1932

Abstract

Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-052016-100247
2017-01-24
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/pathol/12/1/annurev-pathol-052016-100247.html?itemId=/content/journals/10.1146/annurev-pathol-052016-100247&mimeType=html&fmt=ahah

Literature Cited

  1. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM. 1.  et al. 2015. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73 [Google Scholar]
  2. Galluzzi L, Bravo-San Pedro JM, Kroemer G. 2.  2014. Organelle-specific initiation of cell death. Nat. Cell Biol. 16:728–36 [Google Scholar]
  3. Green DR, Galluzzi L, Kroemer G. 3.  2014. Cell biology. Metabolic control of cell death. Science 345:1250256 [Google Scholar]
  4. Fuchs Y, Steller H. 4.  2011. Programmed cell death in animal development and disease. Cell 147:742–58 [Google Scholar]
  5. Sica V, Galluzzi L, Bravo-San Pedro JM, Izzo V, Maiuri MC, Kroemer G. 5.  2015. Organelle-specific initiation of autophagy. Mol. Cell 59:522–39 [Google Scholar]
  6. Galluzzi L, Pietrocola F, Levine B, Kroemer G. 6.  2014. Metabolic control of autophagy. Cell 159:1263–76 [Google Scholar]
  7. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. 7.  2014. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell. Biol. 15:135–47 [Google Scholar]
  8. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. 8.  2016. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15:348–66 [Google Scholar]
  9. Sun L, Wang H, Wang Z, He S, Chen S. 9.  et al. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–27 [Google Scholar]
  10. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q. 10.  et al. 2012. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. PNAS 109:5322–27 [Google Scholar]
  11. Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P. 11.  et al. 2016. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ 23:76–88 [Google Scholar]
  12. Wu J, Huang Z, Ren J, Zhang Z, He P. 12.  et al. 2013. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006 [Google Scholar]
  13. Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N. 13.  et al. 2014. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 5:e1004 [Google Scholar]
  14. Tanzer MC, Tripaydonis A, Webb AI, Young SN, Varghese LN. 14.  et al. 2015. Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochem. J. 471:255–65 [Google Scholar]
  15. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG. 15.  et al. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–53 [Google Scholar]
  16. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S. 16.  et al. 2014. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16:55–65 [Google Scholar]
  17. Chen X, Li W, Ren J, Huang D, He WT. 17.  et al. 2014. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24:105–21 [Google Scholar]
  18. Wang H, Sun L, Su L, Rizo J, Liu L. 18.  et al. 2014. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54:133–46 [Google Scholar]
  19. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK. 19.  et al. 2014. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. PNAS 111:15072–77 [Google Scholar]
  20. Quarato G, Guy CS, Grace CR, Llambi F, Nourse A. 20.  et al. 2016. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis. Mol. Cell 61:589–601 [Google Scholar]
  21. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A. 21.  et al. 2014. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7:971–81 [Google Scholar]
  22. Jacobsen AV, Lowes KN, Tanzer MC, Lucet IS, Hildebrand JM. 22.  et al. 2016. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis 7:e2051 [Google Scholar]
  23. Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF. 23.  et al. 2016. Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis 7:e2089 [Google Scholar]
  24. Bigenzahn JW, Fauster A, Rebsamen M, Kandasamy RK, Scorzoni S. 24.  et al. 2016. An inducible retroviral expression system for tandem affinity purification mass-spectrometry-based proteomics identifies mixed lineage kinase domain-like protein (MLKL) as an heat shock protein 90 (HSP90) client. Mol. Cell. Proteom. 15:1139–50 [Google Scholar]
  25. Wang Z, Jiang H, Chen S, Du F, Wang X. 25.  2012. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–43 [Google Scholar]
  26. Moujalled DM, Cook WD, Murphy JM, Vaux DL. 26.  2014. Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death Dis 5:e1086 [Google Scholar]
  27. Tait SW, Oberst A, Quarato G, Milasta S, Haller M. 27.  et al. 2013. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5:878–85 [Google Scholar]
  28. Moriwaki K, Farias Luz N, Balaji S, De Rosa MJ, O'Donnell CL. 28.  et al. 2016. The mitochondrial phosphatase PGAM5 is dispensable for necroptosis but promotes inflammasome activation in macrophages. J. Immunol. 196:407–15 [Google Scholar]
