation of Met-β-catenin interactions. Exp. Cell Res. 312:3620–30 [Google Scholar]
  46. Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N. 46.  2003. Regulation of the blood-biliary barrier: interaction between gap and tight junctions in hepatocytes. Med. Electron. Microsc. 36:157–64 [Google Scholar]
  47. Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E. 47.  1996. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol. 132:451–63 [Google Scholar]
  48. Yeh TH, Krauland L, Singh V, Zou B, Devaraj P. 48.  et al. 2010. Liver-specific β-catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis. Hepatology 52:1410–19 [Google Scholar]
  49. Son S, Kojima T, Decaens C, Yamaguchi H, Ito T. 49.  et al. 2009. Knockdown of tight junction protein claudin-2 prevents bile canalicular formation in WIF-B9 cells. Histochem. Cell Biol. 131:411–24 [Google Scholar]
  50. Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. 50.  1995. Lack of β-catenin affects mouse development at gastrulation. Development 121:3529–37 [Google Scholar]
  51. Goessling W, North TE, Lord AM, Ceol C, Lee S. 51.  et al. 2008. APC mutant zebrafish uncover a changing temporal requirement for Wnt signaling in liver development. Dev. Biol. 320:161–74 [Google Scholar]
  52. McLin VA, Rankin SA, Zorn AM. 52.  2007. Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 134:2207–17 [Google Scholar]
  53. Wells JM, Melton DA. 53.  2000. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127:1563–72 [Google Scholar]
  54. Lemaigre FP. 54.  2009. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137:62–79 [Google Scholar]
  55. Lokmane L, Haumaitre C, Garcia-Villalba P, Anselme I, Schneider-Maunoury S, Cereghini S. 55.  2008. Crucial role of vHNF1 in vertebrate hepatic specification. Development 135:2777–86 [Google Scholar]
  56. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. 56.  1996. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10:1670–82 [Google Scholar]
  57. Bossard P, Zaret KS. 57.  1998. GATA transcription factors as potentiators of gut endoderm differentiation. Development 125:4909–17 [Google Scholar]
  58. Calmont A, Wandzioch E, Tremblay KD, Minowada G, Kaestner KH. 58.  et al. 2006. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev. Cell 11:339–48 [Google Scholar]
  59. Ober EA, Verkade H, Field HA, Stainier DY. 59.  2006. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442:688–91 [Google Scholar]
  60. Rossi JM, Dunn NR, Hogan BL, Zaret KS. 60.  2001. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15:1998–2009 [Google Scholar]
  61. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W. 61.  et al. 1995. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373:699–702 [Google Scholar]
  62. Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D. 62.  et al. 2000. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127:2433–45 [Google Scholar]
  63. Bort R, Signore M, Tremblay K, Martinez Barbera JP, Zaret KS. 63.  2006. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290:44–56 [Google Scholar]
  64. Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H. 64.  et al. 2007. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev. Biol. 308:355–67 [Google Scholar]
  65. Tan X, Yuan Y, Zeng G, Apte U, Thompson MD. 65.  et al. 2008. β-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 47:1667–79 [Google Scholar]
  66. Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW. 66.  et al. 2003. Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. Nat. Genet. 34:292–96 [Google Scholar]
  67. Darlington GJ, Wang N, Hanson RW. 67.  1995. C/EBPα: a critical regulator of genes governing integrative metabolic processes. Curr. Opin. Genet. Dev. 5:565–70 [Google Scholar]
  68. Suzuki T, Kanai Y, Hara T, Sasaki J, Sasaki T. 68.  et al. 2006. Crucial role of the small GTPase ARF6 in hepatic cord formation during liver development. Mol. Cell. Biol. 26:6149–56 [Google Scholar]
