Tissue integrity is crucial for maintaining the homeostasis of living organisms. Abnormalities that affect sites of cell-cell contact can cause a variety of debilitating disorders. The desmosome is an essential cell-cell junctional protein complex in tissues that undergo stress, and it orchestrates intracellular signal transduction. Desmosome assembly and junctional integrity are required to maintain the overall homeostasis of a tissue, organ, and organism. This review discusses the desmosome and the human diseases associated with its disruption.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bizzozero G. 1.  1905. Le opere scientifiche 1862–1896 Milan: Hoepli [Google Scholar]
  2. Mazzarello P, Calligaro AL, Calligaro A. 2.  2001. Giulio Bizzozero: a pioneer of cell biology. Nat. Rev. Mol. Cell Biol. 2:776–81 [Google Scholar]
  3. Calkins CC, Setzer SV. 3.  2007. Spotting desmosomes: the first 100 years. J. Investig. Dermatol. 127:Suppl. 3E2–3 [Google Scholar]
  4. Waschke J. 4.  2008. The desmosome and pemphigus. Histochem. Cell Biol. 130:21–54 [Google Scholar]
  5. Delva E, Tucker DK, Kowalczyk AP. 5.  2009. The desmosome. Cold Spring Harb. Perspect. Biol. 1:a002543 [Google Scholar]
  6. Harmon RM, Green KJ. 6.  2013. Structural and functional diversity of desmosomes. Cell Commun. Adhes. 20:171–87 [Google Scholar]
  7. Stahley SN, Kowalczyk AP. 7.  2015. Desmosomes in acquired disease. Cell Tissue Res 360:439–56 [Google Scholar]
  8. Getsios S, Huen AC, Green KJ. 8.  2004. Working out the strength and flexibility of desmosomes. Nat. Rev. Mol. Cell Biol. 5:271–81 [Google Scholar]
  9. Cirillo N. 9.  2014. 150th anniversary series: desmosomes in physiology and disease. Cell Commun. Adhes. 21:85–88 [Google Scholar]
  10. Kowalczyk AP, Green KJ. 10.  2013. Structure, function, and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116:95–118 [Google Scholar]
  11. Holthofer B, Windoffer R, Troyanovsky S, Leube RE. 11.  2007. Structure and function of desmosomes. Int. Rev. Cytol. 264:65–163 [Google Scholar]
  12. Green KJ, Gaudry CA. 12.  2000. Are desmosomes more than tethers for intermediate filaments?. Nat. Rev. Mol. Cell Biol. 1:208–16 [Google Scholar]
  13. Johnson JL, Najor NA, Green KJ. 13.  2014. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb. Perspect. Med. 4:a015297 [Google Scholar]
  14. Watt FM, Mattey DL, Garrod DR. 14.  1984. Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J. Cell Biol. 99:2211–15 [Google Scholar]
  15. Burdett ID, Sullivan KH. 15.  2002. Desmosome assembly in MDCK cells: Transport of precursors to the cell surface occurs by two phases of vesicular traffic and involves major changes in centrosome and Golgi location during a Ca2+ shift. Exp. Cell Res. 276:296–309 [Google Scholar]
  16. Penn EJ, Burdett ID, Hobson C, Magee AI, Rees DA. 16.  1987. Structure and assembly of desmosome junctions: biosynthesis and turnover of the major desmosome components of Madin-Darby canine kidney cells in low calcium medium. J. Cell Biol. 105:2327–34 [Google Scholar]
  17. Pasdar M, Nelson WJ. 17.  1989. Regulation of desmosome assembly in epithelial cells: kinetics of synthesis, transport, and stabilization of desmoglein I, a major protein of the membrane core domain. J. Cell Biol. 109:163–77 [Google Scholar]
  18. Bryant DM, Stow JL. 18.  2004. The ins and outs of E-cadherin trafficking. Trends Cell Biol 14:427–34 [Google Scholar]
  19. Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. 19.  2011. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J. Cell Biol. 195:1185–203 Erratum. 2013 J. Cell Biol. 201:1085 [Google Scholar]
  20. Gloushankova NA, Wakatsuki T, Troyanovsky RB, Elson E, Troyanovsky SM. 20.  2003. Continual assembly of desmosomes within stable intercellular contacts of epithelial A-431 cells. Cell Tissue Res 314:399–410 [Google Scholar]
