1932

Abstract

Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with its incidence rising steeply. Immunosuppression is a well-established risk factor for cSCC, and this risk factor highlights the critical role of the immune system in regulating cSCC development and progression. Further highlighting the nature of cSCC as an immunological disorder, substantial evidence demonstrates a tight association between cSCC risk and age-related immunosenescence. Besides the proven efficacy of immune checkpoint blockade therapy for advanced cSCC, novel immunotherapy that targets cSCC precursor lesions has shown efficacy for cSCC prevention. Furthermore, the appreciation of the interplay between keratinocytes, commensal papillomaviruses, and the immune system has revealed the possibility for the development of a preventive cSCC vaccine. cSCC shares fundamental aspects of its origin and pathogenesis with mucosal SCCs. Therefore, advances in the field of cSCC immunoprevention will inform our approach to the management of mucosal SCCs and potentially other epithelial cancers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-120056
2022-01-24
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042320-120056.html?itemId=/content/journals/10.1146/annurev-pathol-042320-120056&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kallini JR, Hamed N, Khachemoune A. 2015. Squamous cell carcinoma of the skin: epidemiology, classification, management, and novel trends. Int. J. Dermatol. 54:130–40
    [Google Scholar]
  2. 2. 
    Jones OT, Ranmuthu CK, Hall PN, Funston G, Walter FM. 2020. Recognising skin cancer in primary care. Adv. Ther. 37:603–16
    [Google Scholar]
  3. 3. 
    Que SKT, Zwald FO, Schmults CD. 2018. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 78:237–47
    [Google Scholar]
  4. 4. 
    Am. Cancer Soc 2019. Cancer Facts & Figures 2019 Atlanta: Am. Cancer Soc.
    [Google Scholar]
  5. 5. 
    Cakir BO, Adamson P, Cingi C. 2012. Epidemiology and economic burden of nonmelanoma skin cancer. Facial Plast. Surg. Clin. N. Am. 20:419–22
    [Google Scholar]
  6. 6. 
    Nehal KS, Bichakjian CK. 2018. Update on keratinocyte carcinomas. N. Engl. J. Med. 379:363–74
    [Google Scholar]
  7. 7. 
    Clayman GL, Lee JJ, Holsinger FC, Zhou X, Duvic M et al. 2005. Mortality risk from squamous cell skin cancer. J. Clin. Oncol. 23:759–65
    [Google Scholar]
  8. 8. 
    Blomberg M, He SY, Harwood C, ST Arron, Demehri S et al. 2017. Research gaps in the management and prevention of cutaneous squamous cell carcinoma in organ transplant recipients. Br. J. Dermatol. 177:1225–33
    [Google Scholar]
  9. 9. 
    Karia PS, Han J, Schmults CD. 2013. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J. Am. Acad. Dermatol. 68:957–66
    [Google Scholar]
  10. 10. 
    Miller DL, Weinstock MA. 1994. Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30:774–78
    [Google Scholar]
  11. 11. 
    Muzic JG, Schmitt AR, Wright AC, Alniemi DT, Zubair AS et al. 2017. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: a population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 92:890–98
    [Google Scholar]
  12. 12. 
    Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. 2015. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol 151:1081–86
    [Google Scholar]
  13. 13. 
    Tokez S, Hollestein L, Louwman M, Nijsten T, Wakkee M. 2020. Incidence of multiple versus first cutaneous squamous cell carcinoma on a nationwide scale and estimation of future incidences of cutaneous squamous cell carcinoma. JAMA Dermatol 156:1300–6
    [Google Scholar]
  14. 14. 
    Brantsch KD, Meisner C, Schönfisch B, Trilling B, Wehner-Caroli J et al. 2008. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol 9:713–20
    [Google Scholar]
  15. 15. 
    Schmults CD, Karia PS, Carter JB, Han J, Qureshi AA. 2013. Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: a 10-year, single-institution cohort study. JAMA Dermatol 149:541–47
    [Google Scholar]
  16. 16. 
    Eigentler TK, Leiter U, Häfner H-M, Garbe C, Röcken M, Breuninger H. 2017. Survival of patients with cutaneous squamous cell carcinoma: results of a prospective cohort study. J. Investig. Dermatol. 137:2309–15
    [Google Scholar]
  17. 17. 
