1932

Abstract

Despite the advent of sophisticated and efficient new biologics to treat inflammation in asthma, the disease persists. Even following treatment, many patients still experience the well-known symptoms of wheezing, shortness of breath, and coughing. What are we missing? Here we examine the evidence that mucus plugs contribute to a substantial portion of disease, not only by physically obstructing the airways but also by perpetuating inflammation. In this way, mucus plugs may act as an immunogenic stimulus even in the absence of allergen or with the use of current therapeutics. The alterations of several parameters of mucus biology, driven by type 2 inflammation, result in sticky and tenacious sputum, which represents a potent threat, first due to the difficulties in expectoration and second by acting as a platform for viral, bacterial, or fungal colonization that allows exacerbations. Therefore, in this way, mucus plugs are an overlooked but critical feature of asthmatic airway disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042220-015902
2023-01-24
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathol-042220-015902.html?itemId=/content/journals/10.1146/annurev-pathol-042220-015902&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E et al. 2018. After asthma: redefining airways diseases. Lancet 391:350–400
    [Google Scholar]
  2. 2.
    To T, Stanojevic S, Moores G, Gershon AS, Bateman ED et al. 2012. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 12:204
    [Google Scholar]
  3. 3.
    GINA (Glob. Initiat. Asthma) 2019. Difficult-to-treat and severe asthma in adolescent and adult patients—diagnosis and management. A GINA pocket guide for health professionals Fontana, WI: Glob. Initiat. Asthma https://ginasthma.org/pocket-guide-for-asthma-management-and-prevention/
    [Google Scholar]
  4. 4.
    Sadatsafavi M, Lynd L, Marra C, Carleton B, Tan WC et al. 2010. Direct health care costs associated with asthma in British Columbia. Can. Respir. J. 17:74–80
    [Google Scholar]
  5. 5.
    Nurmagambetov T, Kuwahara R, Garbe P. 2018. The economic burden of asthma in the United States, 2008–2013. Ann. Am. Thorac. Soc. 15:348–56
    [Google Scholar]
  6. 6.
    Yaghoubi M, Adibi A, Safari A, FitzGerald JM, Sadatsafavi M. 2019. The projected economic and health burden of uncontrolled asthma in the United States. Am. J. Respir. Crit. Care Med. 200:1102–12
    [Google Scholar]
  7. 7.
    Anderson GP. 2008. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372:1107–19
    [Google Scholar]
  8. 8.
    Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB et al. 2011. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 127:355–60
    [Google Scholar]
  9. 9.
    Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR et al. 2009. T-helper type 2–driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180:388–95
    [Google Scholar]
  10. 10.
    Bachert C, Bhattacharyya N, Desrosiers M, Khan AH. 2021. Burden of disease in chronic rhinosinusitis with nasal polyps. J. Asthma Allergy 14:127–34
    [Google Scholar]
  11. 11.
    Denning DW, O'Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. 2006. The link between fungi and severe asthma: a summary of the evidence. Eur. Respir. J. 27:615–26
    [Google Scholar]
  12. 12.
    Bachert C, Humbert M, Hanania NA, Zhang N, Holgate S et al. 2020. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur. Respir. J. 55:41901592
    [Google Scholar]
  13. 13.
    Porter PC, Lim DJ, Maskatia ZK, Mak G, Tsai CL et al. 2014. Airway surface mycosis in chronic TH2-associated airway disease. J. Allergy Clin. Immunol. 134:325–31
    [Google Scholar]
  14. 14.
    Svenningsen S, Haider E, Boylan C, Mukherjee M, Eddy RL et al. 2019. CT and functional MRI to evaluate airway mucus in severe asthma. Chest 155:1178–89
    [Google Scholar]
  15. 15.
    McIntosh MJ, Kooner HK, Eddy RL, Jeimy S, Licskai C et al. 2022. Asthma control, airway mucus and 129Xe MRI ventilation after a single benralizumab dose. Chest 162352033
    [Google Scholar]
  16. 16.
