1932

Abstract

Hereditary peripheral neuropathy (HPN) is a complex group of neurological disorders caused by mutations in genes expressed by neurons and Schwann cells. The inheritance of a single mutation or multiple mutations in several genes leads to disease phenotype. Patients exhibit symptoms during development, at an early age or later in adulthood. Most of the mechanistic understanding about these neuropathies comes from animal models and histopathological analyses of postmortem human tissues. Diagnosis is often very complex due to the heterogeneity and overlap in symptoms and the frequent overlap between various genes and different mutations they possess. Some symptoms in HPN are common through different subtypes such as axonal degeneration, demyelination, and loss of motor and sensory neurons, leading to similar physiologic abnormalities. Recent advances in gene-targeted therapies, genetic engineering, and next-generation sequencing have augmented our understanding of the underlying pathogenetic mechanisms of HPN.

Keyword(s): axonhereditaryneuropathy
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-030320-100822
2021-01-24
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathol-030320-100822.html?itemId=/content/journals/10.1146/annurev-pathol-030320-100822&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Klein CJ, Duan X, Shy ME 2013. Inherited neuropathies: clinical overview and update. Muscle Nerve 48:604–22
    [Google Scholar]
  2. 2. 
    Watson JC, Dyck PJ. 2015. Peripheral neuropathy: a practical approach to diagnosis and symptom management. Mayo Clin. Proc. 90:940–51
    [Google Scholar]
  3. 3. 
    Sargiannidou I, Kagiava A, Kleopa KA 2020. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 1728:146572
    [Google Scholar]
  4. 4. 
    Garcia CA. 1999. A clinical review of Charcot-Marie-Tooth. Ann. N. Y. Acad. Sci. 883:69–76
    [Google Scholar]
  5. 5. 
    Pareyson D, Saveri P, Pisciotta C 2017. New developments in Charcot-Marie-Tooth neuropathy and related diseases. Curr. Opin. Neurol. 30:471–80
    [Google Scholar]
  6. 6. 
    Saporta AS, Sottile SL, Miller LJ, Feely SM, Siskind CE, Shy ME 2011. Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann. Neurol. 69:22–33
    [Google Scholar]
  7. 7. 
    Morelli KH, Hatton CL, Harper SQ, Burgess RW 2020. Gene therapies for axonal neuropathies: available strategies, successes to date, and what to target next. Brain Res 1732:146683
    [Google Scholar]
  8. 8. 
    Morena J, Gupta A, Hoyle JC 2019. Charcot-Marie-Tooth: from molecules to therapy. Int. J. Mol. Sci. 20:3419
    [Google Scholar]
  9. 9. 
    Scherer SS. 2006. Finding the causes of inherited neuropathies. Arch. Neurol. 63:812–16
    [Google Scholar]
  10. 10. 
    Hoyle JC, Isfort MC, Roggenbuck J, Arnold WD 2015. The genetics of Charcot-Marie-Tooth disease: current trends and future implications for diagnosis and management. Appl. Clin. Genet. 8:235–43
    [Google Scholar]
  11. 11. 
    Cassereau J, Chevrollier A, Codron P, Goizet C, Gueguen N et al. 2020. Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth disease type 2K. Exp. Neurol. 323:113069
    [Google Scholar]
  12. 12. 
    Timmerman V, Strickland AV, Zuchner S 2014. Genetics of Charcot-Marie-Tooth (CMT) disease within the frame of the human genome project success. Genes 5:13–32
    [Google Scholar]
  13. 13. 
    Azzedine H, Senderek J, Rivolta C, Chrast R 2012. Molecular genetics of Charcot-Marie-Tooth disease: from genes to genomes. Mol. Syndromol. 3:204–14
    [Google Scholar]
  14. 14. 
    Huehne K, Benes V, Thiel C, Kraus C, Kress W et al. 2003. Novel mutations in the Charcot-Marie-Tooth disease genes PMP22, MPZ, and GJB1. Hum. Mutat. 21:100
    [Google Scholar]
  15. 15. 
