1932

Abstract

Molecular monitoring of tumor-derived alterations has an established role in the surveillance of leukemias, and emerging nucleic acid sequencing technologies are likely to similarly transform the clinical management of lymphomas. Lymphomas are well suited for molecular surveillance due to relatively high cell-free DNA and circulating tumor DNA concentrations, high somatic mutational burden, and the existence of stereotyped variants enabling focused interrogation of recurrently altered regions. Here, we review the clinical scenarios and key technologies applicable for the molecular monitoring of lymphomas, summarizing current evidence in the literature regarding molecular subtyping and classification, evaluation of treatment response, the surveillance of active cellular therapies, and emerging clinical trial strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-050520-044652
2023-01-24
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathol-050520-044652.html?itemId=/content/journals/10.1146/annurev-pathol-050520-044652&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hughes T, Deininger M, Hochhaus A, Branford S, Radich J et al. 2006. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108:28–37
    [Google Scholar]
  2. 2.
    Landgren O. 2018. MRD testing in multiple myeloma: from a surrogate marker of clinical outcomes to an every-day clinical tool. Semin. Hematol. 55:1–3
    [Google Scholar]
  3. 3.
    Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL et al. 2015. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood 125:3679–87
    [Google Scholar]
  4. 4.
    Mandel P, Metais P. 1948. Nuclear acids in human blood plasma. C. R. Des Seances Soc. Biol. Ses Filiales 142:241–43
    [Google Scholar]
  5. 5.
    Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. 1977. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–50
    [Google Scholar]
  6. 6.
    Hohaus S, Giachelia M, Massini G, Mansueto G, Vannata B et al. 2009. Cell-free circulating DNA in Hodgkin's and non-Hodgkin's lymphomas. Ann. Oncol. 20:1408–13
    [Google Scholar]
  7. 7.
    Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ et al. 2016. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34:547–55
    [Google Scholar]
  8. 8.
    Heitzer E, Haque IS, Roberts CES, Speicher MR. 2019. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20:71–88
    [Google Scholar]
  9. 9.
    van Dessel LF, Beije N, Helmijr JCA, Vitale SR, Kraan J et al. 2017. Application of circulating tumor DNA in prospective clinical oncology trials – standardization of preanalytical conditions. Mol. Oncol. 11:295–304
    [Google Scholar]
  10. 10.
    Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D et al. 2011. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43:830–37
    [Google Scholar]
  11. 11.
    Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD et al. 2018. Genetics and pathogenesis of diffuse large B-cell lymphoma. N. Engl. J. Med. 378:1396–407
    [Google Scholar]
  12. 12.
    Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A et al. 2018. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 24:679–90
    [Google Scholar]
  13. 13.
    Xu-Monette ZY, Wu L, Visco C, Tai YC, Tzankov A et al. 2012. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 120:3986–96
    [Google Scholar]
  14. 14.
    Scholze H, Stephenson RE, Reynolds R, Shah S, Puri R et al. 2020. Combined EZH2 and Bcl-2 inhibitors as precision therapy for genetically defined DLBCL subtypes. Blood Adv 4:5226–31
    [Google Scholar]
  15. 15.
    Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AF et al. 2016. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci. Transl. Med. 8:364ra155
    [Google Scholar]
  16. 16.
    Esfahani MS, Hamilton EG, Mehrmohamadi M, Nabet BY, Alig SK et al. 2022. Inferring gene expression from cell-free DNA fragmentation profiles. Nat. Biotechnol. 40:4585–97
    [Google Scholar]
  17. 17.
    Araf S, Wang J, Korfi K, Pangault C, Kotsiou E et al. 2018. Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma. Leukemia 32:1258
    [Google Scholar]
  18. 18.
    Magnes T, Wagner S, Thorner AR, Neureiter D, Klieser E et al. 2021. Spatial heterogeneity in large resected diffuse large B-cell lymphoma bulks analysed by massively parallel sequencing of multiple synchronous biopsies. Cancers 13:650
    [Google Scholar]
  19. 19.
    Green MR, Kihira S, Liu CL, Nair RV, Salari R et al. 2015. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. PNAS 112:E1116–25
    [Google Scholar]
  20. 20.
    Suehara Y, Sakata-Yanagimoto M, Hattori K, Nanmoku T, Itoh T et al. 2018. Liquid biopsy for the identification of intravascular large B-cell lymphoma. Haematologica 103:e241–44
    [Google Scholar]
  21. 21.