    Dunican EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML et al. 2018. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Investig. 128:997–1009
    [Google Scholar]
  17. 17.
    Garcia-Clemente M, Enriquez-Rodriguez AI, Iscar-Urrutia M, Escobar-Mallada B, Arias-Guillen M et al. 2020. Severe asthma and bronchiectasis. J. Asthma 57:505–9
    [Google Scholar]
  18. 18.
    Hammad H, Lambrecht BN. 2021. The basic immunology of asthma. Cell 184:1469–85
    [Google Scholar]
  19. 19.
    Lambrecht BN, Hammad H, Fahy JV 2019. The cytokines of asthma. Immunity 50:975–91
    [Google Scholar]
  20. 20.
    Morgan LE, Jaramillo AM, Shenoy SK, Raclawska D, Emezienna NA et al. 2021. Disulfide disruption reverses mucus dysfunction in allergic airway disease. Nat. Commun. 12:249
    [Google Scholar]
  21. 21.
    Hogg JC. 1997. The pathology of asthma. J. Pathol. Microbiol. Immunol. 105:735–45
    [Google Scholar]
  22. 22.
    Bonser LR, Zlock L, Finkbeiner W, Erle DJ. 2016. Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J. Clin. Investig. 126:2367–71
    [Google Scholar]
  23. 23.
    Dunican EM, Watchorn DC, Fahy JV. 2018. Autopsy and imaging studies of mucus in asthma. Lessons learned about disease mechanisms and the role of mucus in airflow obstruction. Ann. Am. Thorac. Soc. 15:S184–91
    [Google Scholar]
  24. 24.
    Kuyper LM, Paré PD, Hogg JC, Lambert RK, Ionescu D et al. 2003. Characterization of airway plugging in fatal asthma. Am. J. Med. 115:6–11
    [Google Scholar]
  25. 25.
    Dunnill MS. 1960. The pathology of asthma, with special reference to changes in the bronchial mucosa. J. Clin. Pathol. 13:27–33
    [Google Scholar]
  26. 26.
    Earle BV. 1953. Fatal bronchial asthma: a series of fifteen cases with a review of the literature. Thorax 8:195–206
    [Google Scholar]
  27. 27.
    Reid LM. 1987. The presence or absence of bronchial mucus in fatal asthma. J. Allergy Clin. Immunol. 80:415–16
    [Google Scholar]
  28. 28.
    Boser SR, Park H, Perry SF, Menache MG, Green FH. 2005. Fractal geometry of airway remodeling in human asthma. Am. J. Respir. Crit. Care Med. 172:817–23
    [Google Scholar]
  29. 29.
    Graff S, Bricmont N, Moermans C, Guissard F, Louis R, Schleich F. 2020. Clinical and biological factors associated with irreverrsible airway obstruction in adult asthma. Respir. Med. 175:106202
    [Google Scholar]
  30. 30.
    Svenningsen S, Kirby M, Starr D, Coxson HO, Paterson NA et al. 2014. What are ventilation defects in asthma?. Thorax 69:63–71
    [Google Scholar]
  31. 31.
    Fain S, Schiebler ML, McCormack DG, Parraga G. 2010. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J. Magn. Reson. Imaging 32:1398–408
    [Google Scholar]
  32. 32.
    Downie SR, Salome CM, Verbanck S, Thompson B, Berend N, King GG. 2007. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax 62:684–89
    [Google Scholar]
  33. 33.
    Mummy DG, Carey KJ, Evans MD, Denlinger LC, Schiebler ML et al. 2020. Ventilation defects on hyperpolarized helium-3 MRI in asthma are predictive of 2-year exacerbation frequency. J. Allergy Clin. Immunol. 146:831–39.e6
    [Google Scholar]
  34. 34.