    Bergamin G, Boaretto F, Briani C, Pegoraro E, Cacciavillani M et al. 2014. Mutation analysis of MFN2, GJB1, MPZ and PMP22 in Italian patients with axonal Charcot-Marie-Tooth disease. Neuromol. Med. 16:540–50
    [Google Scholar]
  16. 16. 
    Mersiyanova IV, Ismailov SM, Polyakov AV, Dadali EL, Fedotov VP et al. 2000. Screening for mutations in the peripheral myelin genes PMP22, MPZ and Cx32 (GJB1) in Russian Charcot-Marie-Tooth neuropathy patients. Hum. Mutat. 15:340–47
    [Google Scholar]
  17. 17. 
    Lee JA, Lupski JR. 2006. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52:103–21
    [Google Scholar]
  18. 18. 
    Marques W Jr., Freitas MR, Nascimento OJ, Oliveira AB, Calia L et al. 2005. 17p duplicated Charcot-Marie-Tooth 1A: characteristics of a new population. J. Neurol. 252:972–79
    [Google Scholar]
  19. 19. 
    Stuppia L, Antonucci I, Palka G, Gatta V 2012. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int. J. Mol. Sci. 13:3245–76
    [Google Scholar]
  20. 20. 
    Niemann A, Berger P, Suter U 2006. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromol. Med. 8:217–42
    [Google Scholar]
  21. 21. 
    Suter U, Scherer SS. 2003. Disease mechanisms in inherited neuropathies. Nat. Rev. Neurosci. 4:714–26
    [Google Scholar]
  22. 22. 
    Berger P, Niemann A, Suter U 2006. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54:243–57
    [Google Scholar]
  23. 23. 
    Fox NC, Jenkins R, Leary SM, Stevenson VL, Losseff NA et al. 2000. Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI. Neurology 54:807–12
    [Google Scholar]
  24. 24. 
    Rohkamm B, Reilly MM, Lochmuller H, Schlotter-Weigel B, Barisic N et al. 2007. Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome. J. Neurol. Sci. 263:100–6
    [Google Scholar]
  25. 25. 
    Grohmann K, Schuelke M, Diers A, Hoffmann K, Lucke B et al. 2001. Mutations in the gene encoding immunoglobulin μ-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat. Genet. 29:75–77
    [Google Scholar]
  26. 26. 
    Hoeijmakers JG, Merkies IS, Gerrits MM, Waxman SG, Faber CG 2012. Genetic aspects of sodium channelopathy in small fiber neuropathy. Clin. Genet. 82:351–58
    [Google Scholar]
  27. 27. 
    Dalla Bella E, Lombardi R, Porretta-Serapiglia C, Ciano C, Gellera C et al. 2016. Amyotrophic lateral sclerosis causes small fiber pathology. Eur. J. Neurol. 23:416–20
    [Google Scholar]
  28. 28. 
    Cazzato D, Lauria G. 2017. Small fibre neuropathy. Curr. Opin. Neurol. 30:490–99
    [Google Scholar]
  29. 29. 
    Levine TD. 2018. Small fiber neuropathy: disease classification beyond pain and burning. J. Cent. Nerv. Syst. Dis. 10: https://doi.org/10.1177/1179573518771703
    [Crossref] [Google Scholar]
  30. 30. 
    Axelrod FB, Gold-von Simson G 2007. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J. Rare Dis. 2:39
    [Google Scholar]
  31. 31. 
    Houlden H, King R, Blake J, Groves M, Love S et al. 2006. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129:411–25
    [Google Scholar]
  32. 32. 
    Schwartzlow C, Kazamel M. 2019. Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr. Neurol. Neurosci. Rep. 19:52
    [Google Scholar]
  33. 33. 
    Rotthier A, Baets J, De Vriendt E, Jacobs A, Auer-Grumbach M et al. 2009. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 132:2699–711
    [Google Scholar]
  34. 34. 
    Rotthier A, Baets J, Timmerman V, Janssens K 2012. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat. Rev. Neurol. 8:73–85
    [Google Scholar]
  35. 35. 
    Penno A, Reilly MM, Houlden H, Laura M, Rentsch K et al. 2010. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 285:11178–87
    [Google Scholar]
  36. 36. 