    Silberstein E, Sofrin E, Bogdanov-Berezovsky A, Nash M, Segal N. 2015. Lymph node metastasis in cutaneous head and neck squamous cell carcinoma. Dermatol. Surg. 41:1126–29
    [Google Scholar]
  18. 18. 
    Lohmann CM, Solomon AR. 2001. Clinicopathologic variants of cutaneous squamous cell carcinoma. Adv. Anat. Pathol. 8:27–36
    [Google Scholar]
  19. 19. 
    Cassarino DS, DeRienzo DP, Barr RJ. 2006. Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification. Part one. J. Cutan. Pathol. 33:191–206
    [Google Scholar]
  20. 20. 
    Cassarino DS, DeRienzo DP, Barr RJ. 2006. Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification. Part two. J. Cutan. Pathol. 33:261–79
    [Google Scholar]
  21. 21. 
    Motaparthi K, Kapil JP, Velazquez EF. 2017. Cutaneous squamous cell carcinoma: review of the eighth edition of the American Joint Committee on cancer staging guidelines, prognostic factors, and histopathologic variants. Adv. Anat. Pathol. 24:171–94
    [Google Scholar]
  22. 22. 
    de Leeuw J, van der Beek N, Neugebauer WD, Bjerring P, Neumann HM. 2009. Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage. Lasers Surg. Med. 41:96–103
    [Google Scholar]
  23. 23. 
    Dinnes J, Deeks JJ, Chuchu N, Matin RN, Wong KY et al. 2018. Visual inspection and dermoscopy, alone or in combination, for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst. Rev. 2018.12CD011901
    [Google Scholar]
  24. 24. 
    Bottomley MJ, Thomson J, Harwood C, Leigh I 2019. The role of the immune system in cutaneous squamous cell carcinoma. Int. J. Mol. Sci. 20: 2009.
    [Google Scholar]
  25. 25. 
    Jensen P, Hansen S, Moller B, Leivestad T, Pfeffer P et al. 1999. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J. Am. Acad. Dermatol. 40:177–86
    [Google Scholar]
  26. 26. 
    Lanz J, Bouwes Bavinck JN, Westhuis M, Quint KD, Harwood CA et al. 2019. Aggressive squamous cell carcinoma in organ transplant recipients. JAMA Dermatol 155:66–71
    [Google Scholar]
  27. 27. 
    Wehner MR, Linos E, Parvataneni R, Stuart SE, Boscardin WJ, Chren M-M. 2015. Timing of subsequent new tumors in patients who present with basal cell carcinoma or cutaneous squamous cell carcinoma. JAMA Dermatol 151:382–88
    [Google Scholar]
  28. 28. 
    Rowe DE, Carroll RJ, Day CL Jr. 1992. Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip: implications for treatment modality selection. J. Am. Acad. Dermatol. 26:976–90
    [Google Scholar]
  29. 29. 
    Euvrard S, Kanitakis J, Claudy A. 2003. Skin cancers after organ transplantation. N. Engl. J. Med. 348:1681–91
    [Google Scholar]
  30. 30. 
    Euvrard S, Kanitakis J, Decullier E, Butnaru AC, Lefrancois N et al. 2006. Subsequent skin cancers in kidney and heart transplant recipients after the first squamous cell carcinoma. Transplantation 81:1093–100
    [Google Scholar]
  31. 31. 
    Stern RS. 2010. Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch. Dermatol. 146:279–82
    [Google Scholar]
  32. 32. 
    Waldman A, Schmults C. 2019. Cutaneous squamous cell carcinoma. Hematol. Oncol. Clin. North Am. 33:1–12
    [Google Scholar]
  33. 33. 
    Wehner MR. 2020. Underestimation of cutaneous squamous cell carcinoma incidence, even in cancer registries. JAMA Dermatol 156:1290–91
    [Google Scholar]
  34. 34. 
    Fania L, Didona D, Di Pietro FR, Verkhovskaia S, Morese R et al. 2021. Cutaneous squamous cell carcinoma: from pathophysiology to novel therapeutic approaches. Biomedicines 9:171
    [Google Scholar]
  35. 35. 
    Guy GP Jr., Machlin SR, Ekwueme DU, Yabroff KR. 2015. Prevalence and costs of skin cancer treatment in the US, 2002–2006 and 2007–2011. Am. J. Prev. Med. 48:183–87
    [Google Scholar]
  36. 36. 