  21. Shore EM, Nelson WJ. 21.  1991. Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin-Darby canine kidney epithelial cells. J. Biol. Chem. 266:19672–80 [Google Scholar]
  22. Chitaev NA, Troyanovsky SM. 22.  1997. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J. Cell Biol. 138:193–201 [Google Scholar]
  23. Syed SE, Trinnaman B, Martin S, Major S, Hutchinson J, Magee AI. 23.  2002. Molecular interactions between desmosomal cadherins. Biochem. J. 362:317–27 [Google Scholar]
  24. Waschke J, Bruggeman P, Baumgartner W, Zillikens D, Drenckhahn D. 24.  2005. Pemphigus foliaceus IgG causes dissociation of desmoglein 1–containing junctions without blocking desmoglein 1 transinteraction. J. Clin. Investig. 115:3157–65 [Google Scholar]
  25. Al-Amoudi A, Frangakis AS. 25.  2008. Structural studies on desmosomes. Biochem. Soc. Trans. 36:181–87 [Google Scholar]
  26. Resnik N, Sepcic K, Plemenitas A, Windoffer R, Leube R, Veranic P. 26.  2011. Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J. Biol. Chem. 286:1499–507 [Google Scholar]
  27. Furukawa C, Daigo Y, Ishikawa N, Kato T, Ito T. 27.  et al. 2005. Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. Cancer Res 65:7102–10 [Google Scholar]
  28. Lewis JE, 3rd Wahl JK, Sass KM, Jensen PJ, Johnson KR, Wheelock MJ. 28.  1997. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol. 136:919–34 [Google Scholar]
  29. Pasdar M, Li Z, Chlumecky V. 29.  1995. Plakoglobin: kinetics of synthesis, phosphorylation, stability, and interactions with desmoglein and E-cadherin. Cell Motil. Cytoskelet. 32:258–72 [Google Scholar]
  30. Mueller H, Franke WW. 30.  1983. Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque. J. Mol. Biol. 163:647–71 [Google Scholar]
  31. Gallicano GI, Kouklis P, Bauer C, Yin M, Vasioukhin V. 31.  et al. 1998. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143:2009–22 [Google Scholar]
  32. Bornslaeger EA, Corcoran CM, Stappenbeck TS, Green KJ. 32.  1996. Breaking the connection: Displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J. Cell Biol. 134:985–1001 [Google Scholar]
  33. Vasioukhin V, Bowers E, Bauer C, Degenstein L, Fuchs E. 33.  2001. Desmoplakin is essential in epidermal sheet formation. Nat. Cell Biol. 3:1076–85 [Google Scholar]
  34. Godsel LM, Hsieh SN, Amargo EV, Bass AE, Pascoe-McGillicuddy LT. 34.  et al. 2005. Desmoplakin assembly dynamics in four dimensions: multiple phases differentially regulated by intermediate filaments and actin. J. Cell Biol. 171:1045–59 [Google Scholar]
  35. Godsel LM, Dubash AD, Bass-Zubek AE, Amargo EV, Klessner JL. 35.  et al. 2010. Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol. Biol. Cell 21:2844–59 [Google Scholar]
  36. Farquhar MG, Palade GE. 36.  1963. Junctional complexes in various epithelia. J. Cell Biol. 17:375–412 [Google Scholar]
  37. Staehelin LA. 37.  1974. Structure and function of intercellular junctions. Int. Rev. Cytol. 39:191–283 [Google Scholar]
  38. Getsios S, Simpson CL, Kojima S, Harmon R, Sheu LJ. 38.  et al. 2009. Desmoglein 1–dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. J. Cell Biol. 185:1243–58 [Google Scholar]
  39. Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD. 39.  et al. 2013. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J. Clin. Investig. 123:1556–70 [Google Scholar]
  40. Merritt AJ, Berika MY, Zhai W, Kirk SE, Ji B. 40.  et al. 2002. Suprabasal desmoglein 3 expression in the epidermis of transgenic mice results in hyperproliferation and abnormal differentiation. Mol. Cell Biol. 22:5846–58 [Google Scholar]
  41. Elias PM, Matsuyoshi N, Wu H, Lin C, Wang ZH. 41.  et al. 2001. Desmoglein isoform distribution affects stratum corneum structure and function. J. Cell Biol. 153:243–49 [Google Scholar]
  42. Nollet F, Kools P, van Roy F. 42.  2000. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299:551–72 [Google Scholar]