    Auer-Grumbach M, De Jonghe P, Verhoeven K, Timmerman V, Wagner K et al. 2003. Autosomal dominant inherited neuropathies with prominent sensory loss and mutilations: a review. Arch. Neurol. 60:329–34
    [Google Scholar]
  37. 37. 
    Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA 2001. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27:309–12
    [Google Scholar]
  38. 38. 
    Garofalo K, Penno A, Schmidt BP, Lee HJ, Frosch MP et al. 2011. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Investig. 121:4735–45
    [Google Scholar]
  39. 39. 
    Fridman V, Suriyanarayanan S, Novak P, David W, Macklin EA et al. 2019. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 92:e359–70
    [Google Scholar]
  40. 40. 
    Murphy SM, Ernst D, Wei Y, Laura M, Liu YT et al. 2013. Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2. . Neurology 80:2106–11
    [Google Scholar]
  41. 41. 
    Rotthier A, Auer-Grumbach M, Janssens K, Baets J, Penno A et al. 2010. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am. J. Hum. Genet. 87:513–22
    [Google Scholar]
  42. 42. 
    Suriyanarayanan S, Othman A, Drager B, Schirmacher A, Young P et al. 2019. A novel variant (Asn177Asp) in SPTLC2 causing hereditary sensory autonomic neuropathy type 1C. Neuromol. Med. 21:182–91
    [Google Scholar]
  43. 43. 
    Wu J, Ma S, Sandhoff R, Ming Y, Hotz-Wagenblatt A et al. 2019. Loss of neurological disease HSAN-I-associated gene SPTLC2 impairs CD8+ T cell responses to infection by inhibiting T cell metabolic fitness. Immunity 50:1218–31.e5
    [Google Scholar]
  44. 44. 
    Guelly C, Zhu PP, Leonardis L, Papic L, Zidar J et al. 2011. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am. J. Hum. Genet. 88:99–105
    [Google Scholar]
  45. 45. 
    Kornak U, Mademan I, Schinke M, Voigt M, Krawitz P et al. 2014. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain 137:683–92
    [Google Scholar]
  46. 46. 
    Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA et al. 2011. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43:595–600
    [Google Scholar]
  47. 47. 
    Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J et al. 2012. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum. Mol. Genet. 21:2205–10
    [Google Scholar]
  48. 48. 
    Yuan J, Higuchi Y, Nagado T, Nozuma S, Nakamura T et al. 2013. Novel mutation in the replication focus targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy IE. J. Peripher. Nerv. Syst. 18:89–93
    [Google Scholar]
  49. 49. 
    Sun Z, Wu Y, Ordog T, Baheti S, Nie J et al. 2014. Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E. Epigenetics 9:1184–93
    [Google Scholar]
  50. 50. 
    Baets J, Duan X, Wu Y, Smith G, Seeley WW et al. 2015. Defects of mutant DNMT1 are linked to a spectrum of neurological disorders. Brain 138:845–61
    [Google Scholar]
  51. 51. 
    Lafreniere RG, MacDonald ML, Dube MP, MacFarlane J, O'Driscoll M et al. 2004. Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the study of Canadian genetic isolates. Am. J. Hum. Genet. 74:1064–73
    [Google Scholar]
  52. 52. 
    Coen K, Pareyson D, Auer-Grumbach M, Buyse G, Goemans N et al. 2006. Novel mutations in the HSN2 gene causing hereditary sensory and autonomic neuropathy type II. Neurology 66:748–51
    [Google Scholar]
  53. 53. 
    Shekarabi M, Girard N, Riviere JB, Dion P, Houle M et al. 2008. Mutations in the nervous system–specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J. Clin. Investig. 118:2496–505
    [Google Scholar]
  54. 54. 
    Roddier K, Thomas T, Marleau G, Gagnon AM, Dicaire MJ et al. 2005. Two mutations in the HSN2 gene explain the high prevalence of HSAN2 in French Canadians. Neurology 64:1762–67
    [Google Scholar]
  55. 55. 
    Cho HJ, Kim BJ, Suh YL, An JY, Ki CS 2006. Novel mutation in the HSN2 gene in a Korean patient with hereditary sensory and autonomic neuropathy type 2. J. Hum. Genet. 51:905–8
    [Google Scholar]
  56. 56. 
