1932

Abstract

The life expectancy of cystic fibrosis (CF) patients has greatly increased over the past decade, and researchers and clinicians must now navigate complex disease manifestations that were not a concern prior to the development of modern therapies. Explosive growth in the number of CF animal models has also occurred over this time span, clarifying CF disease pathophysiology and creating opportunities to understand more complex disease processes associated with an aging CF population. This review focuses on the CF-associated pathologies of the gastrointestinal system and how animal models have increased our understanding of this complex multisystemic disease. Although CF is primarily recognized as a pulmonary disease, gastrointestinal pathology occurs very commonly and can affect the quality of life for these patients. Furthermore, we discuss how next-generation genetic engineering of larger animal models will impact the field's understanding of CF disease pathophysiology and the development of novel therapeutic strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-022420-105133
2021-01-24
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathol-022420-105133.html?itemId=/content/journals/10.1146/annurev-pathol-022420-105133&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rey MM, Bonk MP, Hadjiliadis D 2019. Cystic fibrosis: emerging understanding and therapies. Annu. Rev. Med. 70:197–210
    [Google Scholar]
  2. 2. 
    Davies JC, Alton EW, Bush A 2007. Cystic fibrosis. BMJ 335:1255–59
    [Google Scholar]
  3. 3. 
    Dechecchi MC, Tamanini A, Cabrini G 2018. Molecular basis of cystic fibrosis: from bench to bedside. Ann. Transl. Med. 6:334
    [Google Scholar]
  4. 4. 
    Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z et al. 2016. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27:424–33
    [Google Scholar]
  5. 5. 
    Wilschanski M, Novak I. 2013. The cystic fibrosis of exocrine pancreas. Cold Spring Harb. Perspect. Med. 3:a009746
    [Google Scholar]
  6. 6. 
    Clancy JP, Cotton CU, Donaldson SH, Solomon GM, VanDevanter DR et al. 2019. CFTR modulator theratyping: current status, gaps and future directions. J. Cyst. Fibros. 18:22–34
    [Google Scholar]
  7. 7. 
    Boyle MP, Bell SC, Konstan MW, McColley SA, Rowe SM et al. 2014. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir. Med. 2:527–38
    [Google Scholar]
  8. 8. 
    Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X et al. 2015. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 373:220–31
    [Google Scholar]
  9. 9. 
    Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D et al. 2009. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. PNAS 106:18825–30
    [Google Scholar]
  10. 10. 
    Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC et al. 2011. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365:1663–72
    [Google Scholar]
  11. 11. 
    De Boeck K, Munck A, Walker S, Faro A, Hiatt P et al. 2014. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J. Cyst. Fibros. 13:674–80
    [Google Scholar]
  12. 12. 
    Kuk K, Taylor-Cousar JL. 2015. Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects. Ther. Adv. Respir. Dis. 9:313–26
    [Google Scholar]
  13. 13. 
    Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A et al. 2017. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 377:2013–23
    [Google Scholar]
  14. 14. 
    Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF et al. 2019. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N. Engl. J. Med. 381:1809–19
    [Google Scholar]
  15. 15. 
    Chaudary N. 2018. Triplet CFTR modulators: future prospects for treatment of cystic fibrosis. Ther. Clin. Risk Manag. 14:2375–83
    [Google Scholar]
  16. 16. 
    Andersen DH. 1938. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathologic study. Am. J. Dis. Child. 56:344–99
    [Google Scholar]
  17. 17. 
    Keogh RH, Szczesniak R, Taylor-Robinson D, Bilton D 2018. Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: a longitudinal study using UK patient registry data. J. Cyst. Fibros. 17:218–27
    [Google Scholar]
  18. 18. 
    Keiser NW, Engelhardt JF. 2011. New animal models of cystic fibrosis: What are they teaching us. Curr. Opin. Pulm. Med. 17:478–83
    [Google Scholar]
  19. 19. 
    Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC et al. 1992. An animal model for cystic fibrosis made by gene targeting. Science 257:1083–88
    [Google Scholar]
  20. 20. 
    Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC 1992. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 257:1125–28
    [Google Scholar]
  21. 21. 
    Scholte BJ, Davidson DJ, Wilke M, De Jonge HR 2004. Animal models of cystic fibrosis. J. Cyst. Fibros. 3:Suppl. 2183–90
    [Google Scholar]
  22. 22. 
    Grubb BR, Boucher RC. 1999. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol. Rev. 79:S193–214
    [Google Scholar]
  23. 23. 