    Mutter JA, Alig S, Lauer EM, Esfahani MS, Mitschke J et al. 2021. Profiling of circulating tumor DNA for noninvasive disease detection, risk stratification, and MRD monitoring in patients with CNS lymphoma. Blood 138:Suppl. 16
    [Google Scholar]
  22. 22.
    Alig S, Macaulay CW, Kurtz DM, Duhrsen U, Huttmann A et al. 2021. Short diagnosis-to-treatment interval is associated with higher circulating tumor DNA levels in diffuse large B-cell lymphoma. J. Clin. Oncol. 39:2605–16
    [Google Scholar]
  23. 23.
    Spina V, Bruscaggin A, Cuccaro A, Martini M, Di Trani M et al. 2018. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131:2413–25
    [Google Scholar]
  24. 24.
    Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM et al. 2018. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J. Clin. Oncol. 36:2845–53
    [Google Scholar]
  25. 25.
    Delfau-Larue M-H, Van Der Gucht A, Dupuis J, Jais J-P, Nel I et al. 2018. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: distinct prognostic value in follicular lymphoma. Blood Adv 2:807–16
    [Google Scholar]
  26. 26.
    Chen H-Y, Zhang W-L, Zhang L, Yang P, Li F et al. 2021. 5-Hydroxymethylcytosine profiles of cfDNA are highly predictive of R-CHOP treatment response in diffuse large B cell lymphoma patients. Clin. Epigenet. 13:33
    [Google Scholar]
  27. 27.
    Han HS, Escalón MP, Hsiao B, Serafini A, Lossos IS. 2009. High incidence of false-positive PET scans in patients with aggressive non-Hodgkin's lymphoma treated with rituximab-containing regimens. Ann. Oncol. 20:309–18
    [Google Scholar]
  28. 28.
    Spina V, Bruscaggin A, Cuccaro A, Martini M, Di Trani M et al. 2018. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131:2413–25
    [Google Scholar]
  29. 29.
    Woyach JA, Furman RR, Liu T-M, Ozer HG, Zapatka M et al. 2014. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370:2286–94
    [Google Scholar]
  30. 30.
    Sworder B, Kurtz D, Alig S, Frank M, Macauley C et al. 2021. Determinants of resistance to engineered T-cell therapies targeting CD19 in lymphoma. Hematol. Oncol. 39:S2 (Abstr.). https://doi.org/10.1002/hon.6_2879
    [Crossref] [Google Scholar]
  31. 31.
    Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M et al. 2014. Genetics of follicular lymphoma transformation. Cell Rep 6:130–40
    [Google Scholar]
  32. 32.
    Chiu BCH, Chen C, You Q, Chiu R, Venkataraman G et al. 2021. Alterations of 5-hydroxymethylation in circulating cell-free DNA reflect molecular distinctions of subtypes of non-Hodgkin lymphoma. NPJ Genom. Med. 6:11
    [Google Scholar]
  33. 33.
    Roulland S, Kelly RS, Morgado E, Sungalee S, Solal-Celigny P et al. 2014. t(14;18) translocation: a predictive blood biomarker for follicular lymphoma. J. Clin. Oncol. 32:1347–55
    [Google Scholar]
  34. 34.
    Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ et al. 2021. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. 39:1537–47
    [Google Scholar]
  35. 35.
    Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True LD et al. 2015. Sequencing small genomic targets with high efficiency and extreme accuracy. Nat. Methods 12:423
    [Google Scholar]
  36. 36.
    Suehara Y, Sakata-Yanagimoto M, Hattori K, Kusakabe M, Nanmoku T et al. 2019. Mutations found in cell-free DNAs of patients with malignant lymphoma at remission can derive from clonal hematopoiesis. Cancer Sci 110:3375–81
    [Google Scholar]
  37. 37.
    Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M et al. 2020. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood 136:1419–32
    [Google Scholar]
  38. 38.
    Pott C, Hoster E, Delfau-Larue M-H, Beldjord K, Böttcher S et al. 2010. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood 115:3215–23
    [Google Scholar]
  39. 39.
    Rambaldi A, Carlotti E, Oldani E, Della Starza I, Baccarani M et al. 2005. Quantitative PCR of bone marrow BCL2/IgH+ cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood 105:3428–33
    [Google Scholar]
  40. 40.
    Weinberg OK, Ai WZ, Mariappan MR, Shum C, Levy R, Arber DA. 2007. “Minor” BCL2 breakpoints in follicular lymphoma. J. Mol. Diagnost. 9:530–37
    [Google Scholar]
  41. 41.
    Greisman HA, Greiner TC, Yi HS, Hoffman NG. 2008. High-throughput cloning of t(11;14) breakpoints outside the major translocation cluster in mantle cell lymphoma. Blood 112:3752
    [Google Scholar]
  42. 42.