    Pacheco-Cuellar G, Gonzalez-Huerta LM, Valdes-Miranda JM, Pelaez-Gonzalez H, Zenteno-Bacheron S et al. 2011. Hereditary sensory and autonomic neuropathy II due to novel mutation in the HSN2 gene in Mexican families. J. Neurol. 258:1890–92
    [Google Scholar]
  57. 57. 
    de Filette J, Hasaerts D, Seneca S, Gheldof A, Stouffs K et al. 2016. Polyneuropathy in a young Belgian patient: a novel heterozygous mutation in the WNK1/HSN2 gene. Neurol. Genet. 2:e42
    [Google Scholar]
  58. 58. 
    Kahle KT, Schmouth JF, Lavastre V, Latremoliere A, Zhang J et al. 2016. Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition. Sci. Signal. 9:ra32
    [Google Scholar]
  59. 59. 
    Bercier V, Brustein E, Liao M, Dion PA, Lafreniere RG et al. 2013. WNK1/HSN2 mutation in human peripheral neuropathy deregulates KCC2 expression and posterior lateral line development in zebrafish (Danio rerio). PLOS Genet 9:e1003124
    [Google Scholar]
  60. 60. 
    Kurth I, Pamminger T, Hennings JC, Soehendra D, Huebner AK et al. 2009. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 41:1179–81
    [Google Scholar]
  61. 61. 
    Ilgaz Aydinlar E, Rolfs A, Serteser M, Parman Y 2014. Mutation in FAM134B causing hereditary sensory neuropathy with spasticity in a Turkish family. Muscle Nerve 49:774–75
    [Google Scholar]
  62. 62. 
    Murphy SM, Davidson GL, Brandner S, Houlden H, Reilly MM 2012. Mutation in FAM134B causing severe hereditary sensory neuropathy. J. Neurol. Neurosurg. Psychiatry 83:119–20
    [Google Scholar]
  63. 63. 
    Falcao de Campos C, Vidailhet M, Toutain A, de Becdelievre A, Funalot B et al. 2019. Hereditary sensory autonomic neuropathy type II: report of two novel mutations in the FAM134B gene. J. Peripher. Nerv. Syst. 24:354–58
    [Google Scholar]
  64. 64. 
    Wakil SM, Monies D, Hagos S, Al-Ajlan F, Finsterer J et al. 2018. Exome sequencing: mutilating sensory neuropathy with spastic paraplegia due to a mutation in FAM134B gene. Case Rep. Genet. 2018:9468049
    [Google Scholar]
  65. 65. 
    Jiang X, Wang X, Ding X, Du M, Li B et al. 2020. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy. EMBO J 39:e102608
    [Google Scholar]
  66. 66. 
    Staud R, Price DD, Janicke D, Andrade E, Hadjipanayis AG et al. 2011. Two novel mutations of SCN9A (Nav1.7) are associated with partial congenital insensitivity to pain. Eur. J. Pain 15:223–30
    [Google Scholar]
  67. 67. 
    Yuan J, Matsuura E, Higuchi Y, Hashiguchi A, Nakamura T et al. 2013. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology 80:1641–49
    [Google Scholar]
  68. 68. 
    Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81:769–80
    [Google Scholar]
  69. 69. 
    Riviere JB, Ramalingam S, Lavastre V, Shekarabi M, Holbert S et al. 2011. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am. J. Hum. Genet. 89:219–30
    [Google Scholar]
  70. 70. 
    Klebe S, Lossos A, Azzedine H, Mundwiller E, Sheffer R et al. 2012. KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. Eur. J. Hum. Genet. 20:645–49
    [Google Scholar]
  71. 71. 
    Kern JV, Zhang YV, Kramer S, Brenman JE, Rasse TM 2013. The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila. . Genetics 195:59–72
    [Google Scholar]
  72. 72. 
    Yoshikawa K, Kuwahara M, Saigoh K, Ishiura H, Yamagishi Y et al. 2019. The novel de novo mutation of KIF1A gene as the cause for Spastic paraplegia 30 in a Japanese case. eNeurologicalSci 14:34–37
    [Google Scholar]
  73. 73. 