    Guilbault C, Saeed Z, Downey GP, Radzioch D 2007. Cystic fibrosis mouse models. Am. J. Respir. Cell Mol. Biol. 36:1–7
    [Google Scholar]
  24. 24. 
    Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA et al. 2008. Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J. Clin. Investig. 118:1571–77
    [Google Scholar]
  25. 25. 
    Sun X, Yan Z, Yi Y, Li Z, Lei D et al. 2008. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J. Clin. Investig. 118:1578–83
    [Google Scholar]
  26. 26. 
    Yan Z, McCray PB Jr, Engelhardt JF 2019. Advances in gene therapy for cystic fibrosis lung disease. Hum. Mol. Genet. 28:R88–94
    [Google Scholar]
  27. 27. 
    Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J et al. 2015. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum. Gene Ther. Clin. Dev. 26:38–49
    [Google Scholar]
  28. 28. 
    Rosen BH, Chanson M, Gawenis LR, Liu J, Sofoluwe A et al. 2018. Animal and model systems for studying cystic fibrosis. J. Cyst. Fibros. 17:S28–34
    [Google Scholar]
  29. 29. 
    Tuggle KL, Birket SE, Cui X, Hong J, Warren J et al. 2014. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLOS ONE 9:e91253
    [Google Scholar]
  30. 30. 
    Birket SE, Davis JM, Fernandez CM, Tuggle KL, Oden AM et al. 2018. Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight 3:1e97199
    [Google Scholar]
  31. 31. 
    Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q et al. 2018. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 3:19e123529
    [Google Scholar]
  32. 32. 
    Xu J, Rajagopolan C, Hou X, Chen E, Boucher RC, Sun F 2016. Rabbit models for cystic fibrosis. Pediatr. Pulmonol. 51:158–59
    [Google Scholar]
  33. 33. 
    Navis A, Marjoram L, Bagnat M 2013. Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish. Development 140:1703–12
    [Google Scholar]
  34. 34. 
    Navis A, Bagnat M. 2015. Loss of cftr function leads to pancreatic destruction in larval zebrafish. Dev. Biol. 399:237–48
    [Google Scholar]
  35. 35. 
    Leenaars CH, De Vries RB, Heming A, Visser D, Holthaus D et al. 2019. Animal models for cystic fibrosis: a systematic search and mapping review of the literature—Part 1: genetic models. Lab. Anim. 54:4330–40
    [Google Scholar]
  36. 36. 
    Borowitz D, Gelfond D. 2013. Intestinal complications of cystic fibrosis. Curr. Opin. Pulm. Med. 19:676–80
    [Google Scholar]
  37. 37. 
    Olivier AK, Gibson-Corley KN, Meyerholz DK 2015. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am. J. Physiol. Gastrointest. Liver Physiol. 308:G459–71
    [Google Scholar]
  38. 38. 
    Grubb BR, Gabriel SE. 1997. Intestinal physiology and pathology in gene-targeted mouse models of cystic fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 273:G258–66
    [Google Scholar]
  39. 39. 
    Scott RB, O'Loughlin EV, Gall DG 1985. Gastroesophageal reflux in patients with cystic fibrosis. J. Pediatr. 106:223–27
    [Google Scholar]
  40. 40. 
    Robertson MB, Choe KA, Joseph PM 2006. Review of the abdominal manifestations of cystic fibrosis in the adult patient. Radiographics 26:679–90
    [Google Scholar]
  41. 41. 
    Li L, Somerset S. 2014. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy. Dig. Liver Dis. 46:865–74
    [Google Scholar]
  42. 42. 
    Fisher JT, Tyler SR, Zhang Y, Lee BJ, Liu X et al. 2013. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets. Am. J. Respir. Cell Mol. Biol. 49:837–44
    [Google Scholar]
  43. 43. 
    Woodley FW, Machado RS, Hayes D Jr, Di Lorenzo C, Kaul A et al. 2014. Children with cystic fibrosis have prolonged chemical clearance of acid reflux compared to symptomatic children without cystic fibrosis. Dig. Dis. Sci. 59:623–30
    [Google Scholar]
  44. 44. 
    Sun X, Olivier AK, Yi Y, Pope CE, Hayden HS et al. 2014. Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. Am. J. Pathol. 184:1309–22
    [Google Scholar]
  45. 45. 
    Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP et al. 2010. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Transl. Med. 2:29ra31
    [Google Scholar]
  46. 46. 