  69. Decaens T, Godard C, de Reyniès A, Rickman DS, Tronche F. 69.  et al. 2008. Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47:247–58 [Google Scholar]
  70. Nejak-Bowen K, Monga SP. 70.  2008. Wnt/β-catenin signaling in hepatic organogenesis. Organogenesis 4:92–99 [Google Scholar]
  71. Micsenyi A, Tan X, Sneddon T, Luo JH, Michalopoulos GK, Monga SP. 71.  2004. β-catenin is temporally regulated during normal liver development. Gastroenterology 126:1134–46 [Google Scholar]
  72. Monga SP, Micsenyi A, Germinaro M, Apte U, Bell A. 72.  2006. β-Catenin regulation during matrigel-induced rat hepatocyte differentiation. Cell Tissue Res 323:71–79 [Google Scholar]
  73. Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. 73.  2006. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. Gastroenterology 131:1561–72 [Google Scholar]
  74. Yang J, Mowry LE, Nejak-Bowen KN, Okabe H, Diegel CR. 74.  et al. 2014. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation!. Hepatology 60:964–76 [Google Scholar]
  75. Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M. 75.  et al. 2016. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18:467–79 [Google Scholar]
  76. Tan X, Apte U, Micsenyi A, Kotsagrelos E, Luo JH. 76.  et al. 2005. Epidermal growth factor receptor: a novel target of the Wnt/β-catenin pathway in liver. Gastroenterology 129:285–302 [Google Scholar]
  77. Gordillo M, Evans T, Gouon-Evans V. 77.  2015. Orchestrating liver development. Development 142:2094–108 [Google Scholar]
  78. Behari J. 78.  2010. The Wnt/β-catenin signaling pathway in liver biology and disease. Expert Rev. Gastroenterol. Hepatol. 4:745–56 [Google Scholar]
  79. Jungermann K, Katz N. 79.  1989. Functional specialization of different hepatocyte populations. Physiol. Rev. 69:708–64 [Google Scholar]
  80. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. 80.  2002. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22:1172–83 [Google Scholar]
  81. Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. 81.  2006. Liver-specific loss of β-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43:817–25 [Google Scholar]
  82. Gougelet A, Torre C, Veber P, Sartor C, Bachelot L. 82.  et al. 2014. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 59:2344–57 [Google Scholar]
  83. Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS. 83.  et al. 2006. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev. Cell 10:759–70 [Google Scholar]
  84. Stanulović VS, Kyrmizi I, Kruithof-de Julio M, Hoogenkamp M, Vermeulen JL. 84.  et al. 2007. Hepatic HNF4α deficiency induces periportal expression of glutamine synthetase and other pericentral enzymes. Hepatology 45:433–44 [Google Scholar]
  85. Fitamant J, Kottakis F, Benhamouche S, Tian HS, Chuvin N. 85.  et al. 2015. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep 10:1692–707 [Google Scholar]
  86. Thorgeirsson SS. 86.  1996. Hepatic stem cells in liver regeneration. FASEB J 10:1249–56 [Google Scholar]
  87. Michalopoulos GK, DeFrances MC. 87.  1997. Liver regeneration. Science 276:60–66 [Google Scholar]
  88. Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. 88.  2001. Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33:1098–109 [Google Scholar]
  89. Nelsen CJ, Rickheim DG, Timchenko NA, Stanley MW, Albrecht JH. 89.  2001. Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo. . Cancer Res 61:8564–68 [Google Scholar]
  90. Yang J, Cusimano A, Monga JK, Preziosi ME, Pullara F. 90.  et al. 2015. WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration. Am. J. Pathol. 185:2194–205 [Google Scholar]
  91. Hinson JA, Roberts DW, James LP. 91.  2010. Mechanisms of acetaminophen-induced liver necrosis. Adverse Drug Reactions J Uetrecht 369–405 New York: Springer [Google Scholar]
  92. Zaher H, Buters JT, Ward JM, Bruno MK, Lucas AM. 92.  et al. 1998. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol. Appl. Pharmacol. 152:193–99 [Google Scholar]