  29. Lu W, Sun J, Yoon JS, Zhang Y, Zheng L, Murphy E, Mattson MP, Lenardo MJ. 29.  2016. Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PLOS ONE 11:e0147792 [Google Scholar]
  30. Galluzzi L, Kepp O, Kroemer G. 30.  2012. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell. Biol. 13:780–88 [Google Scholar]
  31. Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC. 31. , et al. 2014. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343:1357–60 [Google Scholar]
  32. He S, Wang L, Miao L, Wang T, Du F. 32.  et al. 2009. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α.. Cell 137:1100–11 [Google Scholar]
  33. Cho YS, Challa S, Moquin D, Genga R, Ray TD. 33.  et al. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–23 [Google Scholar]
  34. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ. 34.  et al. 2009. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–36 [Google Scholar]
  35. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K. 35.  et al. 2012. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:339–50 [Google Scholar]
  36. Li D, Xu T, Cao Y, Wang H, Li L. 36.  et al. 2015. A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. PNAS 112:5017–22 [Google Scholar]
  37. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. 37.  2010. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3:re4 [Google Scholar]
  38. Upton JW, Kaiser WJ, Mocarski ES. 38.  2008. Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J. Biol. Chem. 283:16966–70 [Google Scholar]
  39. Chen W, Wu J, Li L, Zhang Z, Ren J. 39.  et al. 2015. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat. Cell Biol. 17:434–44 [Google Scholar]
  40. Seo J, Lee EW, Sung H, Seong D, Dondelinger Y. 40.  et al. 2016. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat. Cell Biol. 18:291–302 [Google Scholar]
  41. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G. 41.  et al. 2014. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157:1189–202 [Google Scholar]
  42. Orozco S, Yatim N, Werner MR, Tran H, Gunja SY. 42.  et al. 2014. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ 21:1511–21 [Google Scholar]
  43. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. 43.  1998. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8:297–303 [Google Scholar]
  44. Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB. 44.  et al. 2014. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. PNAS 111:7753–58 [Google Scholar]
  45. Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J. 45.  2011. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–76 [Google Scholar]
  46. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C. 46.  et al. 2014. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94 [Google Scholar]
  47. Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L. 47.  et al. 2014. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192:5476–80 [Google Scholar]
  48. Polykratis A, Hermance N, Zelic M, Roderick J, Kim C. 48.  et al. 2014. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193:1539–43 [Google Scholar]
  49. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C. 49.  et al. 2014. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56:481–95 [Google Scholar]
  50. Lukens JR, Vogel P, Johnson GR, Kelliher MA, Iwakura Y. 50.  et al. 2013. RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498:224–27 [Google Scholar]
  51. Kang S, Fernandes-Alnemri T, Rogers C, Mayes L, Wang Y. 51.  et al. 2015. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun. 6:7515 [Google Scholar]
  52. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA. 52.  et al. 2015. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6:6282 [Google Scholar]
  53. Cullen SP, Kearney CJ, Clancy DM, Martin SJ. 53.  2015. Diverse activators of the NLRP3 inflammasome promote IL-1β secretion by triggering necrosis. Cell Rep 11:1535–48 [Google Scholar]
  54. Moriwaki K, Bertin J, Gough PJ, Chan FK. 54.  2015. A RIPK3-caspase 8 complex mediates atypical pro-IL-1 β processing. J. Immunol. 194:1938–44 [Google Scholar]
  55. Brenner D, Blaser H, Mak TW. 55.  2015. Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15:362–74 [Google Scholar]
  56. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P. 56.  et al. 2011. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–67 [Google Scholar]
  57. Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB. 57.  et al. 2012. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep 1:401–7 [Google Scholar]
  58. Weinlich R, Oberst A, Dillon CP, Janke LJ, Milasta S. 58.  et al. 2013. Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep 5:340–48 [Google Scholar]