  43. Garrod DR, Merritt AJ, Nie Z. 43.  2002. Desmosomal cadherins. Curr. Opin. Cell Biol. 14:537–45 [Google Scholar]
  44. Mathur M, Goodwin L, Cowin P. 44.  1994. Interactions of the cytoplasmic domain of the desmosomal cadherin Dsg1 with plakoglobin. J. Biol. Chem. 269:14075–80 [Google Scholar]
  45. Troyanovsky SM, Troyanovsky RB, Eshkind LG, Krutovskikh VA, Leube RE, Franke WW. 45.  1994. Identification of the plakoglobin-binding domain in desmoglein and its role in plaque assembly and intermediate filament anchorage. J. Cell Biol. 127:151–60 [Google Scholar]
  46. Troyanovsky SM, Troyanovsky RB, Eshkind LG, Leube RE, Franke WW. 46.  1994. Identification of amino acid sequence motifs in desmocollin, a desmosomal glycoprotein, that are required for plakoglobin binding and plaque formation. PNAS 91:10790–94 [Google Scholar]
  47. Roh JY, Stanley JR. 47.  1995. Plakoglobin binding by human Dsg3 (pemphigus vulgaris antigen) in keratinocytes requires the cadherin-like intracytoplasmic segment. J. Investig. Dermatol. 104:720–24 [Google Scholar]
  48. Parker AE, Wheeler GN, Arnemann J, Pidsley SC, Ataliotis P. 48.  et al. 1991. Desmosomal glycoproteins II and III. Cadherin-like junctional molecules generated by alternative splicing. J. Biol. Chem. 266:10438–45 [Google Scholar]
  49. Collins JE, Legan PK, Kenny TP, MacGarvie J, Holton JL, Garrod DR. 49.  1991. Cloning and sequence analysis of desmosomal glycoproteins 2 and 3 (desmocollins): cadherin-like desmosomal adhesion molecules with heterogeneous cytoplasmic domains. J. Cell Biol. 113:381–91 [Google Scholar]
  50. Rickman L, Simrak D, Stevens HP, Hunt DM, King IA. 50.  et al. 1999. N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease striate palmoplantar keratoderma. Hum. Mol. Genet. 8:971–76 [Google Scholar]
  51. Hunt DM, Rickman L, Whittock NV, Eady RA, Simrak D. 51.  et al. 2001. Spectrum of dominant mutations in the desmosomal cadherin desmoglein 1, causing the skin disease striate palmoplantar keratoderma. Eur. J. Hum. Genet. 9:197–203 [Google Scholar]
  52. Kljuic A, Gilead L, Martinez-Mir A, Frank J, Christiano AM, Zlotogorski A. 52.  2003. A nonsense mutation in the desmoglein 1 gene underlies striate keratoderma. Exp. Dermatol. 12:523–27 [Google Scholar]
  53. Dua-Awereh MB, Shimomura Y, Kraemer L, Wajid M, Christiano AM. 53.  2009. Mutations in the desmoglein 1 gene in five Pakistani families with striate palmoplantar keratoderma. J. Dermatol. Sci. 53:192–97 [Google Scholar]
  54. Hershkovitz D, Lugassy J, Indelman M, Bergman R, Sprecher E. 54.  2009. Novel mutations in DSG1 causing striate palmoplantar keratoderma. Clin. Exp. Dermatol. 34:224–28 [Google Scholar]
  55. Samuelov L, Sarig O, Harmon RM, Rapaport D, Ishida-Yamamoto A. 55.  et al. 2013. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat. Genet. 45:1244–48 [Google Scholar]
  56. Has C, Jakob T, He Y, Kiritsi D, Hausser I, Bruckner-Tuderman L. 56.  2015. Loss of desmoglein 1 associated with palmoplantar keratoderma, dermatitis and multiple allergies. Br. J. Dermatol. 172:257–61 [Google Scholar]
  57. Lovgren ML, McAleer MA, Irvine AD, Wilson NJ, Tavadia S. 57.  et al. 2016. Mutations in desmoglein 1 cause diverse inherited palmoplantar keratoderma phenotypes: implications for genetic screening. Br. J. Dermatol. 176:1345–50 [Google Scholar]
  58. Kljuic A, Bazzi H, Sundberg JP, Martinez-Mir A, O'Shaughnessy R. 58.  et al. 2003. Desmoglein 4 in hair follicle differentiation and epidermal adhesion: evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 113:249–60 [Google Scholar]
  59. Rafique MA, Ansar M, Jamal SM, Malik S, Sohail M. 59.  et al. 2003. A locus for hereditary hypotrichosis localized to human chromosome 18q21.1. Eur. J. Hum. Genet. 11:623–28 [Google Scholar]