  93. Apte U, Singh S, Zeng G, Cieply B, Virji MA. 93.  et al. 2009. β-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am. J. Pathol. 175:1056–65 [Google Scholar]
  94. Kaidi A, Williams AC, Paraskeva C. 94.  2007. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat. Cell Biol. 9:210–17 [Google Scholar]
  95. Lehwald N, Tao GZ, Jang KY, Sorkin M, Knoefel WT, Sylvester KG. 95.  2011. Wnt-β-catenin signaling protects against hepatic ischemia and reperfusion injury in mice. Gastroenterology 141:707–18 [Google Scholar]
  96. Mani A, Radhakrishnan J, Wang H, Mani MA, Nelson-Williams C. 96.  et al. 2007. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315:1278–82 [Google Scholar]
  97. Go GW, Srivastava R, Hernandez-Ono A, Gang G, Smith SB. 97.  et al. 2014. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab 19:209–20 [Google Scholar]
  98. Lehwald N, Tao GZ, Jang KY, Papandreou I, Liu B. 98.  et al. 2012. β-catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology 143:754–64 [Google Scholar]
  99. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC. 99.  2005. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science 308:1181–84 [Google Scholar]
  100. Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J. 100.  et al. 2011. Wnt signaling regulates hepatic metabolism. Sci. Signal. 4:ra6 [Google Scholar]
  101. Russell DW. 101.  2003. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72:137–74 [Google Scholar]
  102. Gebhardt R. 102.  1992. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53:275–354 [Google Scholar]
  103. Behari J, Yeh TH, Krauland L, Otruba W, Cieply B. 103.  et al. 2010. Liver-specific β-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis. Am. J. Pathol. 176:744–53 [Google Scholar]
  104. Siegel RL, Miller KD, Jemal A. 104.  2017. Cancer statistics, 2017.. CA Cancer J. Clin. 67:7–30 [Google Scholar]
  105. Jemal A, Center MM, DeSantis C, Ward EM. 105.  2010. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomark. Prev. 19:1893–907 [Google Scholar]
  106. Monga SP. 106.  2015. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148:1294–310 [Google Scholar]
  107. Audard V, Grimber G, Elie C, Radenen B, Audebourg A. 107.  et al. 2007. Cholestasis is a marker for hepatocellular carcinomas displaying β-catenin mutations. J. Pathol. 212:345–52 [Google Scholar]
  108. Austinat M, Dunsch R, Wittekind C, Tannapfel A, Gebhardt R, Gaunitz F. 108.  2008. Correlation between β-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Mol. Cancer 7:21 [Google Scholar]
  109. Cieply B, Zeng G, Proverbs-Singh T, Geller DA, Monga SP. 109.  2009. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology 49:821–31 [Google Scholar]
  110. Zucman-Rossi J, Benhamouche S, Godard C, Boyault S, Grimber G. 110.  et al. 2007. Differential effects of inactivated Axin1 and activated β-catenin mutations in human hepatocellular carcinomas. Oncogene 26:774–80 [Google Scholar]
  111. Nejak-Bowen KN, Thompson MD, Singh S, Bowen WC, Dar MJ. 111.  et al. 2010. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant beta-catenin. Hepatology 51:1603–13 [Google Scholar]
  112. Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y. 112.  et al. 2002. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of β-catenin. Cancer Res 62:1971–77 [Google Scholar]
  113. Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G. 113.  et al. 2004. Liver-targeted disruption of Apc in mice activates β-catenin signaling and leads to hepatocellular carcinomas. PNAS 101:17216–21 [Google Scholar]
  114. Zhang XF, Tan X, Zeng G, Misse A, Singh S. 114.  et al. 2010. Conditional β-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor α/phosphoinositide 3-kinase signaling. Hepatology 52:954–65 [Google Scholar]
  115. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. 115.  2004. Hepatocarcinogenesis in mice with β-catenin and Ha-Ras gene mutations. Cancer Res 64:48–54 [Google Scholar]