    Durie PR, Forstner GG. 1989. Pathophysiology of the exocrine pancreas in cystic fibrosis. J. R. Soc. Med. 82:Suppl. 162–10
    [Google Scholar]
  47. 47. 
    Sathe M, Houwen R. 2017. Meconium ileus in cystic fibrosis. J. Cyst. Fibros. 16:Suppl. 2S32–39
    [Google Scholar]
  48. 48. 
    Kent G, Oliver M, Foskett JK, Frndova H, Durie P et al. 1996. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr. Res. 40:233–41
    [Google Scholar]
  49. 49. 
    Lord R, Fairbourn N, Mylavarapu C, Dbeis A, Bowman T et al. 2018. Consuming genistein improves survival rates in the absence of laxative in ΔF508-CF female mice. Nutrients 10:1418
    [Google Scholar]
  50. 50. 
    Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS et al. 2013. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J. Clin. Investig. 123:2685–93
    [Google Scholar]
  51. 51. 
    Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA et al. 2010. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am. J. Respir. Crit. Care Med. 182:1251–61
    [Google Scholar]
  52. 52. 
    Meyerholz DK, Stoltz DA, Pezzulo AA, Welsh MJ 2010. Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. Am. J. Pathol. 176:1377–89
    [Google Scholar]
  53. 53. 
    Ballard ST, Evans JW, Drag HS, Schuler M 2016. Pathophysiologic evaluation of the transgenic CFTR “gut-corrected” porcine model of cystic fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L779–87
    [Google Scholar]
  54. 54. 
    Sun X, Sui H, Fisher JT, Yan Z, Liu X et al. 2010. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J. Clin. Investig. 120:3149–60
    [Google Scholar]
  55. 55. 
    Sun X, Yi Y, Yan Z, Rosen BH, Liang B et al. 2019. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci. Transl. Med. 11:485eaau7531
    [Google Scholar]
  56. 56. 
    McHugh DR, Steele MS, Valerio DM, Miron A, Mann RJ et al. 2018. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies. PLOS ONE 13:e0199573
    [Google Scholar]
  57. 57. 
    Lisowska A, Wojtowicz J, Walkowiak J 2009. Small intestine bacterial overgrowth is frequent in cystic fibrosis: Combined hydrogen and methane measurements are required for its detection. Acta Biochim. Pol. 56:631–34
    [Google Scholar]
  58. 58. 
    Werlin SL, Benuri-Silbiger I, Kerem E, Adler SN, Goldin E et al. 2010. Evidence of intestinal inflammation in patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 51:304–8
    [Google Scholar]
  59. 59. 
    Than BL, Linnekamp JF, Starr TK, Largaespada DA, Rod A et al. 2016. CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 35:4179–87
    [Google Scholar]
  60. 60. 
    Rosen BH, Evans TIA, Moll SR, Gray JS, Liang B et al. 2018. Infection is not required for mucoinflammatory lung disease in CFTR-knockout ferrets. Am. J. Respir. Crit. Care Med. 197:1308–18
    [Google Scholar]
  61. 61. 
    Gibson-Corley KN, Meyerholz DK, Engelhardt JF 2016. Pancreatic pathophysiology in cystic fibrosis. J. Pathol. 238:311–20
    [Google Scholar]
  62. 62. 
    Foulkes AG, Harris A. 1993. Localization of expression of the cystic fibrosis gene in human pancreatic development. Pancreas 8:3–6
    [Google Scholar]
  63. 63. 
    Kopito LE, Shwachman H. 1976. The pancreas in cystic fibrosis: chemical composition and comparative morphology. Pediatr. Res. 10:742–49
    [Google Scholar]
  64. 64. 
    Ooi CY, Dorfman R, Cipolli M, Gonska T, Castellani C et al. 2011. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology 140:153–61
    [Google Scholar]
  65. 65. 
    Gurwitz D, Corey M, Francis PW, Crozier D, Levison H 1979. Perspectives in cystic fibrosis. Pediatr. Clin. N. Am. 26:603–15
    [Google Scholar]
  66. 66. 
    Abu-El-Haija M, Ramachandran S, Meyerholz DK, Griffin M, Giriyappa RL et al. 2012. Pancreatic damage in fetal and newborn cystic fibrosis pigs involves the activation of inflammatory and remodeling pathways. Am. J. Pathol. 181:499–507
    [Google Scholar]
  67. 67. 
    Uc A, Giriyappa R, Meyerholz DK, Griffin M, Ostedgaard LS et al. 2012. Pancreatic and biliary secretion are both altered in cystic fibrosis pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G961–68
    [Google Scholar]
  68. 68. 