  60. Moss C, Martinez-Mir A, Lam H, Tadin-Strapps M, Kljuic A, Christiano AM. 60.  2004. A recurrent intragenic deletion in the desmoglein 4 gene underlies localized autosomal recessive hypotrichosis. J. Investig. Dermatol. 123:607–10 [Google Scholar]
  61. Rafiq MA, Ansar M, Mahmood S, Haque S, Faiyaz-ul-Haque M. 61.  et al. 2004. A recurrent intragenic deletion mutation in DSG4 gene in three Pakistani families with autosomal recessive hypotrichosis. J. Investig. Dermatol. 123:247–48 [Google Scholar]
  62. Wajid M, Bazzi H, Rockey J, Lubetkin J, Zlotogorski A, Christiano AM. 62.  2007. Localized autosomal recessive hypotrichosis due to a frameshift mutation in the desmoglein 4 gene exhibits extensive phenotypic variability within a Pakistani family. J. Investig. Dermatol. 127:1779–82 [Google Scholar]
  63. Schaffer JV, Bazzi H, Vitebsky A, Witkiewicz A, Kovich OI. 63.  et al. 2006. Mutations in the desmoglein 4 gene underlie localized autosomal recessive hypotrichosis with monilethrix hairs and congenital scalp erosions. J. Investig. Dermatol. 126:1286–91 [Google Scholar]
  64. Shimomura Y, Sakamoto F, Kariya N, Matsunaga K, Ito M. 64.  2006. Mutations in the desmoglein 4 gene are associated with monilethrix-like congenital hypotrichosis. J. Investig. Dermatol. 126:1281–85 [Google Scholar]
  65. Ullah A, Raza SI, Ali RH, Naveed AK, Jan A. 65.  et al. 2015. A novel deletion mutation in the DSG4 gene underlies autosomal recessive hypotrichosis with variable phenotype in two unrelated consanguineous families. Clin. Exp. Dermatol. 40:78–84 [Google Scholar]
  66. Wang JM, Xiao YJ, Liang YH. 66.  2015. Novel D323G mutation of DSG4 gene in a girl with localized autosomal recessive hypotrichosis clinically overlapped with monilethrix. Int. J. Dermatol. 54:1163–68 [Google Scholar]
  67. Ayub M, Basit S, Jelani M, Ur Rehman F, Iqbal M. 67.  et al. 2009. A homozygous nonsense mutation in the human desmocollin-3 (DSC3) gene underlies hereditary hypotrichosis and recurrent skin vesicles. Am. J. Hum. Genet. 85:515–20 [Google Scholar]
  68. Koch PJ, Mahoney MG, Ishikawa H, Pulkkinen L, Uitto J. 68.  et al. 1997. Targeted disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to pemphigus vulgaris. J. Cell Biol. 137:1091–102 [Google Scholar]
  69. Chidgey M, Brakebusch C, Gustafsson E, Cruchley A, Hail C. 69.  et al. 2001. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J. Cell Biol. 155:821–32 [Google Scholar]
  70. Li J, Radice GL. 70.  2010. A new perspective on intercalated disc organization: implications for heart disease. Dermatol. Res. Pract. 2010:207835 [Google Scholar]
  71. Pilichou K, Nava A, Basso C, Beffagna G, Bauce B. 71.  et al. 2006. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113:1171–79 [Google Scholar]
  72. Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E. 72.  et al. 2006. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am. J. Hum. Genet. 79:978–84 [Google Scholar]
  73. Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT. 73.  et al. 2006. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 79:1081–88 [Google Scholar]
  74. Awad MM, Dalal D, Cho E, Amat-Alarcon N, James C. 74.  et al. 2006. DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am. J. Hum. Genet. 79:136–42 [Google Scholar]
  75. Awad MM, Calkins H, Judge DP. 75.  2008. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat. Clin. Pract. Cardiovasc. Med. 5:258–67 [Google Scholar]
  76. Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL. 76.  et al. 1982. Right ventricular dysplasia: a report of 24 adult cases. Circulation 65:384–98 [Google Scholar]
  77. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ. 77.  2007. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115:1710–20 [Google Scholar]
  78. Simpson MA, Mansour S, Ahnood D, Kalidas K, Patton MA. 78.  et al. 2009. Homozygous mutation of desmocollin-2 in arrhythmogenic right ventricular cardiomyopathy with mild palmoplantar keratoderma and woolly hair. Cardiology 113:28–34 [Google Scholar]