    Teague WG, Mata J, Qing K, Tustison NJ, Mugler JP et al. 2021. Measures of ventilation heterogeneity mapped with hyperpolarized helium-3 MRI demonstrate a T2-high phenotype in asthma. Pediatr. Pulmonol. 56:1440–48
    [Google Scholar]
  35. 35.
    Harrison TW, Chanez P, Menzella F, Canonica GW, Louis R et al. 2021. Onset of effect and impact on health-related quality of life, exacerbation rate, lung function, and nasal polyposis symptoms for patients with severe eosinophilic asthma treated with benralizumab (ANDHI): a randomised, controlled, phase 3b trial. Lancet Respir. Med. 9:260–74
    [Google Scholar]
  36. 36.
    Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M et al. 2018. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N. Engl. J. Med. 378:2475–85
    [Google Scholar]
  37. 37.
    Svenningsen S, Eddy RL, Kjarsgaard M, Parraga G, Nair P. 2020. Effects of anti-T2 biologic treatment on lung ventilation evaluated by MRI in adults with prednisone-dependent asthma. Chest 158:1350–60
    [Google Scholar]
  38. 38.
    Adams DC, Miller AJ, Applegate MB, Cho JL, Hamilos DL et al. 2019. Quantitative assessment of airway remodelling and response to allergen in asthma. Respirology 24:1073–80
    [Google Scholar]
  39. 39.
    Kasahara K, Shiba K, Ozawa T, Okuda K, Adachi M. 2002. Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma. Thorax 57:242–46
    [Google Scholar]
  40. 40.
    Dame Carroll JR, Magnussen JS, Berend N, Salome CM, King GG 2015. Greater parallel heterogeneity of airway narrowing and airway closure in asthma measured by high-resolution CT. Thorax 70:1163–70
    [Google Scholar]
  41. 41.
    Payne DN, Rogers AV, Adelroth E, Bandi V, Guntupalli KK et al. 2003. Early thickening of the reticular basement membrane in children with difficult asthma. Am. J. Respir. Crit. Care Med. 167:78–82
    [Google Scholar]
  42. 42.
    Jeffery PK. 1992. Pathology of asthma. Br. Med. Bull. 48:23–29
    [Google Scholar]
  43. 43.
    Bakshani CR, Morales-Garcia AL, Althaus M, Wilcox MD, Pearson JP et al. 2018. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. NPJ Biofilms Microbiomes 4:14
    [Google Scholar]
  44. 44.
    McMillan SJ, Lloyd CM. 2004. Prolonged allergen challenge in mice leads to persistent airway remodelling. Clin. Exp. Allergy 34:497–507
    [Google Scholar]
  45. 45.
    Nials AT, Uddin S. 2008. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis. Model. Mech. 1:213–20
    [Google Scholar]
  46. 46.
    Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM et al. 2012. Human versus mouse eosinophils: “That which we call an eosinophil, by any other name would stain as red. .” J. Allergy Clin. Immunol. 130:572–84
    [Google Scholar]
  47. 47.
    King M, Dasgupta B, Tomkiewicz RP, Brown NE. 1997. Rheology of cystic fibrosis sputum after in vitro treatment with hypertonic saline alone and in combination with recombinant human deoxyribonuclease I. Am. J. Respir. Crit. Care Med. 156:173–77
    [Google Scholar]
  48. 48.
    Markovetz MR, Subramani DB, Kissner WJ, Morrison CB, Garbarine IC et al. 2019. Endotracheal tube mucus as a source of airway mucus for rheological study. Am. J. Physiol. Lung. Cell. Mol. Physiol. 317:L498–509
    [Google Scholar]
  49. 49.
    Patarin J, Ghiringhelli E, Darsy G, Obamba M, Bochu P et al. 2020. Rheological analysis of sputum from patients with chronic bronchial diseases. Sci. Rep. 10:15685
    [Google Scholar]
  50. 50.