  59. Ram DR, Ilyukha V, Volkova T, Buzdin A, Tai A. 59.  et al. 2016. Balance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo. PNAS 113:1606–11 [Google Scholar]
  60. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS. 60.  et al. 1998. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–76 [Google Scholar]
  61. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP. 61.  et al. 2011. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–72 [Google Scholar]
  62. Adachi M, Suematsu S, Suda T, Watanabe D, Fukuyama H. 62.  et al. 1996. Enhanced and accelerated lymphoproliferation in Fas-null mice. PNAS 93:2131–36 [Google Scholar]
  63. Zhang J, Cado D, Chen A, Kabra NH, Winoto A. 63.  1998. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:296–300 [Google Scholar]
  64. Yeh WC, de la Pompa JL, McCurrach ME, Shu HB, Elia AJ. 64.  et al. 1998. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279:1954–58 [Google Scholar]
  65. Yeh WC, Itie A, Elia AJ, Ng M, Shu HB. 65.  et al. 2000. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633–42 [Google Scholar]
  66. Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA. 66.  et al. 2011. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35:572–82 [Google Scholar]
  67. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V. 67.  et al. 2011. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–34 [Google Scholar]
  68. Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B. 68.  et al. 2011. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477:335–39 [Google Scholar]
  69. Schock SN, Young JA, He TH, Sun Y, Winoto A. 69.  2015. Deletion of FADD in macrophages and granulocytes results in RIP3- and MyD88-dependent systemic inflammation. PLOS ONE 10:e0124391 [Google Scholar]
  70. Osborn SL, Diehl G, Han SJ, Xue L, Kurd N. 70.  et al. 2010. Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. PNAS 107:13034–39 [Google Scholar]
  71. Ch'en IL, Beisner DR, Degterev A, Lynch C, Yuan J. 71.  et al. 2008. Antigen-mediated T cell expansion regulated by parallel pathways of death. PNAS 105:17463–68 [Google Scholar]
  72. Lu JV, Weist BM, van Raam BJ, Marro BS, Nguyen LV. 72.  et al. 2011. Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. PNAS 108:15312–17 [Google Scholar]
  73. Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W. 73.  et al. 1998. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188:919–30 [Google Scholar]
  74. McComb S, Cheung HH, Korneluk RG, Wang S, Krishnan L, Sad S. 74.  2012. cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death Differ 19:1791–801 [Google Scholar]
  75. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C. 75.  et al. 2011. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43:449–63 [Google Scholar]
  76. Yabal M, Muller N, Adler H, Knies N, Gross CJ. 76.  et al. 2014. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep 7:1796–808 [Google Scholar]
  77. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K. 77.  et al. 2011. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 18:656–65 [Google Scholar]
  78. Moquin DM, McQuade T, Chan FK. 78.  2013. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLOS ONE 8:e76841 [Google Scholar]
  79. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A. 79.  et al. 2008. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–23 [Google Scholar]
  80. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R. 80.  et al. 2011. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13:1437–42 [Google Scholar]
  81. Vanlangenakker N, Bertrand MJ, Bogaert P, Vandenabeele P, Vanden Berghe T. 81.  2011. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis 2:e230 [Google Scholar]
  82. Rickard JA, Anderton H, Etemadi N, Nachbur U, Darding M. 82.  et al. 2014. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 3:e03464 [Google Scholar]
  83. de Almagro MC, Goncharov T, Newton K, Vucic D. 83.  2015. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death Dis 6:e1800 [Google Scholar]
  84. Bellail AC, Olson JJ, Yang X, Chen ZJ, Hao C. 84.  2012. A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma. Cancer Discov 2:140–55 [Google Scholar]
  85. Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M. 85.  et al. 2014. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 9:153–65 [Google Scholar]
  86. Onizawa M, Oshima S, Schulze-Topphoff U, Oses-Prieto JA, Lu T. 86.  et al. 2015. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16:618–27 [Google Scholar]
  87. Petersen SL, Chen TT, Lawrence DA, Marsters SA, Gonzalvez F, Ashkenazi A. 87.  2015. TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ 22:1846–57 [Google Scholar]