    Johnson TM, Rowe DE, Nelson BR, Swanson NA. 1992. Squamous cell carcinoma of the skin (excluding lip and oral mucosa). J. Am. Acad. Dermatol. 26:467–84
    [Google Scholar]
  37. 37. 
    Rahimi-Nedjat RK, Tuettenberg A, Sagheb K, Loquai C, Rybczynski B et al. 2021. Factors accelerating recurrences and secondary tumors in cutaneous squamous cell carcinoma. J. Cranio-Maxillofac. Surg. 49:317–22
    [Google Scholar]
  38. 38. 
    Schmitz L, Oster-Schmidt C, Stockfleth E. 2018. Nonmelanoma skin cancer—from actinic keratosis to cutaneous squamous cell carcinoma. J. Dtsch. Dermatol. Ges. 16:1002–13
    [Google Scholar]
  39. 39. 
    Thompson AK, Kelley BF, Prokop LJ, Murad MH, Baum CL. 2016. Risk factors for cutaneous squamous cell carcinoma recurrence, metastasis, and disease-specific death: a systematic review and meta-analysis. JAMA Dermatol 152:419–28
    [Google Scholar]
  40. 40. 
    Watson M, Holman DM, Maguire-Eisen M. 2016. Ultraviolet radiation exposure and its impact on skin cancer risk. Semin. Oncol. Nurs. 32:241–54
    [Google Scholar]
  41. 41. 
    Laikova KV, Oberemok VV, Krasnodubets AM, Gal'chinsky NV, Useinov RZ et al. 2019. Advances in the understanding of skin cancer: ultraviolet radiation, mutations, and antisense oligonucleotides as anticancer drugs. Molecules 24:1516
    [Google Scholar]
  42. 42. 
    Ouhtit A, Nakazawa H, Yamasaki H, Armstrong BK, Kricker A et al. 1998. UV-radiation-specific p53 mutation frequency in normal skin as a predictor of risk of basal cell carcinoma. J. Natl. Cancer Inst. 90:523–31
    [Google Scholar]
  43. 43. 
    Ziegler A, Jonason AS, Leffellt DJ, Simon JA, Sharma HW et al. 1994. Sunburn and p53 in the onset of skin cancer. Nature 372:773–76
    [Google Scholar]
  44. 44. 
    Setlow RB. 1974. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. PNAS 71:3363–66
    [Google Scholar]
  45. 45. 
    Thomas RF, Scotto J. 1983. Estimating increases in skin cancer morbidity due to increases in ultraviolet radiation exposure. Cancer Investig 1:119–26
    [Google Scholar]
  46. 46. 
    English DR, Armstrong BK, Kricker A, Winter MG, Heenan PJ, Randell PL. 1998. Demographic characteristics, pigmentary and cutaneous risk factors for squamous cell carcinoma of the skin: a case-control study. Int. J. Cancer 76:628–34
    [Google Scholar]
  47. 47. 
    Zwald FOR, Brown M. 2011. Skin cancer in solid organ transplant recipients: advances in therapy and management: part II. Management of skin cancer in solid organ transplant recipients. J. Am. Acad. Dermatol. 65:263–79
    [Google Scholar]
  48. 48. 
    Medina EM, Romero CJ, de la Cámara AG, Bernal AR, Municio AM, González EM. 2009. Malignancy after liver transplantation: cumulative risk for development. Transplant. Proc. 41:2447–49
    [Google Scholar]
  49. 49. 
    Sheil AR, Disney AS, Mathew T, Amiss N. 1993. De novo malignancy emerges as a major cause of morbidity and late failure in renal transplantation. Transplant. Proc. 25:1383–84
    [Google Scholar]
  50. 50. 
    Wilkins K, Turner R, Dolev JC, LeBoit PE, Berger TG, Maurer TA. 2006. Cutaneous malignancy and human immunodeficiency virus disease. J. Am. Acad. Dermatol. 54:189–206
    [Google Scholar]
  51. 51. 
    Kang KW, Lee DL, Shin HK, Jung GY, Lee JH, Jeon MS. 2016. A retrospective clinical view of basal cell carcinoma and squamous cell carcinoma in the head and neck region: a single institution's experience of 247 cases over 19 years. Arch. Craniofac. Surg. 17:56–62
    [Google Scholar]
  52. 52. 