    Innes AL, Carrington SD, Thornton DJ, Kirkham S, Rousseau K et al. 2009. Ex vivo sputum analysis reveals impairment of protease-dependent mucus degradation by plasma proteins in acute asthma. Am. J. Respir. Crit. Care Med. 180:203–10
    [Google Scholar]
  51. 51.
    Saito DM, Innes AL, Pletcher SD. 2010. Rheologic properties of sinonasal mucus in patients with chronic sinusitis. Am. J. Rhinol. Allergy 24:1–5
    [Google Scholar]
  52. 52.
    Thornton DJ, Rousseau K, McGuckin MA. 2008. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70:459–86
    [Google Scholar]
  53. 53.
    Lachowicz-Scroggins ME, Yuan S, Kerr SC, Carrington SD, Fahy JV. 2016. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am. J. Respir. Crit. Care Med. 194:1296–99
    [Google Scholar]
  54. 54.
    Evans CM, Raclawska DS, Ttofali F, Liptzin DR, Fletcher AA et al. 2015. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat. Commun. 6:6281
    [Google Scholar]
  55. 55.
    Carpenter J, Wang Y, Gupta R, Li Y, Haridass P et al. 2021. Assembly and organization of the N-terminal region of mucin MUC5AC: indications for structural and functional distinction from MUC5B. PNAS 118:39e2104490118
    [Google Scholar]
  56. 56.
    Ostedgaard LS, Moninger TO, McMenimen JD, Sawin NM, Parker CP et al. 2017. Gel-forming mucins form distinct morphologic structures in airways. PNAS 114:6842–47
    [Google Scholar]
  57. 57.
    Saku A, Hirose K, Ito T, Iwata A, Sato T et al. 2019. Fucosyltransferase 2 induces lung epithelial fucosylation and exacerbates house dust mite–induced airway inflammation. J. Allergy Clin. Immunol. 144:698–709.e9
    [Google Scholar]
  58. 58.
    Innes AL, McGrath KW, Dougherty RH, McCulloch CE, Woodruff PG et al. 2011. The H antigen at epithelial surfaces is associated with susceptibility to asthma exacerbation. Am. J. Respir. Crit. Care Med. 183:189–94
    [Google Scholar]
  59. 59.
    Cho JL, Ling MF, Adams DC, Faustino L, Islam SA et al. 2016. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation. Sci. Transl. Med. 8:359ra132
    [Google Scholar]
  60. 60.
    Nakao I, Kanaji S, Ohta S, Matsushita H, Arima K et al. 2008. Identification of pendrin as a common mediator for mucus production in bronchial asthma and chronic obstructive pulmonary disease. J. Immunol. 180:6262–69
    [Google Scholar]
  61. 61.
    Rajavelu P, Chen G, Xu Y, Kitzmiller JA, Korfhagen TR, Whitsett JA. 2015. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. J. Clin. Investig. 125:2021–31
    [Google Scholar]
  62. 62.
    Grünig G, Warnock M, Wakil AE, Venkayya R, Brombacher F et al. 1998. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261–63
    [Google Scholar]
  63. 63.
    Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY et al. 1998. Interleukin-13: central mediator of allergic asthma. Science 282:2258–61
    [Google Scholar]
  64. 64.
    Jackson ND, Everman JL, Chioccioli M, Feriani L, Goldfarbmuren KC et al. 2020. Single-cell and population transcriptomics reveal pan-epithelial remodeling in type 2-high asthma. Cell Rep. 32:107872
    [Google Scholar]
  65. 65.
    Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K et al. 2019. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25:1153–63
    [Google Scholar]
  66. 66.
    Sweerus K, Lachowicz-Scroggins M, Gordon E, LaFemina M, Huang X et al. 2017. Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J. Allergy Clin. Immunol. 139:72–81.e1
    [Google Scholar]
  67. 67.