  116. Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK. 116.  2003. β-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 124:202–16 [Google Scholar]
  117. Cordi S, Godard C, Saandi T, Jacquemin P, Monga SP. 117.  et al. 2016. Role of β-catenin in development of bile ducts. Differentiation 91:42–49 [Google Scholar]
  118. Tao J, Xu E, Zhao Y, Singh S, Li X. 118.  et al. 2016. Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point-mutant β-catenin. Hepatology 64:1587–605 [Google Scholar]
  119. Tao J, Zhang R, Singh S, Poddar M, Xu E. 119.  et al. 2016. Targeting β-catenin in hepatocellular cancers induced by coexpression of mutant β-catenin and K-Ras in mice. Hepatology 65:1581–99 [Google Scholar]
  120. Delgado E, Okabe H, Preziosi M, Russell JO, Alvarado TF. 120.  et al. 2015. Complete response of Ctnnb1-mutated tumours to β-catenin suppression by locked nucleic acid antisense in a mouse hepatocarcinogenesis model. J. Hepatol. 62:380–87 [Google Scholar]
  121. Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T. 121.  1999. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the β-catenin gene. Cancer Res 59:269–73 [Google Scholar]
  122. Purcell R, Childs M, Maibach R, Miles C, Turner C. 122.  et al. 2011. HGF/c-Met related activation of β-catenin in hepatoblastoma. J. Exp. Clin. Cancer Res. 30:96 [Google Scholar]
  123. Tao J, Calvisi DF, Ranganathan S, Cigliano A, Zhou L. 123.  et al. 2014. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147:690–701 [Google Scholar]
  124. Bell D, Ranganathan S, Tao J, Monga SP. 124.  2017. Novel advances in understanding of molecular pathogenesis of hepatoblastoma: a Wnt/β-catenin perspective. Gene Expr 17:141–54 [Google Scholar]
  125. Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D. 125.  et al. 2002. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129:1819–28 [Google Scholar]
  126. Coffinier C, Gresh L, Fiette L, Tronche F, Schütz G. 126.  et al. 2002. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development 129:1829–38 [Google Scholar]
  127. Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A. 127.  et al. 2004. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 131:5753–66 [Google Scholar]
  128. Lee DH, Park JO, Kim TS, Kim SK, Kim TH. 128.  et al. 2016. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and hnf4α expression during liver development. Nat. Commun. 7:11961 [Google Scholar]
  129. Raynaud P, Carpentier R, Antoniou A, Lemaigre FP. 129.  2011. Biliary differentiation and bile duct morphogenesis in development and disease. Int. J. Biochem. Cell Biol. 43:245–56 [Google Scholar]
  130. Tanimizu N, Miyajima A, Mostov KE. 130.  2009. Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis. Mol. Biol. Cell 20:2486–94 [Google Scholar]
  131. Carpentier R, Suñer RE, van Hul N, Kopp JL, Beaudry JB. 131.  et al. 2011. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141:1432–38 [Google Scholar]
  132. Wickline ED, Du Y, Stolz DB, Kahn M, Monga SP. 132.  2013. γ-Catenin at adherens junctions: mechanism and biologic implications in hepatocellular cancer after β-catenin knockdown. Neoplasia 15:421–34 [Google Scholar]
  133. Wickline ED, Awuah PK, Behari J, Ross M, Stolz DB, Monga SP. 133.  2011. Hepatocyte γ-catenin compensates for conditionally deleted β-catenin at adherens junctions. J. Hepatol. 55:1256–62 [Google Scholar]
  134. Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. 134.  2013. Physiology of cholangiocytes. Compr. Physiol. 3:541–65 [Google Scholar]
  135. Duncan AW, Dorrell C, Grompe M. 135.  2009. Stem cells and liver regeneration. Gastroenterology 137:466–81 [Google Scholar]
  136. Fausto N, Campbell JS. 136.  2003. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev. 120:117–30 [Google Scholar]
  137. Kordes C, Häussinger D. 137.  2013. Hepatic stem cell niches. J. Clin. Investig. 123:1874–80 [Google Scholar]
