1932

Abstract

Contrary to earlier beliefs, every cell in the individual is genetically different due to somatic mutations. Consequently, tissues become a mixture of cells with distinct genomes, a phenomenon termed somatic mosaicism. Recent advances in genome sequencing technology have unveiled possible causes of mutations and how they shape the unique mutational landscape of the tissues. Moreover, the analysis of sequencing data in combination with clinical information has revealed the impacts of somatic mosaicism on disease processes. In this review, we discuss somatic mosaicism in various tissues and its clinical implications for human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-061121-040048
2022-02-10
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-061121-040048.html?itemId=/content/journals/10.1146/annurev-physiol-061121-040048&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F et al. 2018. Somatic mutant clones colonize the human esophagus with age. Science 362:6417911–17
    [Google Scholar]
  2. 2. 
    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P et al. 2015. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:6237880–86
    [Google Scholar]
  3. 3. 
    Yokoyama A, Kakiuchi N, Yoshizato T, Nannya Y, Suzuki H et al. 2019. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565:7739312–17
    [Google Scholar]
  4. 4. 
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA et al. 2014. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371:262477–87
    [Google Scholar]
  5. 5. 
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV et al. 2014. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371:262488–98
    [Google Scholar]
  6. 6. 
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM et al. 2019. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D1D941–47
    [Google Scholar]
  7. 7. 
    Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM et al. 2015. A global reference for human genetic variation. Nature 526:757168–74
    [Google Scholar]
  8. 8. 
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J et al. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:7809434–43
    [Google Scholar]
  9. 9. 
    Young AL, Challen GA, Birmann BM, Druley TE. 2016. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7:112484
    [Google Scholar]
  10. 10. 
    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:779394–101
    [Google Scholar]
  11. 11. 
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S et al. 2013. Signatures of mutational processes in human cancer. Nature 500:7463415–21
    [Google Scholar]
  12. 12. 
    Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K et al. 2017. Universal patterns of selection in cancer and somatic tissues. Cell 171:51029–41.e21
    [Google Scholar]
  13. 13. 
    Stratton MR, Campbell PJ, Futreal PA. 2009. The cancer genome. Nature 458:7239719–24
    [Google Scholar]
  14. 14. 
    Poon G, Watson CJ, Fisher DS, Blundell JR. 2020. Synonymous mutations reveal genome-wide driver mutation rates in healthy tissues. bioRxiv 331405. https://doi.org/10.1101/2020.10.08.331405
    [Crossref]
  15. 15. 
    Olafsson S, McIntyre RE, Coorens T, Butler T, Jung H et al. 2020. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182:3672–84.e11
    [Google Scholar]
  16. 16. 
    Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA et al. 2019. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574:7779532–37
    [Google Scholar]
  17. 17. 
    Kakiuchi N, Yoshida K, Uchino M, Kihara T, Akaki K et al. 2020. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577:7789260–65
    [Google Scholar]
  18. 18. 
    Nanki K, Fujii M, Shimokawa M, Matano M, Nishikori S et al. 2020. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577:7789254–59
    [Google Scholar]
  19. 19. 
    Zhu M, Lu T, Jia Y, Luo X, Gopal P et al. 2019. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177:3608–21
    [Google Scholar]
  20. 20. 
    Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ et al. 2019. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574:7779538–42
    [Google Scholar]
  21. 21. 
    Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R et al. 2020. The mutational landscape of human somatic and germline cells. bioRxiv 398172. https://doi.org/10.1101/2020.11.25.398172
    [Crossref]
  22. 22. 
    Yizhak K, Aguet F, Kim J, Hess JM, Kübler K et al. 2019. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364:6444eaaw0726
    [Google Scholar]
  23. 23. 
    McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T et al. 2017. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356:6336eaal1641
    [Google Scholar]
  24. 24. 
    D'Gama AM, Walsh CA 2018. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 21:111504–14
    [Google Scholar]
  25. 25. 