    Voena C, Ladetto M, Astolfi M, Provan D, Gribben J et al. 1997. A novel nested-PCR strategy for the detection of rearranged immunoglobulin heavy-chain genes in B cell tumors. Leukemia 11:1793–98
    [Google Scholar]
  43. 43.
    Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RSK et al. 2001. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412:341–46
    [Google Scholar]
  44. 44.
    Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T et al. 2010. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268–77
    [Google Scholar]
  45. 45.
    Bea S, Zettl A, Wright G, Salaverria I, Jehn P et al. 2005. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood 106:3183–90
    [Google Scholar]
  46. 46.
    Zviran A, Schulman RC, Shah M, Hill STK, Deochand S et al. 2020. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 26:1114–24
    [Google Scholar]
  47. 47.
    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:94–101
    [Google Scholar]
  48. 48.
    Pinyol M, Cobo F, Bea S, Jares P, Nayach I et al. 1998. p16INK4a gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas. Blood 91:2977–84
    [Google Scholar]
  49. 49.
    Sermer D, Pasqualucci L, Wendel H-G, Melnick A, Younes A. 2019. Emerging epigenetic-modulating therapies in lymphoma. Nat. Rev. Clin. Oncol. 16:494–507
    [Google Scholar]
  50. 50.
    Liu M, Oxnard G, Klein E, Swanton C, Seiden M et al. 2020. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 31:745–59
    [Google Scholar]
  51. 51.
    Engels EA. 2007. Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev. 16:401–4
    [Google Scholar]
  52. 52.
    Kanakry J, Ambinder R. 2015. The biology and clinical utility of EBV monitoring in blood. Curr. Top. Microbiol. Immunol. 391:475–99
    [Google Scholar]
  53. 53.
    Chan KCA, Yeung S-W, Lui W-B, Rainer TH, Lo YMD. 2005. Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin. Chem. 51:781–84
    [Google Scholar]
  54. 54.
    Lee T-H, Montalvo L, Chrebtow V, Busch MP. 2001. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion 41:276–82
    [Google Scholar]
  55. 55.
    De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F et al. 2015. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 6:8839
    [Google Scholar]
  56. 56.
    Ibarra A, Zhuang J, Zhao Y, Salathia NS, Huang V et al. 2020. Non-invasive characterization of human bone marrow stimulation and reconstitution by cell-free messenger RNA sequencing. Nat. Commun. 11:400
    [Google Scholar]
  57. 57.
    Metzenmacher M, Váraljai R, Hegedüs B, Cima I, Forster J et al. 2020. Plasma next generation sequencing and droplet digital-qPCR-based quantification of circulating cell-free RNA for noninvasive early detection of cancer. Cancers 12:353
    [Google Scholar]
  58. 58.
    Garcia V, Garcia JM, Silva J, Martin P, Peña C et al. 2009. Extracellular tumor-related mRNA in plasma of lymphoma patients and survival implications. PLOS ONE 4:e8173
    [Google Scholar]
  59. 59.
    Alidousty C, Brandes D, Heydt C, Wagener S, Wittersheim M et al. 2017. Comparison of blood collection tubes from three different manufacturers for the collection of cell-free DNA for liquid biopsy mutation testing. J. Mol. Diagnost. 19:801–4
    [Google Scholar]
  60. 60.
    Frank MJ, Hossain NM, Bukhari A, Dean E, Spiegel JY et al. 2021. Monitoring of circulating tumor DNA improves early relapse detection after axicabtagene ciloleucel infusion in large B-cell lymphoma: results of a prospective multi-institutional trial. J. Clin. Oncol. 39:3034–43
    [Google Scholar]
  61. 61.
    Treon SP, Xu L, Yang G, Zhou Y, Liu X et al. 2012. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N. Engl. J. Med. 367:826–33
    [Google Scholar]
  62. 62.
    Nakamura T, Tateishi K, Niwa T, Matsushita Y, Tamura K et al. 2016. Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas. Neuropathol. Appl. Neurobiol. 42:279–90
    [Google Scholar]
  63. 63.
    Jardin F, Pujals A, Pelletier L, Bohers E, Camus V et al. 2016. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma. Am. J. Hematol. 91:923–30
    [Google Scholar]
  64. 64.
    Ching T, Duncan ME, Newman-Eerkes T, McWhorter MME, Tracy JM et al. 2020. Analytical evaluation of the clonoSEQ assay for establishing measurable (minimal) residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. BMC Cancer 20:612
    [Google Scholar]
  65. 65.
    Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA et al. 2015. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children's Oncology Group study AALL0232. Blood 126:964–71
    [Google Scholar]
  66. 66.
    Mateos M-V, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A et al. 2017. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N. Engl. J. Med. 378:518–28
    [Google Scholar]
  67. 67.
    Thompson PA, Srivastava J, Peterson C, Strati P, Jorgensen JL et al. 2019. Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood 134:1951–59
    [Google Scholar]
  68. 68.
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC et al. 2014. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20:548–54
    [Google Scholar]
  69. 69.
    Cohen JD, Douville C, Dudley JC, Mog BJ, Popoli M et al. 2021. Detection of low-frequency DNA variants by targeted sequencing of the Watson and Crick strands. Nat. Biotechnol. 39:1220–27
    [Google Scholar]
  70. 70.
    Rossi D, Kurtz DM, Roschewski M, Cavalli F, Zucca E, Wilson WH. 2020. The development of liquid biopsy for research and clinical practice in lymphomas: report of the 15-ICML workshop on ctDNA. Hematol. Oncol. 38:34–37
    [Google Scholar]
  71. 71.
    Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG et al. 2017. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8:1324
    [Google Scholar]
  72. 72.
    Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA et al. 2018. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563:579–83
    [Google Scholar]
  73. 73.
    Ivanov M, Baranova A, Butler T, Spellman P, Mileyko V. 2015. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation. BMC Genom 16:Suppl. 13S1
    [Google Scholar]
  74. 74.
    Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. 2016. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68
    [Google Scholar]
  75. 75.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS et al. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–11
    [Google Scholar]
  76. 76.
    Nowakowski GS, Chiappella A, Gascoyne RD, Scott DW, Zhang Q et al. 2021. ROBUST: a phase III study of lenalidomide plus R-CHOP versus placebo plus R-CHOP in previously untreated patients with ABC-type diffuse large B-cell lymphoma. J. Clin. Oncol. 39:1317–28
    [Google Scholar]
  77. 77.
    Younes A, Sehn LH, Johnson P, Zinzani PL, Hong X et al. 2019. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J. Clin. Oncol. 37:1285–95
    [Google Scholar]
  78. 78.
    Wilson WH, Wright GW, Huang DW, Hodkinson B, Balasubramanian S et al. 2021. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 39:1643–53.e3
    [Google Scholar]
  79. 79.
    Rossi D, Diop F, Spaccarotella E, Monti S, Zanni M et al. 2017. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood 129:1947–57
    [Google Scholar]
  80. 80.
    Camus V, Sarafan-Vasseur N, Bohers E, Dubois S, Mareschal S et al. 2016. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk. Lymphoma 57:2171–79
    [Google Scholar]
  81. 81.
    Meriranta L, Alkodsi A, Pasanen A, Lepistö M, Mapar P et al. 2021. Molecular features encoded in the ctDNA reveal heterogeneity and predict outcome in high-risk aggressive B-cell lymphoma. Blood 139:121863–77
    [Google Scholar]
  82. 82.
    Bohers E, Viailly P-J, Becker S, Marchand V, Ruminy P et al. 2018. Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort. Blood Cancer J 8:74
    [Google Scholar]
  83. 83.
    Rivas-Delgado A, Nadeu F, Enjuanes A, Casanueva-Eliceiry S, Mozas P et al. 2021. Mutational landscape and tumor burden assessed by cell-free DNA in diffuse large B-cell lymphoma in a population-based study. Clin. Cancer Res. 27:513–21
    [Google Scholar]
  84. 84.
    Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F et al. 2015. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol 16:541–49
    [Google Scholar]
  85. 85.
    Raman L, Van der Linden M, De Vriendt C, Van den Broeck B, Muylle K et al. 2020. Shallow-depth sequencing of cell-free DNA for Hodgkin and diffuse large B-cell lymphoma (differential) diagnosis: a standardized approach with underappreciated potential. Haematologica 107:211–20
    [Google Scholar]
  86. 86.
    Bruscaggin A, Di Bergamo LT, Spina V, Hodkinson B, Forestieri G et al. 2021. Circulating tumor DNA for comprehensive noninvasive monitoring of lymphoma treated with ibrutinib plus nivolumab. Blood Adv 5:4674–85
    [Google Scholar]
  87. 87.
    Herrera AF, Tracy S, Croft B, Opat S, Ray J et al. 2022. Risk profiling of patients with relapsed/refractory diffuse large B-cell lymphoma by measuring circulating tumor DNA. Blood Adv 6:1651–60
    [Google Scholar]
  88. 88.