    Riley CM, Day RL, Greeley DM, Langford WS 1949. Central autonomic dysfunction with defective lacrimation: I. Report of five cases. Pediatrics 3:468–78
    [Google Scholar]
  74. 74. 
    Pearson J, Pytel BA, Grover-Johnson N, Axelrod F, Dancis J 1978. Quantitative studies of dorsal root ganglia and neuropathologic observations on spinal cords in familial dysautonomia. J. Neurol. Sci. 35:77–92
    [Google Scholar]
  75. 75. 
    Axelrod FB, Nachtigal R, Dancis J 1974. Familial dysautonomia: diagnosis, pathogenesis and management. Adv. Pediatr. 21:75–96
    [Google Scholar]
  76. 76. 
    Pearson J, Pytel B. 1978. Quantitative studies of ciliary and sphenopalatine ganglia in familial dysautonomia. J. Neurol. Sci. 39:123–30
    [Google Scholar]
  77. 77. 
    Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H 2017. Familial dysautonomia: history, genotype, phenotype and translational research. Prog. Neurobiol. 152:131–48
    [Google Scholar]
  78. 78. 
    Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J et al. 2001. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68:598–605
    [Google Scholar]
  79. 79. 
    Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ et al. 2001. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68:753–58
    [Google Scholar]
  80. 80. 
    Close P, Hawkes N, Cornez I, Creppe C, Lambert CA et al. 2006. Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol. Cell 22:521–31
    [Google Scholar]
  81. 81. 
    Gilbert C, Kristjuhan A, Winkler GS, Svejstrup JQ 2004. Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol. Cell 14:457–64
    [Google Scholar]
  82. 82. 
    Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME et al. 2002. Purification and characterization of the human elongator complex. J. Biol. Chem. 277:3047–52
    [Google Scholar]
  83. 83. 
    Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ 2002. Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. PNAS 99:3517–22
    [Google Scholar]
  84. 84. 
    Huang B, Johansson MJ, Bystrom AS 2005. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424–36
    [Google Scholar]
  85. 85. 
    Jackson MZ, Gruner KA, Qin C, Tourtellotte WG 2014. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141:2452–61
    [Google Scholar]
  86. 86. 
    Li L, Gruner K, Tourtellotte WG 2020. Retrograde nerve growth factor signaling abnormalities in familial dysautonomia. J. Clin. Investig. 130:2478–87
    [Google Scholar]
  87. 87. 
    Norcliffe-Kaufmann L, Axelrod F, Kaufmann H 2010. Afferent baroreflex failure in familial dysautonomia. Neurology 75:1904–11
    [Google Scholar]
  88. 88. 
    Palma JA, Roda R, Norcliffe-Kaufmann L, Kaufmann H 2015. Increased frequency of rhabdomyolysis in familial dysautonomia. Muscle Nerve 52:887–90
    [Google Scholar]
  89. 89. 
    Macefield VG, Norcliffe-Kaufmann L, Loken L, Axelrod FB, Kaufmann H 2014. Disturbances in affective touch in hereditary sensory & autonomic neuropathy type III. Int. J. Psychophysiol. 93:56–61
    [Google Scholar]
  90. 90. 
    Rosemberg S, Marie SK, Kliemann S 1994. Congenital insensitivity to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV). Pediatr. Neurol. 11:50–56
    [Google Scholar]
  91. 91. 
    Shaikh SS, Chen YC, Halsall SA, Nahorski MS, Omoto K et al. 2017. A comprehensive functional analysis of NTRK1 missense mutations causing hereditary sensory and autonomic neuropathy type IV (HSAN IV). Hum. Mutat. 38:55–63
    [Google Scholar]
  92. 92. 
    Yozu A, Haga N, Funato T, Owaki D, Chiba R, Ota J 2016. Hereditary sensory and autonomic neuropathy types 4 and 5: review and proposal of a new rehabilitation method. Neurosci. Res. 104:105–11
    [Google Scholar]
  93. 93. 
    Edvardson S, Cinnamon Y, Jalas C, Shaag A, Maayan C et al. 2012. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann. Neurol. 71:569–72
    [Google Scholar]
  94. 94. 