  88. Karl I, Jossberger-Werner M, Schmidt N, Horn S, Goebeler M. 88.  et al. 2014. TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis. Cell Death Dis 5:e1444 [Google Scholar]
  89. Lamothe B, Lai Y, Xie M, Schneider MD, Darnay BG. 89.  2013. TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol. Cell. Biol. 33:582–95 [Google Scholar]
  90. Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S. 90.  et al. 2013. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 20:1381–92 [Google Scholar]
  91. Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G. 91.  et al. 2014. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. J. Cell Biol. 204:607–23 [Google Scholar]
  92. Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J. 92.  et al. 2015. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60:63–76 [Google Scholar]
  93. Rebsamen M, Heinz LX, Meylan E, Michallet MC, Schroder K. 93.  et al. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep 10:916–22 [Google Scholar]
  94. Upton JW, Kaiser WJ, Mocarski ES. 94.  2012. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–97 [Google Scholar]
  95. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW. 95.  et al. 2013. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288:31268–79 [Google Scholar]
  96. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H. 96.  et al. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–5 [Google Scholar]
  97. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. 97.  2015. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15:405–14 [Google Scholar]
  98. Kaiser WJ, Upton JW, Mocarski ES. 98.  2008. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181:6427–34 [Google Scholar]
  99. Gay NJ, Symmons MF, Gangloff M, Bryant CE. 99.  2014. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14:546–58 [Google Scholar]
  100. Zou J, Kawai T, Tsuchida T, Kozaki T, Tanaka H. 100.  et al. 2013. Poly IC triggers a cathepsin D- and IPS-1-dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis. Immunity 38:717–28 [Google Scholar]
  101. Kim SJ, Li J. 101.  2013. Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia. Cell Death Dis 4:e716 [Google Scholar]
  102. Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, Sad S. 102.  2012. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13:954–62 [Google Scholar]
  103. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A. 103.  et al. 2013. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. PNAS 110:E3109–18 [Google Scholar]
  104. McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B. 104.  et al. 2014. Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. PNAS 111:E3206–13 [Google Scholar]
  105. van Raam BJ, Ehrnhoefer DE, Hayden MR, Salvesen GS. 105.  2013. Intrinsic cleavage of receptor-interacting protein kinase-1 by caspase-6. Cell Death Differ 20:86–96 [Google Scholar]
  106. McComb S, Shutinoski B, Thurston S, Cessford E, Kumar K, Sad S. 106.  2014. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase. J. Immunol. 192:5671–78 [Google Scholar]
  107. Rajput A, Kovalenko A, Bogdanov K, Yang SH, Kang TB, Kim JC. 107.  et al. 2011. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34:340–51 [Google Scholar]
  108. Feng S, Yang Y, Mei Y, Ma L, Zhu DE. 108.  et al. 2007. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19:2056–67 [Google Scholar]
  109. Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R. 109.  1999. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett 442:117–21 [Google Scholar]
  110. Duprez L, Bertrand MJ, Vanden Berghe T, Dondelinger Y, Festjens N, Vandenabeele P. 110.  2012. Intermediate domain of receptor-interacting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis. J. Biol. Chem. 287:14863–72 [Google Scholar]
  111. Chen G, Cheng X, Zhao M, Lin S, Lu J. 111.  et al. 2015. RIP1-dependent Bid cleavage mediates TNFα-induced but Caspase-3-independent cell death in L929 fibroblastoma cells. Apoptosis 20:92–109 [Google Scholar]
  112. Karch J, Kanisicak O, Brody MJ, Sargent MA, Michael DM, Molkentin JD. 112.  2015. Necroptosis interfaces with MOMP and the MPTP in mediating cell death. PLOS ONE 10:e0130520 [Google Scholar]
  113. Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC. 113.  2007. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc. Drugs Ther. 21:467–69 [Google Scholar]
  114. Zhang T, Zhang Y, Cui M, Jin L, Wang Y. 114.  et al. 2016. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat. Med. 22:175–82 [Google Scholar]
  115. Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB. 115.  et al. 2013. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. PNAS 110:12024–29 [Google Scholar]
  116. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G. 116.  et al. 2012. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19:2003–14 [Google Scholar]