    Sobesky S, Mammadova L, Cirillo M, Drees EEE, Mattlener J et al. 2021. In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin's lymphoma and facilitates ultrasensitive residual disease detection. Med 2:1171–93.e11
    [Google Scholar]
  89. 89.
    Desch A-K, Hartung K, Botzen A, Brobeil A, Rummel M et al. 2020. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia 34:151–66
    [Google Scholar]
  90. 90.
    Johnson P, Federico M, Kirkwood A, Fosså A, Berkahn L et al. 2016. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin's lymphoma. N. Engl. J. Med. 374:2419–29
    [Google Scholar]
  91. 91.
    Camus V, Viennot M, Lequesne J, Viailly P-J, Bohers E et al. 2021. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica 106:154–62
    [Google Scholar]
  92. 92.
    Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S et al. 2018. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J. Clin. Oncol. 36:942–50
    [Google Scholar]
  93. 93.
    Vandenberghe P, Wlodarska I, Tousseyn T, Dehaspe L, Dierickx D et al. 2015. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol 2:e55–65
    [Google Scholar]
  94. 94.
    Buedts L, Wlodarska I, Finalet-Ferreiro J, Gheysens O, Dehaspe L et al. 2021. The landscape of copy number variations in classical Hodgkin lymphoma: a joint KU Leuven and LYSA study on cell-free DNA. Blood Adv 5:1991–2002
    [Google Scholar]
  95. 95.
    Liu H, Johnson JL, Koval G, Malnassy G, Sher D et al. 2012. Detection of minimal residual disease following induction immunochemotherapy predicts progression free survival in mantle cell lymphoma: final results of CALGB 59909. Haematologica 97:579–85
    [Google Scholar]
  96. 96.
    Hermine O, Hoster E, Walewski J, Bosly A, Stilgenbauer S et al. 2016. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet 388:565–75
    [Google Scholar]
  97. 97.
    Andersen NS, Pedersen LB, Laurell A, Elonen E, Kolstad A et al. 2009. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma. J. Clin. Oncol. 27:4365–70
    [Google Scholar]
  98. 98.
    Simonsen AT, Schou M, Sørensen CD, Bentzen HHN, Nyvold CG. 2015. SOX11, CCND1, BCL1/IgH and IgH-VDJ: a battle of minimal residual disease markers in mantle cell lymphoma?. Leuk. Lymphoma 56:2724–27
    [Google Scholar]
  99. 99.
    Pott C. 2011. Minimal residual disease detection in mantle cell lymphoma: technical aspects and clinical relevance. Semin. Hematol. 48:172–84
    [Google Scholar]
  100. 100.
    Smith M, Jegede O, Parekh S, Hanson CA, Martin P et al. 2019. Minimal residual disease (MRD) assessment in the ECOG1411 randomized phase 2 trial of front-line bendamustine-rituximab (BR)-based induction followed by rituximab (R) ± lenalidomide (L) consolidation for mantle cell lymphoma (MCL). Blood 134:751
    [Google Scholar]
  101. 101.
    Ladetto M, Brüggemann M, Monitillo L, Ferrero S, Pepin F et al. 2014. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia 28:1299–307
    [Google Scholar]
  102. 102.
    Lakhotia R, Melani C, Dunleavy K, Pittaluga S, Saba NS et al. 2022. Circulating tumor DNA predicts therapeutic outcome in mantle cell lymphoma. Blood Adv 6:2667–80
    [Google Scholar]
  103. 103.
    Agarwal R, Chan Y-C, Tam CS, Hunter T, Vassiliadis D et al. 2019. Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat. Med. 25:119–29
    [Google Scholar]
  104. 104.
    Martin P, Chadburn A, Christos P, Weil K, Furman RR et al. 2009. Outcome of deferred initial therapy in mantle-cell lymphoma. J. Clin. Oncol. 27:1209–13
    [Google Scholar]
  105. 105.
    Clot G, Jares P, Giné E, Navarro A, Royo C et al. 2018. A gene signature that distinguishes conventional and leukemic nonnodal mantle cell lymphoma helps predict outcome. Blood 132:413–22
    [Google Scholar]
  106. 106.
    Schroers-Martin JG, Kurtz DM, Soo J, Jin M, Scherer F et al. 2017. Determinants of circulating tumor DNA levels across lymphoma histologic subtypes. Blood 130:4018
    [Google Scholar]
  107. 107.