    Pandeya N, Olsen CM, Whiteman DC. 2017. The incidence and multiplicity rates of keratinocyte cancers in Australia. Med. J. Aust. 207:339–43
    [Google Scholar]
  53. 53. 
    Yousef H, Sharma S. 2018. Anatomy, Skin (Integument), Epidermis St. Petersburg, FL: StatPearls Publ.
    [Google Scholar]
  54. 54. 
    Veijouye SJ, Abazar Y, Heidari F, Sajedi N, Moghani FG, Nobakht M. 2017. Bulge region as a putative hair follicle stem cells niche: a brief review. Iran. J. Public Health 46:1167–75
    [Google Scholar]
  55. 55. 
    Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT. 2012. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Investig. 122:464–72
    [Google Scholar]
  56. 56. 
    Kamstrup MR, Gniadecki R, Skovgaard GL. 2007. Putative cancer stem cells in cutaneous malignancies. Exp. Dermatol. 16:297–301
    [Google Scholar]
  57. 57. 
    Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL et al. 2020. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182:497–514.e22
    [Google Scholar]
  58. 58. 
    Frazzette N, Khodadadi-Jamayran A, Doudican N, Santana A, Felsen D et al. 2020. Decreased cytotoxic T cells and TCR clonality in organ transplant recipients with squamous cell carcinoma. NPJ Precis. Oncol. 4:13
    [Google Scholar]
  59. 59. 
    Marinkovich MP. 2007. Laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer 7:370–80
    [Google Scholar]
  60. 60. 
    Dajee M, Lazarov M, Zhang JY, Cai T, Green CL et al. 2003. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421:639–43
    [Google Scholar]
  61. 61. 
    Martins VL, Vyas JJ, Chen M, Purdie K, Mein CA et al. 2009. Increased invasive behaviour in cutaneous squamous cell carcinoma with loss of basement-membrane type VII collagen. J. Cell Sci. 122:1788–99
    [Google Scholar]
  62. 62. 
    Fernandez-Figueras M-T, Puig L. 2020. The role of epithelial-to-mesenchymal transition in cutaneous squamous cell carcinoma. Epithelial-to-mesenchymal transition in cutaneous SCC. Curr. Treat. Options Oncol. 21:47
    [Google Scholar]
  63. 63. 
    Stojadinovic O, Ramirez H, Pastar I, Gordon KA, Stone R et al. 2017. MiR-21 and miR-205 are induced in invasive cutaneous squamous cell carcinomas. Arch. Dermatol. Res. 309:133–39
    [Google Scholar]
  64. 64. 
    Berman B, Cockerell CJ. 2013. Pathobiology of actinic keratosis: ultraviolet-dependent keratinocyte proliferation. J. Am. Acad. Dermatol. 68:S10–19
    [Google Scholar]
  65. 65. 
    McGregor J, Yu CW, Dublin E, Levison D, MacDonald D. 1992. Aberrant expression of p53 tumour-suppressor protein in non-melanoma skin cancer. Br. J. Dermatol. 127:463–69
    [Google Scholar]
  66. 66. 
    Fearon ER, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell 61:759–67
    [Google Scholar]
  67. 67. 
    Thomson J, Bewicke-Copley F, Anene CA, Gulati A, Nagano A et al. 2021. The genomic landscape of actinic keratosis. J. Investig. Dermatol 141:166474.e7
    [Google Scholar]
  68. 68. 
    Marks R, Rennie G, Selwood T 1988. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet 331:795–97
    [Google Scholar]
  69. 69. 
    Fernandez Figueras M. 2017. From actinic keratosis to squamous cell carcinoma: pathophysiology revisited. J. Eur. Acad. Dermatol. Venereol. 31:5–7
    [Google Scholar]
  70. 70. 
    Nowell CS, Radtke F. 2017. Notch as a tumour suppressor. Nat. Rev. Cancer 17:145–59
    [Google Scholar]
  71. 71. 
    Vauclair S, Majo F, Durham A-D, Ghyselinck NB, Barrandon Y, Radtke F. 2007. Corneal epithelial cell fate is maintained during repair by Notch1 signaling via the regulation of vitamin A metabolism. Dev. Cell 13:242–53
    [Google Scholar]
  72. 72. 
    Collins CA, Watt FM. 2008. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and Notch signalling. Dev. Biol. 324:55–67
    [Google Scholar]
  73. 73. 