    Lynch-Godrei A, Kothary R. 2020. HSAN-VI: a spectrum disorder based on dystonin isoform expression. Neurol. Genet. 6:e389
    [Google Scholar]
  95. 95. 
    Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R et al. 2014. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155:2461–70
    [Google Scholar]
  96. 96. 
    Staff NP, Grisold A, Grisold W, Windebank AJ 2017. Chemotherapy-induced peripheral neuropathy: a current review. Ann. Neurol. 81:772–81
    [Google Scholar]
  97. 97. 
    Pachman DR, Barton DL, Watson JC, Loprinzi CL 2011. Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin. Pharmacol. Ther. 90:377–87
    [Google Scholar]
  98. 98. 
    Wolf S, Barton D, Kottschade L, Grothey A, Loprinzi C 2008. Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. Eur. J. Cancer 44:1507–15
    [Google Scholar]
  99. 99. 
    Madsen ML, Due H, Ejskjaer N, Jensen P, Madsen J, Dybkaer K 2019. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother. Pharmacol. 84:471–85
    [Google Scholar]
  100. 100. 
    Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML et al. 2013. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 63:419–37
    [Google Scholar]
  101. 101. 
    Ibanez-Julia MJ, Berzero G, Reyes-Botero G, Maisonobe T, Lenglet T et al. 2018. Antineoplastic agents exacerbating Charcot Marie Tooth disease: red flags to avoid permanent disability. Acta Oncol 57:403–11
    [Google Scholar]
  102. 102. 
    Gillespie CS, Sherman DL, Fleetwood-Walker SM, Cottrell DF, Tait S et al. 2000. Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 26:523–31
    [Google Scholar]
  103. 103. 
    Verhoeven K, De Jonghe P, Van de Putte T, Nelis E, Zwijsen A et al. 2003. Slowed conduction and thin myelination of peripheral nerves associated with mutant Rho guanine-nucleotide exchange factor 10. Am. J. Hum. Genet. 73:926–32
    [Google Scholar]
  104. 104. 
    Beutler AS, Kulkarni AA, Kanwar R, Klein CJ, Therneau TM et al. 2014. Sequencing of Charcot-Marie-Tooth disease genes in a toxic polyneuropathy. Ann. Neurol. 76:727–37
    [Google Scholar]
  105. 105. 
    Boora GK, Kulkarni AA, Kanwar R, Beyerlein P, Qin R et al. 2015. Association of the Charcot-Marie-Tooth disease gene ARHGEF10 with paclitaxel induced peripheral neuropathy in NCCTG N08CA (Alliance). J. Neurol. Sci. 357:35–40
    [Google Scholar]
  106. 106. 
    Kourie HR, Mavroudakis N, Aftimos P, Piccart M 2017. Charcot-Marie-Tooth hereditary neuropathy revealed after administration of docetaxel in advanced breast cancer. World J. Clin. Oncol. 8:425–28
    [Google Scholar]
  107. 107. 
    Chauvenet AR, Shashi V, Selsky C, Morgan E, Kurtzberg J et al. 2003. Vincristine-induced neuropathy as the initial presentation of Charcot-Marie-Tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group study. J. Pediatr. Hematol. Oncol. 25:316–20
    [Google Scholar]
  108. 108. 
    Schneider BP, Lai D, Shen F, Jiang G, Radovich M et al. 2016. Charcot-Marie-Tooth gene, SBF2, associated with taxane-induced peripheral neuropathy in African Americans. Oncotarget 7:82244–53
    [Google Scholar]
  109. 109. 
    Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M et al. 2012. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 18:5099–109
    [Google Scholar]
  110. 110. 
    Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C et al. 2007. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am. J. Hum. Genet. 81:1–16
    [Google Scholar]
  111. 111. 
    Kramer R, Bielawski J, Kistner-Griffin E, Othman A, Alecu I et al. 2015. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J 29:4461–72
    [Google Scholar]
  112. 112. 
    Bernstock JD, Cohen JL, Singh S, Schlappi CW, Fiveash JB et al. 2019. Treatment-induced remission of medulloblastoma using a chemotherapeutic regimen devoid of vincristine in a child with Charcot-Marie-Tooth disease. Curr. Oncol. 26:e266–69
    [Google Scholar]
  113. 113. 