    Olivier AK, Yi Y, Sun X, Sui H, Liang B et al. 2012. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J. Clin. Investig. 122:3755–68
    [Google Scholar]
  69. 69. 
    Yi Y, Norris AW, Wang K, Sun X, Uc A et al. 2016. Abnormal glucose tolerance in infants and young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 194:974–80
    [Google Scholar]
  70. 70. 
    Rotti PG, Xie W, Poudel A, Yi Y, Sun X et al. 2018. Pancreatic and islet remodeling in cystic fibrosis transmembrane conductance regulator (CFTR) knockout ferrets. Am. J. Pathol. 188:876–90
    [Google Scholar]
  71. 71. 
    Sun X, Olivier AK, Liang B, Yi Y, Sui H et al. 2014. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am. J. Respir. Cell Mol. Biol. 50:502–12
    [Google Scholar]
  72. 72. 
    O'Neal WK, Knowles MR. 2018. Cystic fibrosis disease modifiers: Complex genetics defines the phenotypic diversity in a monogenic disease. Annu. Rev. Genom. Hum. Genet. 19:201–22
    [Google Scholar]
  73. 73. 
    Lam AN, Aksit MA, Vecchio-Pagan B, Shelton CA, Osorio DL et al. 2020. Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis. J. Clin. Investig. 130:272–86
    [Google Scholar]
  74. 74. 
    Li W, Soave D, Miller MR, Keenan K, Lin F et al. 2014. Unraveling the complex genetic model for cystic fibrosis: pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities. Hum. Genet. 133:151–61
    [Google Scholar]
  75. 75. 
    Hart NJ, Aramandla R, Poffenberger G, Fayolle C, Thames AH et al. 2018. Cystic fibrosis–related diabetes is caused by islet loss and inflammation. JCI Insight 3:8e98240
    [Google Scholar]
  76. 76. 
    Stecenko AA, Moran A. 2010. Update on cystic fibrosis-related diabetes. Curr. Opin. Pulm. Med. 16:611–15
    [Google Scholar]
  77. 77. 
    Kayani K, Mohammed R, Mohiaddin H 2018. Cystic fibrosis-related diabetes. Front. Endocrinol. 9:20
    [Google Scholar]
  78. 78. 
    Moran A, Pyzdrowski KL, Weinreb J, Kahn BB, Smith SA et al. 1994. Insulin sensitivity in cystic fibrosis. Diabetes 43:1020–26
    [Google Scholar]
  79. 79. 
    Nathan BM, Laguna T, Moran A 2010. Recent trends in cystic fibrosis-related diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17:335–41
    [Google Scholar]
  80. 80. 
    Couce M, O'Brien TD, Moran A, Roche PC, Butler PC 1996. Diabetes mellitus in cystic fibrosis is characterized by islet amyloidosis. J. Clin. Endocrinol. Metab. 81:1267–72
    [Google Scholar]
  81. 81. 
    Lohr M, Goertchen P, Nizze H, Gould NS, Gould VE et al. 1989. Cystic fibrosis associated islet changes may provide a basis for diabetes. An immunocytochemical and morphometrical study. Virchows Arch. A Pathol. Anat. Histopathol. 414:179–85
    [Google Scholar]
  82. 82. 
    Moran A, Diem P, Klein DJ, Levitt MD, Robertson RP 1991. Pancreatic endocrine function in cystic fibrosis. J. Pediatr. 118:715–23
    [Google Scholar]
  83. 83. 
    White MG, Maheshwari RR, Anderson SJ, Berlinguer-Palmini R, Jones C et al. 2019. In situ analysis reveals that CFTR is expressed in only a small minority of β-cells in normal adult human pancreas. J. Clin. Endocrinol. Metab. 105:51366–74
    [Google Scholar]
  84. 84. 
    Tyler SR, Rotti PG, Sun X, Yi Y, Xie W et al. 2019. PyMINEr finds gene and autocrine-paracrine networks from human islet scRNA-Seq. Cell Rep 26:1951–64.e8
    [Google Scholar]
  85. 85. 
    Sun X, Yi Y, Xie W, Liang B, Winter MC et al. 2017. CFTR influences beta cell function and insulin secretion through non-cell autonomous exocrine-derived factors. Endocrinology 158:3325–38
    [Google Scholar]
  86. 86. 