  117. Sosna J, Voigt S, Mathieu S, Lange A, Thon L. 117.  et al. 2014. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol. Life Sci. 71:331–48 [Google Scholar]
  118. Canli O, Alankus YB, Grootjans S, Vegi N, Hultner L. 118.  et al. 2016. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127:139–48 [Google Scholar]
  119. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C. 119.  et al. 2014. Synchronized renal tubular cell death involves ferroptosis. PNAS 111:16836–41 [Google Scholar]
  120. Newton K, Sun X, Dixit VM. 120.  2004. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24:1464–69 [Google Scholar]
  121. Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB. 121.  et al. 2014. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99 [Google Scholar]
  122. Wong WW, Vince JE, Lalaoui N, Lawlor KE, Chau D. 122.  et al. 2014. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood 123:2562–72 [Google Scholar]
  123. Roderick JE, Hermance N, Zelic M, Simmons MJ, Polykratis A. 123.  et al. 2014. Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. PNAS 111:14436–41 [Google Scholar]
  124. Rickard JA, O'Donnell JA, Evans JM, Lalaoui N, Poh AR. 124.  et al. 2014. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157:1175–88 [Google Scholar]
  125. Matsuoka Y, Tsujimoto Y. 125.  2015. Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death. Genes Cells 20:11–28 [Google Scholar]
  126. Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R. 126.  et al. 2015. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350:328–34 [Google Scholar]
  127. Huang Z, Wu SQ, Liang Y, Zhou X, Chen W. 127.  et al. 2015. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17:229–42 [Google Scholar]
  128. Wang X, Li Y, Liu S, Yu X, Li L. 128.  et al. 2014. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. PNAS 111:15438–43 [Google Scholar]
  129. Guo H, Omoto S, Harris PA, Finger JN, Bertin J. 129.  et al. 2015. Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17:243–51 [Google Scholar]
  130. Upton JW, Kaiser WJ, Mocarski ES. 130.  2010. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–13 [Google Scholar]
  131. Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ, Mocarski ES. 131.  2015. Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J. Biol. Chem. 290:11635–48 [Google Scholar]
  132. Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI. 132.  et al. 2014. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. PNAS 111:7391–96 [Google Scholar]
  133. Wang X, Jiang W, Yan Y, Gong T, Han J. 133.  et al. 2014. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat. Immunol. 15:1126–33 [Google Scholar]
  134. Deutsch M, Graffeo CS, Rokosh R, Pansari M, Ochi A. 134.  et al. 2015. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis 6:e1759 [Google Scholar]
  135. Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M. 135.  2015. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–58 [Google Scholar]
  136. Gonzalez-Juarbe N, Gilley RP, Hinojosa CA, Bradley KM, Kamei A. 136.  et al. 2015. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLOS Pathog 11:e1005337 [Google Scholar]
  137. Gaiha GD, McKim KJ, Woods M, Pertel T, Rohrbach J. 137.  et al. 2014. Dysfunctional HIV-specific CD8+ T cell proliferation is associated with increased caspase-8 activity and mediated by necroptosis. Immunity 41:1001–12 [Google Scholar]
  138. Pan T, Wu S, He X, Luo H, Zhang Y. 138.  et al. 2014. Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1)-infected CD4+ T lymphocytes. PLOS ONE 9:e93944 [Google Scholar]
  139. Luedde M, Lutz M, Carter N, Sosna J, Jacoby C. 139.  et al. 2014. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc. Res 103:206–16 [Google Scholar]
  140. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H. 140.  et al. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–62 [Google Scholar]
  141. Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ. 141.  et al. 2012. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res. Cardiol. 107:270 [Google Scholar]
  142. Koudstaal S, Oerlemans MI, Van der Spoel TI, Janssen AW, Hoefer IE. 142.  et al. 2015. Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur. J. Clin. Investig. 45:150–59 [Google Scholar]
  143. Wang Q, Liu Z, Ren J, Morgan S, Assa C, Liu B. 143.  2015. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ. Res. 116:600–11 [Google Scholar]
  144. Meng L, Jin W, Wang X. 144.  2015. RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. PNAS 112:11007–12 [Google Scholar]
  145. Lin J, Li H, Yang M, Ren J, Huang Z. 145.  et al. 2013. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep 3:200–10 [Google Scholar]