    Prukop T, Stenzel J, Wernick S, Kungl T, Mroczek M et al. 2019. Early short-term PXT3003 combinational therapy delays disease onset in a transgenic rat model of Charcot-Marie-Tooth disease 1A (CMT1A). PLOS ONE 14:e0209752
    [Google Scholar]
  114. 114. 
    Chumakov I, Milet A, Cholet N, Primas G, Boucard A et al. 2014. Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy. Orphanet J. Rare Dis. 9:201
    [Google Scholar]
  115. 115. 
    Attarian S, Vallat JM, Magy L, Funalot B, Gonnaud PM et al. 2014. An exploratory randomised double-blind and placebo-controlled phase 2 study of a combination of baclofen, naltrexone and sorbitol (PXT3003) in patients with Charcot-Marie-Tooth disease type 1A. Orphanet J. Rare Dis. 9:199
    [Google Scholar]
  116. 116. 
    Zhao HT, Damle S, Ikeda-Lee K, Kuntz S, Li J et al. 2018. PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. J. Clin. Investig. 128:359–68
    [Google Scholar]
  117. 117. 
    Lee JS, Chang EH, Koo OJ, Jwa DH, Mo WM et al. 2017. Pmp22 mutant allele-specific siRNA alleviates demyelinating neuropathic phenotype in vivo. Neurobiol. Dis. 100:99–107
    [Google Scholar]
  118. 118. 
    Ma CC, Wang ZL, Xu T, He ZY, Wei YQ 2019. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol. Adv. 40:107502
    [Google Scholar]
  119. 119. 
    Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF et al. 2017. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390:849–60
    [Google Scholar]
  120. 120. 
    Sahenk Z, Nagaraja HN, McCracken BS, King WM, Freimer ML et al. 2005. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology 65:681–89
    [Google Scholar]
  121. 121. 
    Sahenk Z, Galloway G, Clark KR, Malik V, Rodino-Klapac LR et al. 2014. AAV1.NT-3 gene therapy for Charcot-Marie-Tooth neuropathy. Mol. Ther. 22:511–21
    [Google Scholar]
  122. 122. 
    Sargiannidou I, Kagiava A, Bashiardes S, Richter J, Christodoulou C et al. 2015. Intraneural GJB1 gene delivery improves nerve pathology in a model of X-linked Charcot-Marie-Tooth disease. Ann. Neurol. 78:303–16
    [Google Scholar]
  123. 123. 
    Kagiava A, Karaiskos C, Richter J, Tryfonos C, Lapathitis G et al. 2018. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum. Mol. Genet. 27:1460–73
    [Google Scholar]
  124. 124. 
    Schiza N, Georgiou E, Kagiava A, Medard JJ, Richter J et al. 2019. Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy. Brain 142:1227–41
    [Google Scholar]
  125. 125. 
    Pennuto M, Tinelli E, Malaguti M, Del Carro U, D'Antonio M et al. 2008. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57:393–405
    [Google Scholar]
  126. 126. 
    D'Antonio M, Musner N, Scapin C, Ungaro D, Del Carro U et al. 2013. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. J. Exp. Med. 210:821–38
    [Google Scholar]
  127. 127. 
    Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M et al. 2015. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348:239–42
    [Google Scholar]
  128. 128. 
    Rocha AG, Franco A, Krezel AM, Rumsey JM, Alberti JM et al. 2018. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 360:336–41
    [Google Scholar]
  129. 129. 
    d'Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J et al. 2011. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 17:968–74
    [Google Scholar]
  130. 130. 
    Benoy V, Van Helleputte L, Prior R, d'Ydewalle C, Haeck W et al. 2018. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain 141:673–87
    [Google Scholar]
  131. 131. 
    Achilli F, Bros-Facer V, Williams HP, Banks GT, AlQatari M et al. 2009. An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Dis. Model. Mech. 2:359–73
    [Google Scholar]
  132. 132. 
    Axelrod FB, Liebes L, Gold-von Simson G, Mendoza S, Mull J et al. 2011. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr. Res. 70:480–83
    [Google Scholar]
  133. 133. 