    Syed Z, Cheepala SB, Gill JN, Stein J, Nathan CA et al. 2009. All-trans retinoic acid suppresses Stat3 signaling during skin carcinogenesis. Cancer Prev. Res. 2:903–11
    [Google Scholar]
  74. 74. 
    Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V et al. 2007. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev 21:562–77
    [Google Scholar]
  75. 75. 
    Demehri S, Turkoz A, Kopan R. 2009. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 16:55–66
    [Google Scholar]
  76. 76. 
    Giachino C, Boulay J-L, Ivanek R, Alvarado A, Tostado C et al. 2015. A tumor suppressor function for Notch signaling in forebrain tumor subtypes. Cancer Cell 28:730–42
    [Google Scholar]
  77. 77. 
    Parsa R, Yang A, McKeon F, Green H. 1999. Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J. Investig. Dermatol. 113:1099–105
    [Google Scholar]
  78. 78. 
    Rocco JW, Leong C-O, Kuperwasser N, DeYoung MP, Ellisen LW. 2006. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9:45–56
    [Google Scholar]
  79. 79. 
    Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C et al. 2001. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20:3427–36
    [Google Scholar]
  80. 80. 
    Zheng Q, Capell BC, Parekh V, O'Day C, Atillasoy C et al. 2020. Whole-exome and transcriptome analysis of UV-exposed epidermis and carcinoma in situ reveals early drivers of carcinogenesis. J. Investig. Dermatol. 141:295–307.e13
    [Google Scholar]
  81. 81. 
    Lazarov M, Kubo Y, Cai T, Dajee M, Tarutani M et al. 2002. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nat. Med. 8:1105–14
    [Google Scholar]
  82. 82. 
    Sarin KY, Lin Y, Daneshjou R, Ziyatdinov A, Thorleifsson G et al. 2020. Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma. Nat. Commun. 11:820
    [Google Scholar]
  83. 83. 
    Chahal HS, Lin Y, Ransohoff KJ, Hinds DA, Wu W et al. 2016. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat. Commun 7:12048
    [Google Scholar]
  84. 84. 
    Siiskonen SJ, Zhang M, Li W-Q, Liang L, Kraft P et al. 2016. A genome-wide association study of cutaneous squamous cell carcinoma among European descendants. Cancer Epidemiol. Prev. Biomark. 25:714–20
    [Google Scholar]
  85. 85. 
    Asgari MM, Wang W, Ioannidis NM, Itnyre J, Hoffmann T et al. 2016. Identification of susceptibility loci for cutaneous squamous cell carcinoma. J. Investig. Dermatol. 136:930–37
    [Google Scholar]
  86. 86. 
    Reinehr CPH, Bakos RM. 2019. Actinic keratoses: review of clinical, dermoscopic, and therapeutic aspects. An. Bras. Dermatol. 94:637–57
    [Google Scholar]
  87. 87. 
    Moy RL. 2000. Clinical presentation of actinic keratoses and squamous cell carcinoma. J. Am. Acad. Dermatol. 42:S8–10
    [Google Scholar]
  88. 88. 
    Parekh V, Seykora JT. 2017. Cutaneous squamous cell carcinoma. Clin. Lab. Med. 37:503–25
    [Google Scholar]
  89. 89. 
    Jennings L, Schmults CD. 2010. Management of high-risk cutaneous squamous cell carcinoma. J. Clin. Aesthet. Dermatol. 3:39–48
    [Google Scholar]
  90. 90. 
    Mittal A, Colegio O. 2017. Skin cancers in organ transplant recipients. Am. J. Transplant. 17:2509–30
    [Google Scholar]
  91. 91. 
    Abikhair M, Mitsui H, Yanofsky V, Roudiani N, Ovits C et al. 2016. Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22. JCI Insight 1:8e86434
    [Google Scholar]
  92. 92. 
    Wu X, Nguyen BC, Dziunycz P, Chang S, Brooks Y et al. 2010. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature 465:368–72
    [Google Scholar]
  93. 93. 
    Inman GJ, Wang J, Nagano A, Alexandrov LB, Purdie KJ et al. 2018. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun 9:3667
    [Google Scholar]
  94. 94. 
    Bottomley MJ, Harden PN, Wood KJ. 2016. CD8+ immunosenescence predicts post-transplant cutaneous squamous cell carcinoma in high-risk patients. J. Am. Soc. Nephrol. 27:1505–15
    [Google Scholar]
  95. 95. 