  79. Beutner EH, Jordon RE. 79.  1964. Demonstration of skin antibodies in sera of pemphigus vulgaris patients by indirect immunofluorescent staining. Proc. Soc. Exp. Biol. Med. 117:505–10 [Google Scholar]
  80. Stanley JR, Yaar M, Hawley-Nelson P, Katz SI. 80.  1982. Pemphigus antibodies identify a cell surface glycoprotein synthesized by human and mouse keratinocytes. J. Clin. Investig. 70:281–88 [Google Scholar]
  81. Eyre RW, Stanley JR. 81.  1988. Identification of pemphigus vulgaris antigen extracted from normal human epidermis and comparison with pemphigus foliaceus antigen. J. Clin. Investig. 81:807–12 [Google Scholar]
  82. Hashimoto T, Ogawa MM, Konohana A, Nishikawa T. 82.  1990. Detection of pemphigus vulgaris and pemphigus foliaceus antigens by immunoblot analysis using different antigen sources. J. Investig. Dermatol. 94:327–31 [Google Scholar]
  83. Amagai M, Klaus-Kovtun V, Stanley JR. 83.  1991. Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 67:869–77 [Google Scholar]
  84. Amagai M, Karpati S, Prussick R, Klaus-Kovtun V, Stanley JR. 84.  1992. Autoantibodies against the amino-terminal cadherin-like binding domain of pemphigus vulgaris antigen are pathogenic. J. Clin. Investig. 90:919–26 [Google Scholar]
  85. Amagai M. 85.  1996. Pemphigus: autoimmunity to epidermal cell adhesion molecules. Adv. Dermatol. 11:319–52; discussion 353 [Google Scholar]
  86. Amagai M, Koch PJ, Nishikawa T, Stanley JR. 86.  1996. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. J. Investig. Dermatol. 106:351–55 [Google Scholar]
  87. Ding X, Aoki V, Mascaro JM Jr., Lopez-Swiderski A, Diaz LA, Fairley JA. 87.  1997. Mucosal and mucocutaneous (generalized) pemphigus vulgaris show distinct autoantibody profiles. J. Investig. Dermatol. 109:592–96 [Google Scholar]
  88. Amagai M. 88.  1999. Autoimmunity against desmosomal cadherins in pemphigus. J. Dermatol. Sci. 20:92–102 [Google Scholar]
  89. Amagai M. 89.  2002. Pemphigus as a paradigm of autoimmunity and cell adhesion. Keio J. Med. 51:133–39 [Google Scholar]
  90. Payne AS, Hanakawa Y, Amagai M, Stanley JR. 90.  2004. Desmosomes and disease: pemphigus and bullous impetigo. Curr. Opin. Cell Biol. 16:536–43 [Google Scholar]
  91. Stanley JR, Amagai M. 91.  2006. Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome. N. Engl. J. Med. 355:1800–10 [Google Scholar]
  92. Mahoney MG, Wang Z, Rothenberger K, Koch PJ, Amagai M, Stanley JR. 92.  1999. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. J. Clin. Investig. 103:461–68 [Google Scholar]
  93. Chan PT, Ohyama B, Nishifuji K, Yoshida K, Ishii K. 93.  et al. 2010. Immune response towards the amino-terminus of desmoglein 1 prevails across different activity stages in nonendemic pemphigus foliaceus. Br. J. Dermatol. 162:1242–50 [Google Scholar]
  94. Ohyama B, Nishifuji K, Chan PT, Kawaguchi A, Yamashita T. 94.  et al. 2012. Epitope spreading is rarely found in pemphigus vulgaris by large-scale longitudinal study using desmoglein 2–based swapped molecules. J. Investig. Dermatol. 132:1158–68 [Google Scholar]
  95. Amagai M. 95.  2003. Desmoglein as a target in autoimmunity and infection. J. Am. Acad. Dermatol. 48:244–52 [Google Scholar]
  96. Amagai M. 96.  2009. The molecular logic of pemphigus and impetigo: the desmoglein story. Vet. Dermatol. 20:308–12 [Google Scholar]
  97. Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR. 97.  2000. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat. Med. 6:1275–77 [Google Scholar]
  98. Franke WW, Goldschmidt MD, Zimbelmann R, Mueller HM, Schiller DL, Cowin P. 98.  1989. Molecular cloning and amino acid sequence of human plakoglobin, the common junctional plaque protein. PNAS 86:4027–31 [Google Scholar]
  99. Choi HJ, Weis WI. 99.  2005. Structure of the armadillo repeat domain of plakophilin 1. J. Mol. Biol. 346:367–76 [Google Scholar]