    Jia Z, Bao K, Wei P, Yu X, Zhang Y et al. 2021. EGFR activation-induced decreases in claudin1 promote MUC5AC expression and exacerbate asthma in mice. Mucosal Immunol. 14:125–34
    [Google Scholar]
  68. 68.
    Ober C. 2016. Asthma genetics in the post-GWAS era. Ann. Am. Thorac. Soc. 13:Suppl. 1S85–90
    [Google Scholar]
  69. 69.
    Altman MC, Flynn K, Rosasco MG, Dapas M, Kattan M et al. 2021. Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children. J. Allergy Clin. Immunol. 148:1505–14
    [Google Scholar]
  70. 70.
    Sajuthi SP, Everman JL, Jackson ND, Saef B, Rios CL et al. 2022. Nasal airway transcriptome-wide association study of asthma reveals genetically driven mucus pathobiology. Nat. Commun. 13:1632
    [Google Scholar]
  71. 71.
    Ober C, Chupp GL. 2009. The chitinase and chitinase-like proteins: a review of genetic and functional studies in asthma and immune-mediated diseases. Curr. Opin. Allergy Clin. Immunol. 9:401–8
    [Google Scholar]
  72. 72.
    Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK et al. 2016. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 1:e90151
    [Google Scholar]
  73. 73.
    Cardenas A, Sordillo JE, Rifas-Shiman SL, Chung W, Liang L et al. 2019. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat. Commun. 10:3095
    [Google Scholar]
  74. 74.
    Nicodemus-Johnson J, Naughton KA, Sudi J, Hogarth K, Naurekas ET et al. 2016. Genome-wide methylation study identifies an IL-13-induced epigenetic signature in asthmatic airways. Am. J. Respir. Crit. Care Med. 193:376–85
    [Google Scholar]
  75. 75.
    Svenningsen S, Eddy RL, Lim HF, Cox PG, Nair P, Parraga G. 2018. Sputum eosinophilia and magnetic resonance imaging ventilation heterogeneity in severe asthma. Am. J. Respir. Crit. Care Med. 197:876–84
    [Google Scholar]
  76. 76.
    Shapira U, Krubiner M, Ehrenwald M, Shapira I, Zeltser D et al. 2019. Eosinophil levels predict lung function deterioration in apparently healthy individuals. Int. J. Chron. Obstruct. Pulmon. Dis. 14:597–603
    [Google Scholar]
  77. 77.
    Hancox RJ, Pavord ID, Sears MR. 2018. Associations between blood eosinophils and decline in lung function among adults with and without asthma. Eur. Respir. J. 51:41702536
    [Google Scholar]
  78. 78.
    Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A et al. 2003. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Investig. 112:1029–36
    [Google Scholar]
  79. 79.
    Filley WV, Kephart GM, Holley KE, Gleich GJ. 1982. Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet 320:11–16
    [Google Scholar]
  80. 80.
    Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS et al. 2007. Coexpression of IL-5and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J. Immunol. 178:7879–89
    [Google Scholar]
  81. 81.
    Ueki S, Konno Y, Takeda M, Moritoki Y, Hirokawa M et al. 2016. Eosinophil extracellular trap cell death–derived DNA traps: their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 137:258–67
    [Google Scholar]
  82. 82.
    Muniz VS, Silva JC, Braga YAV, Melo RCN, Ueki S et al. 2018. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J. Allergy Clin. Immunol. 141:571–85.e7
    [Google Scholar]
  83. 83.
    Linssen RS, Chai G, Ma J, Kummarapurugu AB, van Woensel JBM et al. 2021. Neutrophil extracellular traps increase airway mucus viscoelasticity and slow mucus particle transit. Am. J. Respir. Cell Mol. Biol. 64:69–78
    [Google Scholar]
  84. 84.
    Ma JT, Tang C, Kang L, Voynow JA, Rubin BK. 2018. Cystic fibrosis sputum rheology correlates with both acute and longitudinal changes in lung function. Chest 154:370–77
    [Google Scholar]
  85. 85.