  138. Isse K, Lesniak A, Grama K, Maier J, Specht S. 138.  et al. 2013. Preexisting epithelial diversity in normal human livers: a tissue-tethered cytometric analysis in portal/periportal epithelial cells. Hepatology 57:1632–43 [Google Scholar]
  139. Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML. 139.  et al. 2001. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 34:519–22 [Google Scholar]
  140. Español-Suñer R, Carpentier R, Van Hul N, Legry V, Achouri Y. 140.  et al. 2012. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143:1564–75.e7 [Google Scholar]
  141. Rodrigo-Torres D, Affò S, Coll M, Morales-Ibanez O, Millán C. 141.  et al. 2014. The biliary epithelium gives rise to liver progenitor cells. Hepatology 60:1367–77 [Google Scholar]
  142. Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. 142.  1989. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res 49:1541–47 [Google Scholar]
  143. Alison M, Golding M, Lalani EN, Nagy P, Thorgeirsson S, Sarraf C. 143.  1997. Wholesale hepatocytic differentiation in the rat from ductular oval cells, the progeny of biliary stem cells. J. Hepatol. 26:343–52 [Google Scholar]
  144. Shin S, Upadhyay N, Greenbaum LE, Kaestner KH. 144.  2015. Ablation of Foxl1-Cre-labeled hepatic progenitor cells and their descendants impairs recovery of mice from liver injury. Gastroenterology 148:192–202.e3 [Google Scholar]
  145. Schaub JR, Malato Y, Gormond C, Willenbring H. 145.  2014. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep 8:933–39 [Google Scholar]
  146. Tarlow BD, Finegold MJ, Grompe M. 146.  2014. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 60:278–89 [Google Scholar]
  147. Yanger K, Knigin D, Zong Y, Maggs L, Gu G. 147.  et al. 2014. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15:340–49 [Google Scholar]
  148. Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM. 148.  et al. 2015. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17:971–83 [Google Scholar]
  149. Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. 149.  2008. Wnt/β-catenin signaling mediates oval cell response in rodents. Hepatology 47:288–95 [Google Scholar]
  150. Huch M, Dorrell C, Boj SF, van Es JH, Li VS. 150.  et al. 2013. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–50 [Google Scholar]
  151. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P. 151.  et al. 2012. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18:572–79 [Google Scholar]
  152. Michalopoulos GK, Khan Z. 152.  2015. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 149:876–82 [Google Scholar]
  153. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F. 153.  et al. 2015. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312 [Google Scholar]
  154. Michalopoulos GK, Barua L, Bowen WC. 154.  2005. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41:535–44 [Google Scholar]
  155. Limaye PB, Alarcon G, Walls AL, Nalesnik MA, Michalopoulos GK. 155.  et al. 2008. Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. Lab. Investig. 88:865–72 [Google Scholar]
  156. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. 156.  2003. The origin and liver repopulating capacity of murine oval cells. PNAS 100:Suppl. 111881–88 [Google Scholar]
  157. Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R. 157.  et al. 2013. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27:719–24 [Google Scholar]
  158. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM. 158.  et al. 2014. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15:605–18 [Google Scholar]
  159. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B. 159.  et al. 2014. Hippo pathway activity influences liver cell fate. Cell 157:1324–38 [Google Scholar]
  160. Thompson MD, Awuah P, Singh S, Monga SP. 160.  2010. Disparate cellular basis of improved liver repair in β-catenin-overexpressing mice after long-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Am. J. Pathol. 177:1812–22 [Google Scholar]