    Hatipoğlu T, Esmeray E, Hu XH, Yuan HL, Erşen Danyeli A et al. 2020. Ultra-deep targeted sequencing reveals cancer-associated, prognostically significant mutations in circulating cell-free DNA in treatment-naive patients with follicular lymphoma. Blood 136:Suppl. 120–21
    [Google Scholar]
  108. 108.
    Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM et al. 2015. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol 16:1111–22
    [Google Scholar]
  109. 109.
    Jurinovic V, Passerini V, Oestergaard MZ, Knapp A, Mundt K et al. 2019. Evaluation of the m7-FLIPI in patients with follicular lymphoma treated within the GALLIUM trial: EZH2 mutation status may be a predictive marker for differential efficacy of chemotherapy. Blood 134:Suppl. 1122
    [Google Scholar]
  110. 110.
    Sarkozy C, Huet S, Carlton VEH, Fabiani B, Delmer A et al. 2017. The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget 8:8765–74
    [Google Scholar]
  111. 111.
    Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T et al. 2020. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol 21:1433–42
    [Google Scholar]
  112. 112.
    Delfau-Larue M-H, Boulland M-L, Beldi-Ferchiou A, Feugier P, Maisonneuve H et al. 2020. Lenalidomide/rituximab induces high molecular response in untreated follicular lymphoma: LYSA ancillary RELEVANCE study. Blood Adv 4:3217–23
    [Google Scholar]
  113. 113.
    Luminari S, Manni M, Galimberti S, Versari A, Tucci A et al. 2021. Response-adapted postinduction strategy in patients with advanced-stage follicular lymphoma: the FOLL12 study. J. Clin. Oncol. 40:729–39
    [Google Scholar]
  114. 114.
    Jiminez Ubieto AI, Heredia Y, de la Rosa JM, Rodriguez Izquierdo A, Rufian L et al. 2020. Minimal residual disease monitoring from liquid biopsy by next generation sequencing in follicular lymphoma patients. Blood 136:Suppl. 131–33
    [Google Scholar]
  115. 115.
    Sakata-Yanagimoto M, Nakamoto-Matsubara R, Komori D, Nguyen TB, Hattori K et al. 2017. Detection of the circulating tumor DNAs in angioimmunoblastic T-cell lymphoma. Ann. Hematol. 96:1471–75
    [Google Scholar]
  116. 116.
    Li Q, Zhang W, Li J, Xiong J, Liu J et al. 2020. Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma. Biomarker Res 8:27
    [Google Scholar]
  117. 117.
    Damm-Welk C, Busch K, Burkhardt B, Schieferstein J, Viehmann S et al. 2007. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK–positive anaplastic large-cell lymphoma. Blood 110:670–77
    [Google Scholar]
  118. 118.
    Kalinova M, Krskova L, Brizova H, Kabickova E, Kepak T, Kodet R. 2008. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma—residual disease monitoring and a correlation with the disease status. Leuk. Res. 32:25–32
    [Google Scholar]
  119. 119.
    Damm-Welk C, Kutscher N, Zimmermann M, Attarbaschi A, Schieferstein J et al. 2020. Quantification of minimal disseminated disease by quantitative polymerase chain reaction and digital polymerase chain reaction for NPM-ALK as a prognostic factor in children with anaplastic large cell lymphoma. Haematologica 105:2141–49
    [Google Scholar]
  120. 120.
    Quelen C, Grand D, Sarot E, Brugières L, Sibon D et al. 2021. Minimal residual disease monitoring using a 3′ALK universal probe assay in ALK-positive anaplastic large-cell lymphoma. J. Mol. Diagnost. 23:131–39
    [Google Scholar]
  121. 121.
    Weng W-K, Armstrong R, Arai S, Desmarais C, Hoppe R, Kim YH 2013. Minimal residual disease monitoring with high-throughput sequencing of T cell receptors in cutaneous T cell lymphoma. Sci. Transl. Med. 5:214ra171
    [Google Scholar]
  122. 122.
    Miljkovic MD, Melani C, Pittaluga S, Lakhotia R, Lucas AN et al. 2021. Next-generation sequencing-based monitoring of circulating tumor DNA reveals clonotypic heterogeneity in untreated PTCL. Blood Adv 5:4198–210
    [Google Scholar]
  123. 123.
    Mehta-Shah N, Jacobsen ED, Fehniger TA, Kahl BS, Bartlett NL et al. 2021. End of treatment peripheral blood TCR evaluation for minimal residual disease evaluation in peripheral T-cell lymphomas. Blood 138:3506
    [Google Scholar]
  124. 124.