    Choi Y, Le Pham D, Lee DH, Lee SH, Kim SH, Park HS 2018. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp. Mol. Med. 50:1–8
    [Google Scholar]
  86. 86.
    Lu Y, Huang Y, Li J, Huang J, Zhang L et al. 2021. Eosinophil extracellular traps drive asthma progression through neuro-immune signals. Nat. Cell Biol. 23:1060–72
    [Google Scholar]
  87. 87.
    Smith BAH, Bertozzi CR. 2021. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 20:217–43
    [Google Scholar]
  88. 88.
    Kiwamoto T, Katoh T, Evans CM, Janssen WJ, Brummet ME et al. 2015. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J. Allergy Clin. Immunol. 135:1329–40.e9
    [Google Scholar]
  89. 89.
    Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G et al. 2004. A critical role for eosinophils in allergic airways remodeling. Science 305:1776–79
    [Google Scholar]
  90. 90.
    Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP et al. 2004. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–76
    [Google Scholar]
  91. 91.
    Godar M, Deswarte K, Vergote K, Saunders M, de Haard H et al. 2018. A bispecific antibody strategy to target multiple type 2 cytokines in asthma. J. Allergy Clin. Immunol. 142:1185–93.e4
    [Google Scholar]
  92. 92.
    Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA et al. 2016. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Investig. 126:3279–95
    [Google Scholar]
  93. 93.
    Yun Y, Kanda A, Kobayashi Y, Van Bui D, Suzuki K et al. 2020. Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergol. Int. 69:232–38
    [Google Scholar]
  94. 94.
    Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. 2003. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am. J. Respir. Crit. Care Med. 167:199–204
    [Google Scholar]
  95. 95.
    Doan TC, Jeong BM, Coden ME, Loffredo LF, Bhattacharyya S et al. 2018. Matrix protein tenascin-C expands and reversibly blocks maturation of murine eosinophil progenitors. J. Allergy Clin. Immunol. 142:695–98.e4
    [Google Scholar]
  96. 96.
    Wilkerson EM, Johansson MW, Hebert AS, Westphall MS, Mathur SK et al. 2016. The peripheral blood eosinophil proteome. J. Proteome Res. 15:1524–33
    [Google Scholar]
  97. 97.
    Weller PF, Bach DS, Austen KF 1984. Biochemical characterization of human eosinophil Charcot-Leyden crystal protein (lysophospholipase). J. Biol. Chem. 259:15100–5
    [Google Scholar]
  98. 98.
    Grozdanovic MM, Doyle CB, Liu L, Maybruck BT, Kwatia MA et al. 2020. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J. Allergy Clin. Immunol. 146:377–89.e10
    [Google Scholar]
  99. 99.
    Persson EK, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H et al. 2019. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 364:6442eaaw4295
    [Google Scholar]
  100. 100.
    Charcot JM, Robin C. 1853. Observation de leucocythemie. Mem. Soc. Biol. 5:44–50
    [Google Scholar]
  101. 101.
    Leyden E. 1872. Zur Kenntniss des Bronchial-Asthma. Arch. Pathol. Anat. Physiol. Klin. Med. 54:324–44
    [Google Scholar]
  102. 102.
    Leonidas DD, Elbert BL, Zhou Z, Leffler H, Ackerman SJ, Acharya KR. 1995. Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Structure 3:1379–93
    [Google Scholar]
  103. 103.
    Weller PF, Goetzl EJ, Austen KF 1980. Identification of human eosinophil lysophospholipase as the constituent of Charcot-Leyden crystals. PNAS 77:7440–43
    [Google Scholar]
  104. 104.
    Aegerter H, Smole U, Heyndrickx I, Verstraete K, Savvides SN et al. 2021. Charcot-Leyden crystals and other protein crystals driving type 2 immunity and allergy. Curr. Opin. Immunol. 72:72–78
    [Google Scholar]
  105. 105.