    Hu WF, Chahrour MH, Walsh CA. 2014. The diverse genetic landscape of neurodevelopmental disorders. Annu. Rev. Genom. Hum. Genet. 15:195–213
    [Google Scholar]
  26. 26. 
    Lodato MA, Walsh CA. 2019. Genome aging: somatic mutation in the brain links age-related decline with disease and nominates pathogenic mechanisms. Hum. Mol. Genet. 28:R2R197–206
    [Google Scholar]
  27. 27. 
    Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR et al. 2018. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:6375555–59
    [Google Scholar]
  28. 28. 
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK et al. 2015. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:625694–98
    [Google Scholar]
  29. 29. 
    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T et al. 2013. Mosaic copy number variation in human neurons. Science 342:6158632–37
    [Google Scholar]
  30. 30. 
    Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T et al. 2018. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359:6375550–55
    [Google Scholar]
  31. 31. 
    Sánchez-Danés A, Blanpain C. 2018. Deciphering the cells of origin of squamous cell carcinomas. Nat. Rev. Cancer 18:9549–61
    [Google Scholar]
  32. 32. 
    Ling G, Persson A, Berne B, Uhlén M, Lundeberg J, Ponten F 2001. Persistent p53 mutations in single cells from normal human skin. Am. J. Pathol. 159:41247–53
    [Google Scholar]
  33. 33. 
    Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM et al. 1996. Frequent clones of p53-mutated keratinocytes in normalhumanskin. PNAS 93:2414025–29
    [Google Scholar]
  34. 34. 
    Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW et al. 1994. Sunburn and p53 in the onset of skin cancer. Nature 372:6508773–76
    [Google Scholar]
  35. 35. 
    Fowler JC, King C, Bryant C, Hall MWJ, Sood R et al. 2021. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov 11:2340–61
    [Google Scholar]
  36. 36. 
    Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ et al. 2015. Clock-like mutational processes in human somatic cells. Nat. Genet. 47:121402–7
    [Google Scholar]
  37. 37. 
    Chang J, Tan W, Ling Z, Xi R, Shao M et al. 2017. Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol drinking-related mutation signature and genomic alterations. Nat. Commun. 8:115290
    [Google Scholar]
  38. 38. 
    Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. 2010. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330:6005822–25
    [Google Scholar]
  39. 39. 
    Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:1134–44
    [Google Scholar]
  40. 40. 
    Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A et al. 2013. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342:6161995–98
    [Google Scholar]
  41. 41. 
    Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P et al. 2020. The mutational landscape of normal human endometrial epithelium. Nature 580:7805640–46
    [Google Scholar]
  42. 42. 
    Wu Q-J, Li Y-Y, Tu C, Zhu J, Qian K-Q et al. 2015. Parity and endometrial cancer risk: a meta-analysis of epidemiological studies. Sci. Rep. 5:114243
    [Google Scholar]
  43. 43. 
    Choi CHR, Al Bakir I, Hart AL, Graham TA 2017. Clonal evolution of colorectal cancer in IBD. Nat. Rev. Gastroenterol. Hepatol. 14:4218–29
    [Google Scholar]
  44. 44. 
    Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W et al. 2016. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44:3659–71
    [Google Scholar]
  45. 45. 
    Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W et al. 2012. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61:121693–700
    [Google Scholar]
  46. 46. 
    Targan SR, Feagan B, Vermeire S, Panaccione R, Melmed GY et al. 2016. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn's disease. Am. J. Gastroenterol. 111:111599–607
    [Google Scholar]
  47. 47. 
    Stanger BZ. 2015. Cellular homeostasis and repair in the mammalian liver. Annu. Rev. Physiol. 77:179–200
    [Google Scholar]
  48. 48. 
    Tsochatzis EA, Bosch J, Burroughs AK. 2014. Liver cirrhosis. Lancet 383:99301749–61
    [Google Scholar]
  49. 49. 
    Sun X, Chuang J-C, Kanchwala M, Wu L, Celen C et al. 2016. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell 18:4456–66
    [Google Scholar]
  50. 50. 