    Fontanilles M, Marguet F, Bohers É, Viailly P-J, Dubois S et al. 2017. Non-invasive detection of somatic mutations using next-generation sequencing in primary central nervous system lymphoma. Oncotarget 8:48157–68
    [Google Scholar]
  125. 125.
    Hattori K, Sakata-Yanagimoto M, Suehara Y, Yokoyama Y, Kato T et al. 2018. Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci 109:225–30
    [Google Scholar]
  126. 126.
    Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ, Bromberg JEC, Nierkens S et al. 2019. MYD88 p.(L265P) detection on cell-free DNA in liquid biopsies of patients with primary central nervous system lymphoma. Br. J. Haematol. 185:974–77
    [Google Scholar]
  127. 127.
    Rimelen V, Ahle G, Pencreach E, Zinniger N, Debliquis A et al. 2019. Tumor cell-free DNA detection in CSF for primary CNS lymphoma diagnosis. Acta Neuropathol. Commun. 7:43
    [Google Scholar]
  128. 128.
    Bobillo S, Crespo M, Escudero L, Mayor R, Raheja P et al. 2021. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica 106:513–21
    [Google Scholar]
  129. 129.
    Grommes C, Tang SS, Wolfe J, Kaley TJ, Daras M et al. 2019. Phase 1b trial of an ibrutinib-based combination therapy in recurrent/refractory CNS lymphoma. Blood 133:436–45
    [Google Scholar]
  130. 130.
    Olszewski AJ, Chorzalska AD, Petersen M, Ollila TA, Zayac A et al. 2020. Cerebrospinal fluid (CSF) analysis of tumor-specific cell-free DNA (cfDNA) as a diagnostic and prognostic tool for central nervous system (CNS) invasion in lymphoma. Blood 136:Suppl. 121–22
    [Google Scholar]
  131. 131.
    Fryer JF, Heath AB, Wilkinson DE, Minor PD, Kessler H et al. 2011. Collaborative study to evaluate the proposed 1st WHO international standards for Epstein-Barr virus (EBV) for nucleic acid amplification technology (NAT)-based assays. WHO Rep. WHO/BS/2011.2172, World Health Organ. Geneva:
  132. 132.
    Riddler SA, Breinig MC, McKnight JL. 1994. Increased levels of circulating Epstein-Barr virus (EBV)-infected lymphocytes and decreased EBV nuclear antigen antibody responses are associated with the development of posttransplant lymphoproliferative disease in solid-organ transplant recipients. Blood 84:972–84
    [Google Scholar]
  133. 133.
    Kanakry JA, Hegde AM, Durand CM, Massie AB, Greer AE et al. 2016. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood 127:2007–17
    [Google Scholar]
  134. 134.
    Ruf S, Behnke-Hall K, Gruhn B, Bauer J, Horn M et al. 2012. Comparison of six different specimen types for Epstein-Barr viral load quantification in peripheral blood of pediatric patients after heart transplantation or after allogeneic hematopoietic stem cell transplantation. J. Clin. Virol. 53:186–94
    [Google Scholar]
  135. 135.
    Allen UD, Preiksaitis JK, AST Infect. Dis. Community Practice. 2013. Epstein-Barr virus and posttransplant lymphoproliferative disorder in solid organ transplantation. Am. J. Transplant. 13:Suppl. 4107–20
    [Google Scholar]
  136. 136.
    Choquet S, Varnous S, Deback C, Golmard JL, Leblond V. 2014. Adapted treatment of Epstein-Barr virus infection to prevent posttransplant lymphoproliferative disorder after heart transplantation. Am. J. Transplant. 14:857–66
    [Google Scholar]
  137. 137.
    Bakker NA, Verschuuren EA, Erasmus ME, Hepkema BG, Veeger NJ et al. 2007. Epstein-Barr virus–DNA load monitoring late after lung transplantation: a surrogate marker of the degree of immunosuppression and a safe guide to reduce immunosuppression. Transplantation 83:433–38
    [Google Scholar]
  138. 138.
    Gandhi MK, Lambley E, Burrows J, Dua U, Elliott S et al. 2006. Plasma Epstein-Barr virus (EBV) DNA is a biomarker for EBV-positive Hodgkin's lymphoma. Clin. Cancer Res. 12:460–64
    [Google Scholar]
  139. 139.
    Kanakry JA, Li H, Gellert LL, Lemas MV, Hsieh WS et al. 2013. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood 121:3547–53
    [Google Scholar]
  140. 140.
    Haverkos BM, Coleman C, Gru AA, Pan Z, Brammer J et al. 2017. Emerging insights on the pathogenesis and treatment of extranodal NK/T cell lymphomas (ENKTL). Discov. Med. 23:189–99
    [Google Scholar]
  141. 141.