  146. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P. 146.  et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1:112–19 [Google Scholar]
  147. Northington FJ, Chavez-Valdez R, Graham EM, Razdan S, Gauda EB, Martin LJ. 147.  2011. Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. J. Cereb. Blood Flow Metab. 31:178–89 [Google Scholar]
  148. Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ. 148.  2012. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 219:192–203 [Google Scholar]
  149. Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S. 149.  et al. 2010. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 88:1569–76 [Google Scholar]
  150. Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M. 150.  et al. 2010. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. PNAS 107:21695–700 [Google Scholar]
  151. Dong K, Zhu H, Song Z, Gong Y, Wang F. 151.  et al. 2012. Necrostatin-1 protects photoreceptors from cell death and improves functional outcome after experimental retinal detachment. Am. J. Pathol. 181:1634–41 [Google Scholar]
  152. Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K. 152.  et al. 2014. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ 21:270–77 [Google Scholar]
  153. King MD, Whitaker-Lea WA, Campbell JM, Alleyne CH Jr., Dhandapani KM. 153.  2014. Necrostatin-1 reduces neurovascular injury after intracerebral hemorrhage. Int. J. Cell Biol 2014:495817 [Google Scholar]
  154. Su X, Wang H, Kang D, Zhu J, Sun Q, Li T, Ding K. 154.  2015. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem. Res. 40:643–50 [Google Scholar]
  155. You Z, Savitz SI, Yang J, Degterev A, Yuan J. 155.  et al. 2008. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab. 28:1564–73 [Google Scholar]
  156. Wang Y, Wang H, Tao Y, Zhang S, Wang J, Feng X. 156.  2014. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266:91–101 [Google Scholar]
  157. Liu M, Wu W, Li H, Li S, Huang LT. 157.  et al. 2015. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J. Spinal Cord Med. 38:745–53 [Google Scholar]
  158. Fan H, Tang HB, Kang J, Shan L, Song H. 158.  et al. 2015. Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury. Neuroscience 311:362–73 [Google Scholar]
  159. Fan H, Zhang K, Shan L, Kuang F, Chen K. 159.  et al. 2016. Reactive astrocytes undergo M1 microglia/macrophages-induced necroptosis in spinal cord injury. Mol. Neurodegener. 11:14 [Google Scholar]
  160. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA. 160.  et al. 2014. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–8 [Google Scholar]
  161. Zheng HW, Chen J, Sha SH. 161.  2014. Receptor-interacting protein kinases modulate noise-induced sensory hair cell death. Cell Death Dis 5:e1262 [Google Scholar]
  162. Linkermann A, Brasen JH, Himmerkus N, Liu S, Huber TB. 162.  et al. 2012. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81:751–61 [Google Scholar]
  163. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D. 163.  et al. 2016. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7:10274 [Google Scholar]
  164. Tristao VR, Goncalves PF, Dalboni MA, Batista MC, Durao Mde S Jr., Monte JC. 164.  2012. Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren. Fail. 34:373–77 [Google Scholar]
  165. Linkermann A, Heller JO, Prokai A, Weinberg JM, De Zen F. 165.  et al. 2013. The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J. Am. Soc. Nephrol. 24:1545–57 [Google Scholar]
  166. Xu Y, Ma H, Shao J, Wu J, Zhou L. 166.  et al. 2015. A role for tubular necroptosis in cisplatin-induced AKI. J. Am. Soc. Nephrol. 26:2647–58 [Google Scholar]
  167. Tristao VR, Pessoa EA, Nakamichi R, Reis LA, Batista MC. 167.  et al. 2016. Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity. Apoptosis 21:51–59 [Google Scholar]
  168. Zhu Y, Cui H, Gan H, Xia Y, Wang L. 168.  et al. 2015. Necroptosis mediated by receptor interaction protein kinase 1 and 3 aggravates chronic kidney injury of subtotal nephrectomised rats. Biochem. Biophys. Res. Commun. 461:575–81 [Google Scholar]
  169. Rosentreter D, Funken D, Reifart J, Mende K, Rentsch M, Khandoga A. 169.  2015. RIP1-dependent programmed necrosis is negatively regulated by caspases during hepatic ischemia-reperfusion. Shock 44:72–76 [Google Scholar]
  170. Ramachandran A, McGill MR, Xie Y, Ni HM, Ding WX, Jaeschke H. 170.  2013. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58:2099–108 [Google Scholar]
  171. Li JX, Feng JM, Wang Y, Li XH, Chen XX. 171.  et al. 2014. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis 5:e1278 [Google Scholar]
  172. Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. 172.  2013. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57:1773–83 [Google Scholar]