  100. Hatzfeld M, Wolf A, Keil R. 100.  2014. Plakophilins in desmosomal adhesion and signaling. Cell Commun. Adhes. 21:25–42 [Google Scholar]
  101. Kowalczyk AP, Bornslaeger EA, Borgwardt JE, Palka HL, Dhaliwal AS. 101.  et al. 1997. The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J. Cell Biol. 139:773–84 [Google Scholar]
  102. McGrath JA, McMillan JR, Shemanko CS, Runswick SK, Leigh IM. 102.  et al. 1997. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat. Genet. 17:240–44 [Google Scholar]
  103. Ersoy-Evans S, Erkin G, Fassihi H, Chan I, Paller AS. 103.  et al. 2006. Ectodermal dysplasia-skin fragility syndrome resulting from a new homozygous mutation, 888delC, in the desmosomal protein plakophilin 1. J. Am. Acad. Dermatol. 55:157–61 [Google Scholar]
  104. Tanaka A, Lai-Cheong JE, Cafe ME, Gontijo B, Salomao PR. 104.  et al. 2009. Novel truncating mutations in PKP1 and DSP cause similar skin phenotypes in two Brazilian families. Br. J. Dermatol. 160:692–97 [Google Scholar]
  105. Zheng R, Bu DF, Zhu XJ. 105.  2005. Compound heterozygosity for new splice site mutations in the plakophilin 1 gene (PKP1) in a Chinese case of ectodermal dysplasia-skin fragility syndrome. Acta Derm. Venereol. 85:394–99 [Google Scholar]
  106. Tucker DK, Stahley SN, Kowalczyk AP. 106.  2014. Plakophilin-1 protects keratinocytes from pemphigus vulgaris IgG by forming calcium-independent desmosomes. J. Investig. Dermatol. 134:1033–43 [Google Scholar]
  107. Pigors M, Kiritsi D, Krumpelmann S, Wagner N, He Y. 107.  et al. 2011. Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum. Mol. Genet. 20:1811–19 [Google Scholar]
  108. Cabral RM, Liu L, Hogan C, Dopping-Hepenstal PJ, Winik BC. 108.  et al. 2010. Homozygous mutations in the 5′ region of the JUP gene result in cutaneous disease but normal heart development in children. J. Investig. Dermatol. 130:1543–50 [Google Scholar]
  109. McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A. 109.  et al. 2000. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355:2119–24 [Google Scholar]
  110. Protonotarios N, Tsatsopoulou A, Fontaine G. 110.  2001. Naxos disease: keratoderma, scalp modifications, and cardiomyopathy. J. Am. Acad. Dermatol. 44:309–11 [Google Scholar]
  111. Asimaki A, Syrris P, Wichter T, Matthias P, Saffitz JE, McKenna WJ. 111.  2007. A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 81:964–73 [Google Scholar]
  112. Lombardi R, da Graca Cabreira-Hansen M, Bell A, Fromm RR, Willerson JT, Marian AJ. 112.  2011. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 109:1342–53 [Google Scholar]
  113. Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ. 113.  2014. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ. Res. 114:454–68 [Google Scholar]
  114. Fidler LM, Wilson GJ, Liu F, Cui X, Scherer SW. 114.  et al. 2009. Abnormal connexin43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations. J. Cell Mol. Med. 13:4219–28 [Google Scholar]
  115. Broussard JA, Getsios S, Green KJ. 115.  2015. Desmosome regulation and signaling in disease. Cell Tissue Res 360:501–12 [Google Scholar]
  116. Angst BD, Nilles LA, Green KJ. 116.  1990. Desmoplakin II expression is not restricted to stratified epithelia. J. Cell Sci. 97:Pt. 2247–57 [Google Scholar]
  117. Uzumcu A, Norgett EE, Dindar A, Uyguner O, Nisli K. 117.  et al. 2006. Loss of desmoplakin isoform I causes early onset cardiomyopathy and heart failure in a Naxos-like syndrome. J. Med. Genet. 43:e5 [Google Scholar]
  118. Armstrong DK, McKenna KE, Purkis PE, Green KJ, Eady RA. 118.  et al. 1999. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum. Mol. Genet. 8:143–48 [Google Scholar]
  119. Whittock NV, Ashton GH, Dopping-Hepenstal PJ, Gratian MJ, Keane FM. 119.  et al. 1999. Striate palmoplantar keratoderma resulting from desmoplakin haploinsufficiency. J. Investig. Dermatol. 113:940–46 [Google Scholar]