    Hasnain SZ, Evans CM, Roy M, Gallagher AL, Kindrachuk KN et al. 2011. Muc5ac: a critical component mediating the rejection of enteric nematodes. J. Exp. Med. 208:893–900
    [Google Scholar]
  106. 106.
    McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER et al. 2012. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am. J. Respir. Crit. Care Med. 185:612–19
    [Google Scholar]
  107. 107.
    Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P et al. 2021. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 76:835–44
    [Google Scholar]
  108. 108.
    Azim A, Green B, Lau L, Rupani H, Jayasekera N et al. 2021. Peripheral airways type 2 inflammation, neutrophilia and microbial dysbiosis in severe asthma. Allergy 76:2070–78
    [Google Scholar]
  109. 109.
    Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR et al. 2019. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am. J. Respir. Crit. Care Med. 199:1076–85
    [Google Scholar]
  110. 110.
    Boulet LP, Turcotte H, Turcot O, Chakir J. 2003. Airway inflammation in asthma with incomplete reversibility of airflow obstruction. Respir. Med. 97:739–44
    [Google Scholar]
  111. 111.
    Moore WC, Hastie AT, Li X, Li H, Busse WW et al. 2014. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J. Allergy Clin. Immunol. 133:1557–63.e5
    [Google Scholar]
  112. 112.
    Wright TK, Gibson PG, Simpson JL, McDonald VM, Wood LG, Baines KJ. 2016. Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirology 21:467–75
    [Google Scholar]
  113. 113.
    Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18:134–47
    [Google Scholar]
  114. 114.
    Radermecker C, Sabatel C, Vanwinge C, Ruscitti C, Marechal P et al. 2019. Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat. Immunol. 20:1444–55
    [Google Scholar]
  115. 115.
    Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemiere C et al. 2006. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur. Respir. J. 27:483–94
    [Google Scholar]
  116. 116.
    Fahy JV, Kim KW, Liu J, Boushey HA. 1995. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy Clin. Immunol. 95:843–52
    [Google Scholar]
  117. 117.
    Toussaint M, Jackson DJ, Swieboda D, Guedan A, Tsourouktsoglou TD et al. 2017. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat. Med. 23:681–91
    [Google Scholar]
  118. 118.
    Yang X, Li H, Ma Q, Zhang Q, Wang C. 2018. Neutrophilic asthma is associated with increased airway bacterial burden and disordered community composition. Biomed. Res. Int. 2018:9230234
    [Google Scholar]
  119. 119.
    Gevaert E, Delemarre T, De Volder J, Zhang N, Holtappels G et al. 2020. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J. Allergy Clin. Immunol. 145:427–30.e4
    [Google Scholar]
  120. 120.
    Yang C, Montgomery M. 2018. Dornase alfa for cystic fibrosis. Cochrane Database Syst. Rev. 9:CD001127
    [Google Scholar]
  121. 121.
    Silverman RA, Foley F, Dalipi R, Kline M, Lesser M. 2012. The use of rhDNAse in severely ill, non-intubated adult asthmatics refractory to bronchodilators: a pilot study. Respir. Med. 106:1096–102
    [Google Scholar]
  122. 122.
    Claudius C, Perner A, Moller MH. 2015. Nebulised dornase alfa versus placebo or hypertonic saline in adult critically ill patients: a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Syst. Rev. 4:153
    [Google Scholar]
  123. 123.
    Simpson JL, Milne DG, Gibson PG. 2009. Neutrophilic asthma has different radiographic features to COPD and smokers. Respir. Med. 103:881–87
    [Google Scholar]
  124. 124.
    Bullone M, Carriero V, Bertolini F, Folino A, Mannelli A et al. 2019. Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. Eur. Respir. J. 54:51900068
    [Google Scholar]
  125. 125.