    Morini E, Gao D, Montgomery CM, Salani M, Mazzasette C et al. 2019. ELP1 splicing correction reverses proprioceptive sensory loss in familial dysautonomia. Am. J. Hum. Genet. 104:638–50
    [Google Scholar]
  134. 134. 
    Li J, Parker B, Martyn C, Natarajan C, Guo J 2013. The PMP22 gene and its related diseases. Mol. Neurobiol. 47:673–98
    [Google Scholar]
  135. 135. 
    Lee SM, Chin LS, Li L 2012. Protein misfolding and clearance in demyelinating peripheral neuropathies: therapeutic implications. Commun. Integr. Biol. 5:107–10
    [Google Scholar]
  136. 136. 
    Jerath NU, Shy ME. 2017. Charcot-Marie-Tooth disease type 1C: clinical and electrophysiological findings for the c.334G>a (p.Gly112Ser) Litaf/Simple mutation. Muscle Nerve 56:1092–95
    [Google Scholar]
  137. 137. 
    Bennett CL, Shirk AJ, Huynh HM, Street VA, Nelis E et al. 2004. SIMPLE mutation in demyelinating neuropathy and distribution in sciatic nerve. Ann. Neurol. 55:713–20
    [Google Scholar]
  138. 138. 
    Srinivasan R, Sun G, Keles S, Jones EA, Jang SW et al. 2012. Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve. Nucleic Acids Res 40:6449–60
    [Google Scholar]
  139. 139. 
    Jordanova A, De Jonghe P, Boerkoel CF, Takashima H, De Vriendt E et al. 2003. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain 126:590–97
    [Google Scholar]
  140. 140. 
    Yum SW, Zhang J, Mo K, Li J, Scherer SS 2009. A novel recessive Nefl mutation causes a severe, early-onset axonal neuropathy. Ann. Neurol. 66:759–70
    [Google Scholar]
  141. 141. 
    Hong YB, Joo J, Hyun YS, Kwak G, Choi YR et al. 2016. A mutation in PMP2 causes dominant demyelinating Charcot-Marie-Tooth neuropathy. PLOS Genet 12:e1005829
    [Google Scholar]
  142. 142. 
    Evans WH, Martin PE. 2002. Gap junctions: structure and function (review). Mol. Membr. Biol. 19:121–36
    [Google Scholar]
  143. 143. 
    Berger P, Bonneick S, Willi S, Wymann M, Suter U 2002. Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum. Mol. Genet. 11:1569–79
    [Google Scholar]
  144. 144. 
    Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M et al. 2003. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am. J. Hum. Genet. 72:1141–53
    [Google Scholar]
  145. 145. 
    Nakhro K, Park JM, Hong YB, Park JH, Nam SH et al. 2013. SET binding factor 1 (SBF1) mutation causes Charcot-Marie-Tooth disease type 4B3. Neurology 81:165–73
    [Google Scholar]
  146. 146. 
    Vijay S, Chiu M, Dacks JB, Roberts RC 2016. Exclusive expression of the Rab11 effector SH3TC2 in Schwann cells links integrin-α6 and myelin maintenance to Charcot-Marie-Tooth disease type 4C. Biochim. Biophys. Acta Mol. Basis Dis. 1862:1279–90
    [Google Scholar]
  147. 147. 
    Kalaydjieva L, Gresham D, Gooding R, Heather L, Baas F et al. 2000. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am. J. Hum. Genet. 67:47–58
    [Google Scholar]
  148. 148. 
    King RH, Chandler D, Lopaticki S, Huang D, Blake J et al. 2011. Ndrg1 in development and maintenance of the myelin sheath. Neurobiol. Dis. 42:368–80
    [Google Scholar]
  149. 149. 
    Stendel C, Roos A, Deconinck T, Pereira J, Castagner F et al. 2007. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am. J. Hum. Genet. 81:158–64
    [Google Scholar]
  150. 150. 
    Hu B, McCollum M, Ravi V, Arpag S, Moiseev D et al. 2018. Myelin abnormality in Charcot-Marie-Tooth type 4J recapitulates features of acquired demyelination. Ann. Neurol. 83:756–70
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-030320-100822
Loading
/content/journals/10.1146/annurev-pathol-030320-100822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error