    Yi Y, Sun X, Gibson-Corley K, Xie W, Liang B et al. 2016. A transient metabolic recovery from early life glucose intolerance in cystic fibrosis ferrets occurs during pancreatic remodeling. Endocrinology 157:1852–65
    [Google Scholar]
  87. 87. 
    Bogdani M, Blackman SM, Ridaura C, Bellocq JP, Powers AC, Aguilar-Bryan L 2017. Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci. Rep. 7:17231
    [Google Scholar]
  88. 88. 
    Kobelska-Dubiel N, Klincewicz B, Cichy W 2014. Liver disease in cystic fibrosis. Prz. Gastroenterol. 9:136–41
    [Google Scholar]
  89. 89. 
    Moyer K, Balistreri W. 2009. Hepatobiliary disease in patients with cystic fibrosis. Curr. Opin. Gastroenterol. 25:272–78
    [Google Scholar]
  90. 90. 
    Debray D, Narkewicz MR, Bodewes F, Colombo C, Housset C et al. 2017. Cystic fibrosis–related liver disease: research challenges and future perspectives. J. Pediatr. Gastroenterol. Nutr. 65:443–48
    [Google Scholar]
  91. 91. 
    Bodewes FA, van der Wulp MY, Beharry S, Doktorova M, Havinga R et al. 2015. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr−/−) mouse model with hepato-biliary pathology. J. Cyst. Fibros. 14:440–46
    [Google Scholar]
  92. 92. 
    Scirpo R, Fiorotto R, Villani A, Amenduni M, Spirli C, Strazzabosco M 2015. Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 62:1551–62
    [Google Scholar]
  93. 93. 
    Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH et al. 2011. The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis–like disease in pigs. Sci. Transl. Med. 3:74ra24
    [Google Scholar]
  94. 94. 
    Ostedgaard LS, Meyerholz DK, Vermeer DW, Karp PH, Schneider L et al. 2011. Cystic fibrosis transmembrane conductance regulator with a shortened R domain rescues the intestinal phenotype of CFTR−/− mice. PNAS 108:2921–26
    [Google Scholar]
  95. 95. 
    Lindblad A, Glaumann H, Strandvik B 1999. Natural history of liver disease in cystic fibrosis. Hepatology 30:1151–58
    [Google Scholar]
  96. 96. 
    Scher H, Bishop WP, McCray PB Jr 1997. Ursodeoxycholic acid improves cholestasis in infants with cystic fibrosis. Ann. Pharmacother. 31:1003–5
    [Google Scholar]
  97. 97. 
    Shah VS, Meyerholz DK, Tang XX, Reznikov L, Abou Alaiwa M et al. 2016. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351:503–7
    [Google Scholar]
  98. 98. 
    Yan Z, Sun X, Evans IA, Tyler SR, Song Y et al. 2013. Postentry processing of recombinant adeno-associated virus type 1 and transduction of the ferret lung are altered by a factor in airway secretions. Hum. Gene Ther. 24:786–96
    [Google Scholar]
  99. 99. 
    Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR et al. 2016. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight 1:14e88728
    [Google Scholar]
  100. 100. 
    Yan Z, Feng Z, Sun X, Zhang Y, Zou W et al. 2017. Human bocavirus type-1 capsid facilitates the transduction of ferret airways by adeno-associated virus genomes. Hum. Gene Ther. 28:612–25
    [Google Scholar]
  101. 101. 
    Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR et al. 2016. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 1:14e88730
    [Google Scholar]
  102. 102. 
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B et al. 2018. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–24
    [Google Scholar]
  103. 103. 
    Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR et al. 1992. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat. Genet. 2:240–48
    [Google Scholar]
  104. 104. 
    Engelhardt JF, Zepeda M, Cohn JA, Yankaskas JR, Wilson JM 1994. Expression of the cystic fibrosis gene in adult human lung. J. Clin. Investig. 93:737–49
    [Google Scholar]
  105. 105. 
    Jiang Q, Engelhardt JF. 1998. Cellular heterogeneity of CFTR expression and function in the lung: implications for gene therapy of cystic fibrosis. Eur. J. Hum. Genet. 6:12–31
    [Google Scholar]
  106. 106. 
    Yu M, Sun X, Tyler SR, Liang B, Swatek AM et al. 2019. Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus. Sci. Rep. 9:1971
    [Google Scholar]
  107. 107. 
    Delporte FM, Pasque V, Devos N, Manfroid I, Voz ML et al. 2008. Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC Dev. Biol. 8:53
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-022420-105133
Loading
/content/journals/10.1146/annurev-pathol-022420-105133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error