    Nindl I, Gottschling M, Stockfleth E. 2007. Human papillomaviruses and non-melanoma skin cancer: basic virology and clinical manifestations. Dis. Markers 23:247–59
    [Google Scholar]
  96. 96. 
    Hufbauer M, Akgül B. 2017. Molecular mechanisms of human papillomavirus induced skin carcinogenesis. Viruses 9:187
    [Google Scholar]
  97. 97. 
    Strickley JD, Messerschmidt JL, Awad ME, Li T, Hasegawa T et al. 2019. Immunity to commensal papillomaviruses protects against skin cancer. Nature 575:519–22
    [Google Scholar]
  98. 98. 
    Weissenborn SJ, Nindl I, Purdie K, Harwood C, Proby C et al. 2005. Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J. Investig. Dermatol. 125:93–97
    [Google Scholar]
  99. 99. 
    Hübbers CU, Akgül B. 2015. HPV and cancer of the oral cavity. Virulence 6:244–48
    [Google Scholar]
  100. 100. 
    Gillet LC, Schärer OD. 2006. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106:253–76
    [Google Scholar]
  101. 101. 
    Zebian A, Shaito A, Mazurier F, Rezvani HR, Zibara K. 2019. XPC beyond nucleotide excision repair and skin cancers. Mutat. Res. Rev. Mutat. Res. 782:108286
    [Google Scholar]
  102. 102. 
    Kusakabe M, Onishi Y, Tada H, Kurihara F, Kusao K et al. 2019. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ 41:2
    [Google Scholar]
  103. 103. 
    Gonçalves-Maia M, Gache Y, Basante M, Cosson E, Salavagione E et al. 2020. NK cell and fibroblast-mediated regulation of skin squamous cell carcinoma invasion by CLEC2A is compromised in xeroderma pigmentosum. J. Investig. Dermatol. 140:1723–32
    [Google Scholar]
  104. 104. 
    de Jong SJ, Imahorn E, Itin P, Uitto J, Orth G et al. 2018. Epidermodysplasia verruciformis: inborn errors of immunity to human beta-papillomaviruses. Front. Microbiol. 9:1222
    [Google Scholar]
  105. 105. 
    de Jong SJ, Crequer A, Matos I, Hum D, Gunasekharan V et al. 2018. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J. Exp. Med. 215:2289–310
    [Google Scholar]
  106. 106. 
    Condorelli AG, Dellambra E, Logli E, Zambruno G, Castiglia D. 2019. Epidermolysis bullosa-associated squamous cell carcinoma: from pathogenesis to therapeutic perspectives. Int. J. Mol. Sci. 20:5707
    [Google Scholar]
  107. 107. 
    Green AC, Olsen C. 2017. Cutaneous squamous cell carcinoma: an epidemiological review. Br. J. Dermatol. 177:373–81
    [Google Scholar]
  108. 108. 
    Mounessa J, Qin R, Dunnick CA, Dellavalle RP. 2016. Chemoprevention of keratinocyte carcinomas: an updated review. Am. J. Clin. Dermatol. 17:475–84
    [Google Scholar]
  109. 109. 
    Chen AC, Martin AJ, Choy B, Fernández-Peñas P, Dalziell RA et al. 2015. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med. 373:1618–26
    [Google Scholar]
  110. 110. 
    Kreul SM, Havighurst T, Kim K, Mendonça EA, Wood GS et al. 2012. A phase III skin cancer chemoprevention study of DFMO: long-term follow-up of skin cancer events and toxicity. Cancer Prev. Res. 5:1368–74
    [Google Scholar]
  111. 111. 
    Muranushi C, Olsen CM, Pandeya N, Green AC. 2015. Aspirin and nonsteroidal anti-inflammatory drugs can prevent cutaneous squamous cell carcinoma: a systematic review and meta-analysis. J. Investig. Dermatol. 135:975–83
    [Google Scholar]
  112. 112. 
    George R, Weightman W, Russ GR, Bannister KM, Mathew TH. 2002. Acitretin for chemoprevention of non-melanoma skin cancers in renal transplant recipients. Australas. J. Dermatol. 43:269–73
    [Google Scholar]
  113. 113. 