  173. Wang S, Ni HM, Dorko K, Kumer SC, Schmitt TM. 173.  et al. 2016. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget 7:17681–98 [Google Scholar]
  174. Gautheron J, Vucur M, Reisinger F, Cardenas DV, Roderburg C. 174.  et al. 2014. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol. Med. 6:1062–74 [Google Scholar]
  175. Afonso MB, Rodrigues PM, Carvalho T, Caridade M, Borralho P. 175.  et al. 2015. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin. Sci. 129:721–39 [Google Scholar]
  176. Dara L, Johnson H, Suda J, Win S, Gaarde W. 176.  et al. 2015. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology 62:1847–57 [Google Scholar]
  177. Linkermann A, Stockwell BR, Krautwald S, Anders HJ. 177.  2014. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat. Rev. Immunol. 14:759–67 [Google Scholar]
  178. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B. 178.  et al. 2015. Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–49 [Google Scholar]
  179. Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V. 179.  et al. 2011. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–18 [Google Scholar]
  180. Huang Z, Epperly M, Watkins SC, Greenberger JS, Kagan VE, Bayir H. 180.  2016. Necrostatin-1 rescues mice from lethal irradiation. Biochim. Biophys. Acta 1862:850–56 [Google Scholar]
  181. Saito N, Qiao H, Yanagi T, Shinkuma S, Nishimura K. 181.  et al. 2014. An annexin A1-FPR1 interaction contributes to necroptosis of keratinocytes in severe cutaneous adverse drug reactions. Sci. Transl. Med. 6:245ra95 [Google Scholar]
  182. Pavlosky A, Lau A, Su Y, Lian D, Huang X. 182.  et al. 2014. RIPK3-mediated necroptosis regulates cardiac allograft rejection. Am. J. Transplant. 14:1778–90 [Google Scholar]
  183. Lau A, Wang S, Jiang J, Haig A, Pavlosky A. 183.  et al. 2013. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am. J. Transplant. 13:2805–18 [Google Scholar]
  184. Zhao H, Ning J, Lemaire A, Koumpa FS, Sun JJ. 184.  et al. 2015. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats. Kidney Int 87:738–48 [Google Scholar]
  185. Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M. 185.  et al. 2014. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Investig. 124:3987–4003 [Google Scholar]
  186. Pouwels SD, Zijlstra GJ, van der Toorn M, Hesse L, Gras R. 186.  et al. 2016. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am. J. Physiol. Lung. Cell Mol. Physiol. 310:L377–86 [Google Scholar]
  187. Fan H, Liu F, Dong G, Ren D, Xu Y. 187.  et al. 2014. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus. Cell Death Dis 5:e1416 [Google Scholar]
  188. Yang H, Ma Y, Chen G, Zhou H, Yamazaki T. 188.  et al. 2016. Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 5:e1149673 [Google Scholar]
  189. Werthmoller N, Frey B, Wunderlich R, Fietkau R, Gaipl US. 189.  2015. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis. 6:e1761 [Google Scholar]
  190. Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L. 190.  et al. 2015. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int. J. Cancer 136:E313–25 [Google Scholar]
  191. Takemura R, Takaki H, Okada S, Shime H, Akazawa T. 191.  et al. 2015. PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol. Res. 3:902–14 [Google Scholar]
  192. Liu ZY, Wu B, Guo YS, Zhou YH, Fu ZG. 192.  et al. 2015. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. Am. J. Cancer Res. 5:3174–85 [Google Scholar]
  193. Feng X, Song Q, Yu A, Tang H, Peng Z, Wang X. 193.  2015. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma 62:592–601 [Google Scholar]
  194. Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK. 194.  2015. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6:e1636 [Google Scholar]
  195. Nugues AL, El Bouazzati H, Hetuin D, Berthon C, Loyens A. 195.  et al. 2014. RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis 5:e1384 [Google Scholar]
  196. Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH. 196.  et al. 2015. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25:707–25 [Google Scholar]
  197. Ruan J, Mei L, Zhu Q, Shi G, Wang H. 197.  2015. Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. Int. J. Clin. Exp. Pathol. 8:15035–38 [Google Scholar]
  198. He L, Peng K, Liu Y, Xiong J, Zhu FF. 198.  2013. Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. OncoTargets Ther 6:1539–43 [Google Scholar]
  199. Fauster A, Rebsamen M, Huber KV, Bigenzahn JW, Stukalov A. 199.  et al. 2015. A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 6:e1767 [Google Scholar]
/content/journals/10.1146/annurev-pathol-052016-100247
Loading
/content/journals/10.1146/annurev-pathol-052016-100247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error