  120. Whittock NV, Wan H, Morley SM, Garzon MC, Kristal L. 120.  et al. 2002. Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J. Investig. Dermatol. 118:232–38 [Google Scholar]
  121. Al-Owain M, Wakil S, Shareef F, Al-Fatani A, Hamadah E. 121.  et al. 2011. Novel homozygous mutation in DSP causing skin fragility-woolly hair syndrome: report of a large family and review of the desmoplakin-related phenotypes. Clin. Genet. 80:50–58 [Google Scholar]
  122. Smith FJ, Wilson NJ, Moss C, Dopping-Hepenstal P, McGrath J. 122.  2012. Compound heterozygous mutations in desmoplakin cause skin fragility and woolly hair. Br. J. Dermatol. 166:894–96 [Google Scholar]
  123. Carvajal-Huerta L. 123.  1998. Epidermolytic palmoplantar keratoderma with woolly hair and dilated cardiomyopathy. J. Am. Acad. Dermatol. 39:418–21 [Google Scholar]
  124. Rao BH, Reddy IS, Chandra KS. 124.  1996. Familial occurrence of a rare combination of dilated cardiomyopathy with palmoplantar keratoderma and curly hair. Indian Heart J 48:161–62 [Google Scholar]
  125. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J. 125.  et al. 2000. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9:2761–66 [Google Scholar]
  126. Jonkman MF, Pasmooij AM, Pasmans SG, van den Berg MP, Ter Horst HJ. 126.  et al. 2005. Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa. Am. J. Hum. Genet. 77:653–60 [Google Scholar]
  127. Bolling MC, Veenstra MJ, Jonkman MF, Diercks GF, Curry CJ. 127.  et al. 2010. Lethal acantholytic epidermolysis bullosa due to a novel homozygous deletion in DSP: expanding the phenotype and implications for desmoplakin function in skin and heart. Br. J. Dermatol. 162:1388–94 [Google Scholar]
  128. Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A. 128.  et al. 2002. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J. Clin. Oncol. 20:2417–28 [Google Scholar]
  129. Rakha EA, Abd El Rehim D, Pinder SE, Lewis SA, Ellis IO. 129.  2005. E-cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance. Histopathology 46:685–93 [Google Scholar]
  130. Syrigos KN, Krausz T, Waxman J, Pandha H, Rowlinson-Busza G. 130.  et al. 1995. E-cadherin expression in bladder cancer using formalin-fixed, paraffin-embedded tissues: correlation with histopathological grade, tumour stage and survival. Int. J. Cancer 64:367–70 [Google Scholar]
  131. Wijnhoven BP, Pignatelli M, Dinjens WN, Tilanus HW. 131.  2005. Reduced p120ctn expression correlates with poor survival in patients with adenocarcinoma of the gastroesophageal junction. J. Surg. Oncol. 92:116–23 [Google Scholar]
  132. Zheng Z, Pan J, Chu B, Wong YC, Cheung AL, Tsao SW. 132.  1999. Downregulation and abnormal expression of E-cadherin and beta-catenin in nasopharyngeal carcinoma: close association with advanced disease stage and lymph node metastasis. Hum. Pathol. 30:458–66 [Google Scholar]
  133. Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ. 133.  2009. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol. Biol. Cell 20:328–37 [Google Scholar]
  134. Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M. 134.  et al. 2014. Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene 33:4531–36 [Google Scholar]
  135. Wong MP, Cheang M, Yorida E, Coldman A, Gilks CB. 135.  et al. 2008. Loss of desmoglein 1 expression associated with worse prognosis in head and neck squamous cell carcinoma patients. Pathology 40:611–16 [Google Scholar]
  136. Dusek RL, Attardi LD. 136.  2011. Desmosomes: new perpetrators in tumour suppression. Nat. Rev. Cancer 11:317–23 [Google Scholar]
  137. Galoian K, Qureshi A, Wideroff G, Temple HT. 137.  2015. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells. Mol. Clin. Oncol. 3:171–78 [Google Scholar]
  138. Brennan D, Hu Y, Joubeh S, Choi YW, Whitaker-Menezes D. 138.  et al. 2007. Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J. Cell Sci. 120:758–71 [Google Scholar]