  161. Okabe H, Yang J, Sylakowski K, Yovchev M, Miyagawa Y. 161.  et al. 2016. Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. Hepatology 64:1652–66 [Google Scholar]
  162. Wisse E. 162.  1970. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J. Ultrastruct. Res. 31:125–50 [Google Scholar]
  163. De Zanger R, Wisse E. 163.  1982. The filtration effect of rat liver fenestrated sinusoidal endothelium on the passage of (remnant) chylomicrons to the space of Disse. Sinusoidal Liver Cells D Knook, E Wisse 69–76 Amsterdam: Elsevier Biomed. [Google Scholar]
  164. Magnusson S, Berg T. 164.  1989. Extremely rapid endocytosis mediated by the mannose receptor of sinusoidal endothelial rat liver cells. Biochem. J. 257:651–56 [Google Scholar]
  165. Kempka G, Kolb-Bachofen V. 165.  1988. Binding, uptake, and transcytosis of ligands for mannose-specific receptors in rat liver: an electron microscopic study. Exp. Cell Res. 176:38–48 [Google Scholar]
  166. Knolle PA, Wohlleber D. 166.  2016. Immunological functions of liver sinusoidal endothelial cells. Cell Mol. Immunol. 13:347–53 [Google Scholar]
  167. Knolle PA, Löser E, Protzer U, Duchmann R, Schmitt E. 167.  et al. 1997. Regulation of endotoxin-induced IL-6 production in liver sinusoidal endothelial cells and Kupffer cells by IL-10. Clin. Exp. Immunol. 107:555–61 [Google Scholar]
  168. Uhrig A, Banafsche R, Kremer M, Hegenbarth S, Hamann A. 168.  et al. 2005. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J. Leukoc. Biol. 77:626–33 [Google Scholar]
  169. Rocha AS, Vidal V, Mertz M, Kendall TJ, Charlet A. 169.  et al. 2015. The angiocrine factor Rspondin3 is a key determinant of liver zonation. Cell Rep 13:1757–64 [Google Scholar]
  170. Wang B, Zhao L, Fish M, Logan CY, Nusse R. 170.  2015. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524:180–85 [Google Scholar]
  171. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO. 171.  et al. 2010. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468:310–15 [Google Scholar]
  172. Friedman SL. 172.  2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88:125–72 [Google Scholar]
  173. Wake K. 173.  1971. “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am. J. Anat. 132:429–62 [Google Scholar]
  174. Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyazaki A. 174.  et al. 1984. Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology 4:709–14 [Google Scholar]
  175. Gard AL, White FP, Dutton GR. 175.  1985. Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J. Neuroimmunol. 8:359–75 [Google Scholar]
  176. Ramadori G, Veit T, Schwögler S, Dienes HP, Knittel T. 176.  et al. 1990. Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 59:349–57 [Google Scholar]
  177. Yin C, Evason KJ, Asahina K, Stainier DY. 177.  2013. Hepatic stellate cells in liver development, regeneration, and cancer. J. Clin. Investig. 123:1902–10 [Google Scholar]
  178. Viñas O, Bataller R, Sancho-Bru P, Ginès P, Berenguer C. 178.  et al. 2003. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38:919–29 [Google Scholar]
  179. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. 179.  2014. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14:181–94 [Google Scholar]
  180. Luedde T, Kaplowitz N, Schwabe RF. 180.  2014. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147:765–83.e4 [Google Scholar]
  181. Schuppan D, Schattenberg JM. 181.  2013. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J. Gastroenterol. Hepatol. 28:Suppl. 168–76 [Google Scholar]
  182. Bataller R, Brenner DA. 182.  2005. Liver fibrosis. J. Clin. Investig. 115:209–18 [Google Scholar]
  183. Xu J, Murphy SL, Kochanek KD, Bastian BA. 183.  2016. Deaths: final data for 2013. Natl. Vital. Stat. Rep. 64:1–119 [Google Scholar]
  184. Berg T, DeLanghe S, Al Alam D, Utley S, Estrada J, Wang KS. 184.  2010. β-catenin regulates mesenchymal progenitor cell differentiation during hepatogenesis. J. Surg. Res. 164:276–85 [Google Scholar]