    Jacobs PA, Brunton M, Court Brown WM, Doll R, Goldstein H 1963. Change of human chromosome count distributions with age: evidence for a sex difference. Nature 197:48721080–81
    [Google Scholar]
  51. 51. 
    Busque L, Mio R, Mattioli J, Brais E, Blais N et al. 1996. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 88:159–65
    [Google Scholar]
  52. 52. 
    Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S et al. 2012. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44:111179–81
    [Google Scholar]
  53. 53. 
    Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL et al. 2020. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367:64851449–54
    [Google Scholar]
  54. 54. 
    Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM et al. 2020. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52:111219–26
    [Google Scholar]
  55. 55. 
    Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A et al. 2017. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21:3374–82.e4
    [Google Scholar]
  56. 56. 
    Kahn JD, Miller PG, Silver AJ, Sellar RS, Bhatt S et al. 2018. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132:111095–105
    [Google Scholar]
  57. 57. 
    Hsu JI, Dayaram T, Tovy A, De Braekeleer E, Jeong M et al. 2018. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:5700–13.e6
    [Google Scholar]
  58. 58. 
    Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M et al. 2019. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365:6453599–604
    [Google Scholar]
  59. 59. 
    Chen S, Wang Q, Yu H, Capitano ML, Vemula S et al. 2019. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat. Commun. 10:5649
    [Google Scholar]
  60. 60. 
    Wong TN, Miller CA, Jotte MRM, Bagegni N, Baty JD et al. 2018. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat. Commun. 9:455
    [Google Scholar]
  61. 61. 
    Mencia-Trinchant N, MacKay MJ, Chin C, Afshinnekoo E, Foox J et al. 2020. Clonal hematopoiesis before, during, and after human spaceflight. Cell Rep 33:10108458
    [Google Scholar]
  62. 62. 
    Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT et al. 2017. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:6742–52
    [Google Scholar]
  63. 63. 
    Forsberg LA, Rasi C, Malmqvist N, Davies H, Pasupulati S et al. 2014. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46:6624–28
    [Google Scholar]
  64. 64. 
    Thompson DJ, Genovese G, Halvardson J, Ulirsch JC, Wright DJ et al. 2019. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575:7784652–57
    [Google Scholar]
  65. 65. 
    Dumanski JP, Rasi C, Lönn M, Davies H, Ingelsson M et al. 2015. Smoking is associated with mosaic loss of chromosome Y. Science 347:621781–83
    [Google Scholar]
  66. 66. 
    Danielsson M, Halvardson J, Davies H, Torabi Moghadam B, Mattisson J et al. 2020. Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. Eur. J. Hum. Genet. 28:3349–57
    [Google Scholar]
  67. 67. 
    Haitjema S, Kofink D, van Setten J, van der Laan SW, Schoneveld AH et al. 2017. Loss of Y chromosome in blood is associated with major cardiovascular events during follow-up in men after carotid endarterectomy. Circ. Cardiovasc. Genet. 10:4e001544
    [Google Scholar]
  68. 68. 
    Loftfield E, Zhou W, Graubard BI, Yeager M, Chanock SJ et al. 2018. Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci. Rep. 8:112316
    [Google Scholar]
  69. 69. 
    Agahozo MC, Timmermans MAM, Sleddens HFBM, Foekens R, Trapman-Jansen AMAC et al. 2020. Loss of Y-chromosome during male breast carcinogenesis. Cancers 12:3631
    [Google Scholar]
  70. 70. 
    Sauter G, Moch H, Wagner U, Novotna H, Gasser TC et al. 1995. Y chromosome loss detected by FISH in bladder cancer. Cancer Genet. Cytogenet. 82:2163–69
    [Google Scholar]
  71. 71. 
    Hunter S, Gramlich T, Abbott K, Varma V 1993. Y chromosome loss in esophageal carcinoma: an in situ hybridization study. Genes Chromosom. Cancer 8:3172–77
    [Google Scholar]
  72. 72. 