    Arron JR, Choy DF, Laviolette M, Kelsen SG, Hatab A et al. 2014. Defining asthma phenotypes solely according to sputum granulocyte proportions may be misleading. Eur. Respir. J. 43:627–29
    [Google Scholar]
  126. 126.
    de Magalhães Simões S, dos Santos MA, da Silva Oliveira M, Fontes ES, Fernezlian S et al. 2005. Inflammatory cell mapping of the respiratory tract in fatal asthma. Clin. Exp. Allergy 35:602–11
    [Google Scholar]
  127. 127.
    Kraft M, Djukanovic R, Wilson S, Holgate ST, Martin RJ. 1996. Alveolar tissue inflammation in asthma. Am. J. Respir. Crit. Care Med. 154:1505–10
    [Google Scholar]
  128. 128.
    Grunwell JR, Stephenson ST, Tirouvanziam R, Brown LAS, Brown MR, Fitzpatrick AM. 2019. Children with neutrophil-predominant severe asthma have proinflammatory neutrophils with enhanced survival and impaired clearance. J. Allergy Clin. Immunol. Pract. 7:516–25.e6
    [Google Scholar]
  129. 129.
    Haddad A, Gaudet M, Plesa M, Allakhverdi Z, Mogas AK et al. 2019. Neutrophils from severe asthmatic patients induce epithelial to mesenchymal transition in healthy bronchial epithelial cells. Respir. Res. 20:234
    [Google Scholar]
  130. 130.
    Yoshida Y, Takaku Y, Nakamoto Y, Takayanagi N, Yanagisawa T et al. 2020. Changes in airway diameter and mucus plugs in patients with asthma exacerbation. PLOS ONE 15:e0229238
    [Google Scholar]
  131. 131.
    Mall MA, Harkema JR, Trojanek JB, Treis D, Livraghi A et al. 2008. Development of chronic bronchitis and emphysema in β-epithelial Na+ channel-overexpressing mice. Am. J. Respir. Crit. Care Med. 177:730–42
    [Google Scholar]
  132. 132.
    Fritzsching B, Hagner M, Dai L, Christochowitz S, Agrawal R et al. 2017. Impaired mucus clearance exacerbates allergen-induced type 2 airway inflammation in juvenile mice. J. Allergy Clin. Immunol. 140:190–203.e5
    [Google Scholar]
  133. 133.
    Yan H, Hjorth M, Winkeljann B, Dobryden I, Lieleg O, Crouzier T. 2020. Glyco-modification of mucin hydrogels to investigate their immune activity. ACS Appl. Mater. Interfaces 12:19324–36
    [Google Scholar]
  134. 134.
    Blakney AK, Swartzlander MD, Bryant SJ. 2012. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100:1375–86
    [Google Scholar]
  135. 135.
    Abaricia JO, Shah AH, Olivares-Navarrete R. 2021. Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation. Biomaterials 271:120715
    [Google Scholar]
  136. 136.
    Erpenbeck L, Gruhn AL, Kudryasheva G, Gunay G, Meyer D et al. 2019. Effect of adhesion and substrate elasticity on neutrophil extracellular trap formation. Front. Immunol. 10:2320
    [Google Scholar]
  137. 137.
    Singanayagam A, Footitt J, Marczynski M, Radicioni G, Cross MT et al. 2022. Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. J. Clin. Investig. 132:8e120901
    [Google Scholar]
  138. 138.
    Woodruff PG, Bhakta NR, Ortega VE, Lambrecht BN, Fahy V 2021. Asthma: pathogenesis and phenotypes. Murray & Nadel's Textbook of Respiratory Medicine VC Broaddus, JD Ernst, TE King Jr., SC Lazarus, KF Sarmiento et al.807–24 Amsterdam: Elsevier
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042220-015902
Loading
/content/journals/10.1146/annurev-pathol-042220-015902
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error