    Lebwohl M, Swanson N, Anderson LL, Melgaard A, Xu Z, Berman B. 2012. Ingenol mebutate gel for actinic keratosis. N. Engl. J. Med. 366:1010–19
    [Google Scholar]
  114. 114. 
    Cunningham TJ, Tabacchi M, Eliane JP, Tuchayi SM, Manivasagam S et al. 2017. Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy. J. Clin. Investig. 127:106–16
    [Google Scholar]
  115. 115. 
    Weinstock MA, Thwin SS, Siegel JA, Marcolivio K, Means AD et al. 2018. Chemoprevention of basal and squamous cell carcinoma with a single course of fluorouracil, 5%, cream: a randomized clinical trial. JAMA Dermatol 154:167–74
    [Google Scholar]
  116. 116. 
    Demehri S, Turkoz A, Manivasagam S, Yockey LJ, Turkoz M, Kopan R. 2012. Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin. Cancer Cell 22:494–505
    [Google Scholar]
  117. 117. 
    Combalia A, Carrera C. 2020. Squamous cell carcinoma: an update on diagnosis and treatment. Dermatol. Pract. Concept 10:e2020066
    [Google Scholar]
  118. 118. 
    Alam M, Armstrong A, Baum C, Bordeaux JS, Brown M et al. 2018. Guidelines of care for the management of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 78:560–78
    [Google Scholar]
  119. 119. 
    Maubec E, Petrow P, Scheer-Senyarich I, Duvillard P, Lacroix L et al. 2011. Phase II study of cetuximab as first-line single-drug therapy in patients with unresectable squamous cell carcinoma of the skin. J. Clin. Oncol. 29:3419–26
    [Google Scholar]
  120. 120. 
    Foote M, McGrath M, Guminski A, Hughes B, Meakin J et al. 2014. Phase II study of single-agent panitumumab in patients with incurable cutaneous squamous cell carcinoma. Ann. Oncol. 25:2047–52
    [Google Scholar]
  121. 121. 
    Jarkowski A III, Hare R, Loud P, Skitzki JJ, Kane JM III et al. 2016. Systemic therapy in advanced cutaneous squamous cell carcinoma (CSCC): the Roswell Park experience and a review of the literature. Am. J. Clin. Oncol. 39:545–48
    [Google Scholar]
  122. 122. 
    Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A et al. 2018. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med. 379:341–51
    [Google Scholar]
  123. 123. 
    Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R et al. 2016. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17:956–65
    [Google Scholar]
  124. 124. 
    Patel R, Chang ALS. 2019. Immune checkpoint inhibitors for treating advanced cutaneous squamous cell carcinoma. Am. J. Clin. Dermatol. 20:477–82
    [Google Scholar]
  125. 125. 
    Willenbrink T, Jambusaria-Pahlajani A, Arron S, Seckin D, Harwood C, Proby C 2019. Treatment approaches in immunosuppressed patients with advanced cutaneous squamous cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 33:57–60
    [Google Scholar]
  126. 126. 
    Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G et al. 2016. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 48:398–406
    [Google Scholar]
  127. 127. 
    Chitsazzadeh V, Coarfa C, Drummond JA, Nguyen T, Joseph A et al. 2016. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat. Commun 7:12601
    [Google Scholar]
  128. 128. 
    Huang JT, Coughlin CC, Hawryluk EB, Hook K, Humphrey SR et al. 2019. Risk factors and outcomes of nonmelanoma skin cancer in children and young adults. J. Pediatr. 211:152–58
    [Google Scholar]
  129. 129. 
    Li M, Hener P, Zhang Z, Kato S, Metzger D, Chambon P 2006. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. PNAS 103:11736–41
    [Google Scholar]
  130. 130. 
    Rosenberg AR, Tabacchi M, Ngo KH, Wallendorf M, Rosman IS et al. 2019. Skin cancer precursor immunotherapy for squamous cell carcinoma prevention. JCI Insight 4:e125476
    [Google Scholar]
  131. 131. 
    Gupta R, Rady PL, Doan HQ, Tyring SK. 2020. Development of a β-HPV vaccine: updates on an emerging frontier of skin cancer prevention. J. Clin. Virol. 126:104348
    [Google Scholar]
  132. 132. 
    Finn OJ. 2018. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 18:183–94
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-120056
Loading
/content/journals/10.1146/annurev-pathol-042320-120056
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error