  139. Kurzen H, Munzing I, Hartschuh W. 139.  2003. Expression of desmosomal proteins in squamous cell carcinomas of the skin. J. Cutan. Pathol. 30:621–30 [Google Scholar]
  140. Chen YJ, Chang JT, Lee L, Wang HM, Liao CT. 140.  et al. 2007. DSG3 is overexpressed in head neck cancer and is a potential molecular target for inhibition of oncogenesis. Oncogene 26:467–76 [Google Scholar]
  141. Brennan D, Mahoney MG. 141.  2009. Increased expression of Dsg2 in malignant skin carcinomas: a tissue-microarray based study. Cell Adhes. Migr. 3:148–54 [Google Scholar]
  142. Breuninger S, Reidenbach S, Sauer CG, Strobel P, Pfitzenmaier J. 142.  et al. 2010. Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression. Am. J. Pathol. 176:2509–19 [Google Scholar]
  143. Harris TM, Du P, Kawachi N, Belbin TJ, Wang Y. 143.  et al. 2015. Proteomic analysis of oral cavity squamous cell carcinoma specimens identifies patient outcome-associated proteins. Arch. Pathol. Lab. Med. 139:494–507 [Google Scholar]
  144. Wolf A, Krause-Gruszczynska M, Birkenmeier O, Ostareck-Lederer A, Huttelmaier S, Hatzfeld M. 144.  2010. Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J. Cell Biol. 188:463–71 [Google Scholar]
  145. Papagerakis S, Shabana AH, Depondt J, Gehanno P, Forest N. 145.  2003. Immunohistochemical localization of plakophilins (PKP1, PKP2, PKP3, and p0071) in primary oropharyngeal tumors: correlation with clinical parameters. Hum. Pathol. 34:565–72 [Google Scholar]
  146. Sobolik-Delmaire T, Katafiasz D, Keim SA, Mahoney MG, 3rd Wahl JK. 146.  2007. Decreased plakophilin-1 expression promotes increased motility in head and neck squamous cell carcinoma cells. Cell Commun. Adhes. 14:99–109 [Google Scholar]
  147. Kaz AM, Luo Y, Dzieciatkowski S, Chak A, Willis JE. 147.  et al. 2012. Aberrantly methylated PKP1 in the progression of Barrett's esophagus to esophageal adenocarcinoma. Genes Chromosomes Cancer 51:384–93 [Google Scholar]
  148. Yang C, Strobel P, Marx A, Hofmann I. 148.  2013. Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Arch 463:379–90 [Google Scholar]
  149. Yang C, Fischer-Keso R, Schlechter T, Strobel P, Marx A, Hofmann I. 149.  2015. Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression. Tumour Biol 36:9567–77 [Google Scholar]
  150. Takahashi H, Nakatsuji H, Takahashi M, Avirmed S, Fukawa T. 150.  et al. 2012. Up-regulation of plakophilin-2 and down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer. Urology 79:240.e1–8 [Google Scholar]
  151. Kundu ST, Gosavi P, Khapare N, Patel R, Hosing AS. 151.  et al. 2008. Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis. Int. J. Cancer 123:2303–14 [Google Scholar]
  152. Demirag GG, Sullu Y, Yucel I. 152.  2012. Expression of Plakophilins (PKP1, PKP2, and PKP3) in breast cancers. Med. Oncol. 29:1518–22 [Google Scholar]
  153. Neuber S, Jager S, Meyer M, Wischmann V, Koch PJ. 153.  et al. 2015. c-Src mediated tyrosine phosphorylation of plakophilin 3 as a new mechanism to control desmosome composition in cells exposed to oxidative stress. Cell Tissue Res 359:799–816 [Google Scholar]
  154. Chun MG, Hanahan D. 154.  2010. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis. PLOS Genet 6:e1001120 [Google Scholar]
  155. Yang L, Chen Y, Cui T, Knosel T, Zhang Q. 155.  et al. 2012. Desmoplakin acts as a tumor suppressor by inhibition of the Wnt/β-catenin signaling pathway in human lung cancer. Carcinogenesis 33:1863–70 [Google Scholar]
  156. Najor NA, Fitz GN, Koetsier JL, Godsel LM, Albrecht LV. 156.  et al. 2017. Epidermal growth factor receptor neddylation is regulated by a desmosomal-COP9 (constitutive photomorphogenesis 9) signalosome complex. eLife. In press. https://doi.org/10.7554/eLife.22599 [Crossref] [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error