    Wallrapp C, Hähnel S, Boeck W, Soder A, Mincheva A et al. 2001. Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis. Int. J. Cancer 91:3340–44
    [Google Scholar]
  73. 73. 
    Forsberg LA, Halvardson J, Rychlicka-Buniowska E, Danielsson M, Moghadam BT et al. 2019. Mosaic loss of chromosome Y in leukocytes matters. Nat. Genet. 51:14–7
    [Google Scholar]
  74. 74. 
    Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z et al. 2012. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 44:6651–58
    [Google Scholar]
  75. 75. 
    Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR et al. 2012. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat. Genet. 44:6642–50
    [Google Scholar]
  76. 76. 
    Loh P-R, Genovese G, Handsaker RE, Finucane HK, Reshef YA et al. 2018. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559:7714350–55
    [Google Scholar]
  77. 77. 
    Terao C, Suzuki A, Momozawa Y, Akiyama M, Ishigaki K et al. 2020. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584:7819130–35
    [Google Scholar]
  78. 78. 
    Evans MA, Sano S, Walsh K. 2020. Cardiovascular disease, aging, and clonal hematopoiesis. Annu. Rev. Pathol. Mech. Dis. 15:419–38
    [Google Scholar]
  79. 79. 
    Yura Y, Sano S, Walsh K 2020. Clonal hematopoiesis: a new step linking inflammation to heart failure. JACC Basic Transl. Sci. 5:2196–207
    [Google Scholar]
  80. 80. 
    Bick AG, Pirruccello JP, Griffin GK, Gupta N, Gabriel S et al. 2020. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141:2124–31
    [Google Scholar]
  81. 81. 
    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG et al. 2017. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377:2111–21
    [Google Scholar]
  82. 82. 
    Dorsheimer L, Assmus B, Rasper T, Ortmann CA, Ecke A et al. 2019. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 4:125–33
    [Google Scholar]
  83. 83. 
    Mas-Peiro S, Hoffmann J, Fichtlscherer S, Dorsheimer L, Rieger MA et al. 2020. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur. Heart J. 41:8933–39
    [Google Scholar]
  84. 84. 
    Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL et al. 2020. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:7831763–68
    [Google Scholar]
  85. 85. 
    Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JEL, Shah T et al. 2012. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379:98221214–24
    [Google Scholar]
  86. 86. 
    Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC et al. 2017. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:6327842–47
    [Google Scholar]
  87. 87. 
    Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K. 2018. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ. Res. 123:3335–41
    [Google Scholar]
  88. 88. 
    Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y et al. 2018. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71:8875–86
    [Google Scholar]
  89. 89. 
    Fuster JJ, Zuriaga MA, Zorita V, MacLauchlan S, Polackal MN et al. 2020. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 33:4108326
    [Google Scholar]
  90. 90. 
    Wang Y, Sano S, Yura Y, Ke Z, Sano M et al. 2020. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight 5:6e135204
    [Google Scholar]
  91. 91. 
    Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M et al. 2018. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 10:436eaan8292
    [Google Scholar]
  92. 92. 
    Wang W, Liu W, Fidler T, Wang Y, Tang Y et al. 2018. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice. Circ. Res 123:11e35–47
    [Google Scholar]
  93. 93. 
    Sano S, Wang Y, Yura Y, Sano M, Oshima K et al. 2019. JAK2 (V617F)-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic Transl. Sci. 4:6684–97
    [Google Scholar]
  94. 94. 
    Fidler TP, Xue C, Yalcinkaya M, Hardaway B, Abramowicz S et al. 2021. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592:7853296–301
    [Google Scholar]
  95. 95. 
    Loftfield E, Zhou W, Yeager M, Chanock SJ, Freedman ND, Machiela MJ. 2019. Mosaic Y loss is moderately associated with solid tumor risk. Cancer Res 79:3461–66
    [Google Scholar]
  96. 96. 
    Dumanski JP, Lambert J-C, Rasi C, Giedraitis V, Davies H et al. 2016. Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am. J. Hum. Genet. 98:61208–19
    [Google Scholar]
  97. 97. 