    Suzuki R, Yamaguchi M, Izutsu K, Yamamoto G, Takada K et al. 2011. Prospective measurement of Epstein-Barr virus–DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood 118:6018–22
    [Google Scholar]
  142. 142.
    Wang ZY, Liu QF, Wang H, Jin J, Wang WH et al. 2012. Clinical implications of plasma Epstein-Barr virus DNA in early-stage extranodal nasal-type NK/T-cell lymphoma patients receiving primary radiotherapy. Blood 120:2003–10
    [Google Scholar]
  143. 143.
    Chan KCA, Woo JKS, King A, Zee BCY, Lam WKJ et al. 2017. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N. Engl. J. Med. 377:513–22
    [Google Scholar]
  144. 144.
    Lam WKJ, Jiang P, Chan KCA, Cheng SH, Zhang H et al. 2018. Sequencing-based counting and size profiling of plasma Epstein-Barr virus DNA enhance population screening of nasopharyngeal carcinoma. PNAS 115:E5115–24
    [Google Scholar]
  145. 145.
    Lam WKJ, Jiang P, Chan KCA, Peng W, Shang H et al. 2019. Methylation analysis of plasma DNA informs etiologies of Epstein-Barr virus-associated diseases. Nat. Commun. 10:3256
    [Google Scholar]
  146. 146.
    Hatton O, Smith MM, Alexander M, Mandell M, Sherman C et al. 2019. Epstein-Barr virus latent membrane protein 1 regulates host B cell microRNA-155 and its target FOXO3a via PI3K p110α activation. Front. Microbiol. 10:2692
    [Google Scholar]
  147. 147.
    Rambaldi A, Lazzari M, Manzoni C, Carlotti E, Arcaini L et al. 2002. Monitoring of minimal residual disease after CHOP and rituximab in previously untreated patients with follicular lymphoma. Blood 99:856–62
    [Google Scholar]
  148. 148.
    Hirt C, Schüler F, Kiefer T, Schwenke C, Haas A et al. 2008. Rapid and sustained clearance of circulating lymphoma cells after chemotherapy plus rituximab: clinical significance of quantitative t(14; 18) PCR monitoring in advanced stage follicular lymphoma patients. Br. J. Haematol. 141:631–40
    [Google Scholar]
  149. 149.
    Goff L, Summers K, Iqbal S, Kuhlmann J, Kunz M et al. 2009. Quantitative PCR analysis for Bcl-2/IgH in a phase III study of yttrium-90 ibritumomab tiuxetan as consolidation of first remission in patients with follicular lymphoma. J. Clin. Oncol. 27:6094–100
    [Google Scholar]
  150. 150.
    Morschhauser F, Recher C, Milpied N, Gressin R, Salles G et al. 2012. A 4-weekly course of rituximab is safe and improves tumor control for patients with minimal residual disease persisting 3 months after autologous hematopoietic stem-cell transplantation: results of a prospective multicenter phase II study in patients with follicular lymphoma. Ann. Oncol. 23:2687–95
    [Google Scholar]
  151. 151.
    Ladetto M, Lobetti-Bodoni C, Mantoan B, Ceccarelli M, Boccomini C et al. 2013. Persistence of minimal residual disease in bone marrow predicts outcome in follicular lymphomas treated with a rituximab-intensive program. Blood 122:3759–66
    [Google Scholar]
  152. 152.
    Pott C, Schrader C, Gesk S, Harder L, Tiemann M et al. 2006. Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood 107:2271–78
    [Google Scholar]
  153. 153.
    Geisler CH, Kolstad A, Laurell A, Andersen NS, Pedersen LB et al. 2008. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo–purged stem cell rescue. Blood 112:2687–93
    [Google Scholar]
  154. 154.
    Cheminant M, Derrieux C, Touzart A, Schmit S, Grenier A et al. 2016. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica 101:336
    [Google Scholar]
  155. 155.
    Herrera AF, Kim HT, Kong KA, Faham M, Sun H et al. 2016. Next-generation sequencing-based detection of circulating tumour DNA after allogeneic stem cell transplantation for lymphoma. Br. J. Haematol. 175:841–50
    [Google Scholar]
  156. 156.
    Qi F, Cao Z, Chen B, Chai Y, Lin J et al. 2021. Liquid biopsy in extranodal NK/T-cell lymphoma: a prospective analysis of cell-free DNA genotyping and monitoring. Blood Adv 5:2505–14
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-050520-044652
Loading
/content/journals/10.1146/annurev-pathol-050520-044652
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error