  185. Kordes C, Sawitza I, Häussinger D. 185.  2008. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem. Biophys. Res. Commun. 367:116–23 [Google Scholar]
  186. Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW, Zhu L. 186.  2014. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol. Med. Rep. 9:2145–51 [Google Scholar]
  187. Cheng JH, She H, Han YP, Wang J, Xiong S. 187.  et al. 2008. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G39–49 [Google Scholar]
  188. Jiang F, Parsons CJ, Stefanovic B. 188.  2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J. Hepatol. 45:401–9 [Google Scholar]
  189. Dong S, Wu C, Hu J, Wang Q, Chen S. 189.  et al. 2015. Wnt5a promotes cytokines production and cell proliferation in human hepatic stellate cells independent of canonical Wnt pathway. Clin. Lab 61:537–47 [Google Scholar]
  190. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. 190.  2013. Kupffer cells in the liver. Compr. Physiol. 3:785–97 [Google Scholar]
  191. Nguyen-Lefebvre AT, Horuzsko A. 191.  2015. Kupffer cell metabolism and function. J. Enzymol. Metab. 1:101 [Google Scholar]
  192. Kinoshita M, Uchida T, Sato A, Nakashima M, Nakashima H. 192.  et al. 2010. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J. Hepatol. 53:903–10 [Google Scholar]
  193. Fox ES, Thomas P, Broitman SA. 193.  1987. Comparative studies of endotoxin uptake by isolated rat Kupffer and peritoneal cells. Infect. Immun. 55:2962–66 [Google Scholar]
  194. Klein A, Zhadkewich M, Margolick J, Winkelstein J, Bulkley G. 194.  1994. Quantitative discrimination of hepatic reticuloendothelial clearance and phagocytic killing. J. Leukoc. Biol. 55:248–52 [Google Scholar]
  195. Kolios G, Valatas V, Kouroumalis E. 195.  2006. Role of Kupffer cells in the pathogenesis of liver disease. World J. Gastroenterol. 12:7413–20 [Google Scholar]
  196. Meyer DH, Bachem MG, Gressner AM. 196.  1990. Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cell-derived transforming growth factors type β1 and type α. Biochem. Biophys. Res. Commun. 171:1122–29 [Google Scholar]
  197. Czaja MJ, Weiner FR, Flanders KC, Giambrone MA, Wind R. 197.  et al. 1989. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J. Cell Biol. 108:2477–82 [Google Scholar]
  198. Rivera CA, Bradford BU, Hunt KJ, Adachi Y, Schrum LW. 198.  et al. 2001. Attenuation of CCl4-induced hepatic fibrosis by GdCl3 treatment or dietary glycine. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G200–7 [Google Scholar]
  199. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M. 199.  et al. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Investig. 115:56–65 [Google Scholar]
  200. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y. 200.  et al. 2007. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13:1324–32 [Google Scholar]
  201. Corbett L, Mann J, Mann DA. 201.  2015. Non-canonical Wnt predominates in activated rat hepatic stellate cells, influencing HSC survival and paracrine stimulation of Kupffer cells. PLOS ONE 10:e0142794 [Google Scholar]
  202. Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN. 202.  et al. 2002. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem. Res. Toxicol. 15:1504–13 [Google Scholar]
  203. Nejak-Bowen K, Moghe A, Cornuet P, Preziosi M, Nagarajan S, Monga SP. 203.  2017. Role and regulation of p65/β-catenin association during liver injury and regeneration: a “complex” relationship. Gene Expr 17:3219–35 [Google Scholar]
  204. Xiang S, Dong HH, Liang HF, He SQ, Zhang W. 204.  et al. 2012. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat. PLOS ONE 7:e35180 [Google Scholar]
  205. Van Hul N, Lanthier N, Español Suñer R, Abarca Quinones J, van Rooijen N, Leclercq I. 205.  2011. Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am. J. Pathol. 179:1839–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error