    Lleo A, Oertelt-Prigione S, Bianchi I, Caliari L, Finelli P et al. 2013. Y chromosome loss in male patients with primary biliary cirrhosis. J. Autoimmun. 41:87–91
    [Google Scholar]
  98. 98. 
    Persani L, Bonomi M, Lleo A, Pasini S, Civardi F et al. 2012. Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J. Autoimmun. 38:2–3J193–96
    [Google Scholar]
  99. 99. 
    Kimura A, Hishimoto A, Otsuka I, Okazaki S, Boku S et al. 2018. Loss of chromosome Y in blood, but not in brain, of suicide completers. PLOS ONE 13:e0190667
    [Google Scholar]
  100. 100. 
    Ouseph MM, Hasserjian RP, Dal Cin P, Lovitch SB, Steensma DP et al. 2021. Genomic alterations in patients with somatic loss of the Y chromosome as the sole cytogenetic finding in bone marrow cells. Haematologica 106:2555–64
    [Google Scholar]
  101. 101. 
    Baliakas P, Forsberg LA. 2021. Chromosome Y loss and drivers of clonal hematopoiesis in myelodysplastic syndrome. Haematologica 106:329–31
    [Google Scholar]
  102. 102. 
    Bonnefond A, Skrobek B, Lobbens S, Eury E, Thuillier D et al. 2013. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat. Genet. 45:91040–43
    [Google Scholar]
  103. 103. 
    Zekavat SM, Lin S-H, Bick AG, Liu A, Paruchuri K et al. 2021. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat. Med. 27:61012–24
    [Google Scholar]
  104. 104. 
    Gibson CJ, Kim TH, Murdock HM, Hambley B, Zhao L et al. 2020. DNMT3A clonal hematopoiesis in older donors is associated with improved survival in recipients after allogeneic hematopoietic cell transplant. Paper presented at 62nd ASH Annual Meeting and Exposition Dec. 5–8. https://ash.confex.com/ash/2020/webprogram/Paper142925.html
    [Google Scholar]
  105. 105. 
    Frick M, Chan W, Arends CM, Hablesreiter R, Halik A et al. 2018. Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 37:5375–85
    [Google Scholar]
  106. 106. 
    Assmus B, Cremer S, Kirschbaum K, Culmann D, Kiefer K et al. 2020. Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur. Heart J. 42:3257–65
    [Google Scholar]
  107. 107. 
    Laridan E, Martinod K, De Meyer SF. 2019. Neutrophil extracellular traps in arterial and venous thrombosis. Semin. Thromb. Hemost. 45:186–93
    [Google Scholar]
  108. 108. 
    Heyde A, Rohde D, McAlpine CS, Zhang S, Hoyer FF et al. 2021. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184:51348–61.e22
    [Google Scholar]
  109. 109. 
    Sano S, Wang Y, Walsh K 2020. Somatic mosaicism: implications for the cardiovascular system. Eur. Heart J. 41:302904–7
    [Google Scholar]
  110. 110. 
    Benditt EP, Benditt JM. 1973. Evidence for a monoclonal origin of human atherosclerotic plaques. PNAS 70:61753–56
    [Google Scholar]
  111. 111. 
    Cimmino L, Dolgalev I, Wang Y, Yoshimi A, Martin GH et al. 2017. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170:61079–95.e20
    [Google Scholar]
  112. 112. 
    Tang J, Fewings E, Chang D, Zeng H, Liu S et al. 2020. The genomic landscapes of individual melanocytes from human skin. Nature 586:7830600–05
    [Google Scholar]
  113. 113. 
    Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S et al. 2016. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538:7624260–64
    [Google Scholar]
  114. 114. 
    Lawson ARJ, Abascal F, Coorens THH, Hooks Y, O'Neill L et al. 2020. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370:651275–82
    [Google Scholar]
  115. 115. 
    Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T et al. 2020. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578:7794266–72
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-061121-040048
Loading
/content/journals/10.1146/annurev-physiol-061121-040048
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error