1932

Abstract

Plants employ a diverse intracellular system of NLR (nucleotide binding–leucine-rich repeat) innate immune receptors to detect pathogens of all types. These receptors represent valuable agronomic traits that plant breeders rely on to maximize yield in the face of devastating pathogens. Despite their importance, the mechanistic underpinnings of NLR-based disease resistance remain obscure. The rapidly increasing numbers of plant genomes are revealing a diverse array of NLR-type immune receptors. In parallel, mechanistic studies are describing diverse functions for NLR immune receptors. In this review, we intend to broadly describe how the structural, functional, and genomic diversity of plant immune receptors can provide a valuable resource for rational engineering of plant immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-045817
2018-08-25
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-045817.html?itemId=/content/journals/10.1146/annurev-phyto-080417-045817&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG 2014. Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120
    [Google Scholar]
  2. 2.  Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM et al. 2012. Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–37
    [Google Scholar]
  3. 3.  Bailey PC, Schudoma C, Jackson W, Baggs E, Dagdas G et al. 2018. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol 19:23
    [Google Scholar]
  4. 4.  Bakker EG, Toomajian C, Kreitman M, Bergelson J 2006. A genome-wide survey of R gene polymorphisms in Arabidopsis. . Plant Cell 18:1803–18
    [Google Scholar]
  5. 5.  Baurens F-C, Bocs S, Rouard M, Matsumoto T, Miller RNG et al. 2010. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana). BMC Plant Biol 10:149
    [Google Scholar]
  6. 6.  Bebber DP 2015. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53:335–56
    [Google Scholar]
  7. 7.  Bendahmane A, Farnham G, Moffett P, Baulcombe DC 2002. Constitutive gain-of-function mutants in a nucleotide binding site–leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32:195–204
    [Google Scholar]
  8. 8.  Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R et al. 1994. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–60
    [Google Scholar]
  9. 9.  Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C et al. 2016. Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model. Plant Cell 28:146–59
    [Google Scholar]
  10. 10.  Bernoux M, Ve T, Williams S, Warren C, Hatters D et al. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–11
    [Google Scholar]
  11. 11.  Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C et al. 2007. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLOS Biol 5:e236
    [Google Scholar]
  12. 12.  Bonardi V, Cherkis K, Nishimura MT, Dangl JL 2012. A new eye on NLR proteins: focused on clarity or diffused by complexity?. Curr. Opin. Immunol. 24:41–50
    [Google Scholar]
  13. 13.  Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. PNAS 108:16463–68
    [Google Scholar]
  14. 14.  Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL et al. 1998. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10:1847–60
    [Google Scholar]
  15. 15.  Bouktila D, Khalfallah Y, Habachi-Houimli Y, Mezghani-Khemakhem M, Makni M, Makni H 2015. Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Mol. Genet. Genom. 290:1257–71
    [Google Scholar]
  16. 16.  Boutrot F, Zipfel C 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–86
    [Google Scholar]
  17. 17.  Büttner D 2016. Behind the lines: actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 40:894–937
    [Google Scholar]
  18. 18.  Caicedo AL, Schaal BA, Kunkel BN 1999. Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. . PNAS 96:302–6
    [Google Scholar]
  19. 19.  Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T et al. 2017. Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat. Commun. 8:15708
    [Google Scholar]
  20. 20.  Césari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN 2014. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front. Plant Sci. 5:606
    [Google Scholar]
  21. 21.  Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V et al. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33:1941–59
    [Google Scholar]
  22. 22.  Césari S, Thilliez G, Ribot C, Chalvon V, Michel C et al. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–81
    [Google Scholar]
  23. 23.  Chae E, Bomblies K, Kim S-T, Karelina D, Zaidem M et al. 2014. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159:1341–51
    [Google Scholar]
  24. 24.  Chapman S, Stevens LJ, Boevink PC, Engelhardt S, Alexander CJ et al. 2014. Detection of the virulent form of AVR3a from Phytophthora infestans following artificial evolution of potato resistance gene R3a. . PLOS ONE 9:e110158
    [Google Scholar]
  25. 25.  Chen Q, Han Z, Jiang H, Tian D, Yang S 2010. Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. J. Mol. Evol. 70:137–48
    [Google Scholar]
  26. 26.  Cheng Y, Li X, Jiang H, Ma W, Miao W et al. 2012. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J 279:132431–43
    [Google Scholar]
  27. 27.  Collier SM, Hamel L-P, Moffett P 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant-Microbe Interact. 24:918–31
    [Google Scholar]
  28. 28.  Couto D, Zipfel C 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537–52
    [Google Scholar]
  29. 29.  Cui H, Tsuda K, Parker JE 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487–511
    [Google Scholar]
  30. 30.  Dangl JL, Horvath DM, Staskawicz BJ 2013. Pivoting the plant immune system from dissection to deployment. Science 341:746–51
    [Google Scholar]
  31. 31.  Dangl JL, Jones JD 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826–33
    [Google Scholar]
  32. 32.  De La Fuente van Bentem S, Vossen JH, Vries KJ, Wees S, Tameling WI et al. 2005. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J 43:284–98
    [Google Scholar]
  33. 33.  Delorenzi M, Speed T 2002. An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18:617–25
    [Google Scholar]
  34. 34.  Deng Y, Zhai K, Xie Z, Yang D, Zhu X et al. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–55
    [Google Scholar]
  35. 35.  Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX et al. 2002. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS 99:2404–9
    [Google Scholar]
  36. 36.  Dinesh-Kumar SP, Tham WH, Baker BJ 2000. Structure-function analysis of the tobacco mosaic virus resistance gene N. . PNAS 97:14789–94
    [Google Scholar]
  37. 37.  Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F et al. 2014. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–49
    [Google Scholar]
  38. 38.  El Kasmi F, Nishimura MT 2016. Structural insights into plant NLR immune receptor function. PNAS 113:12619–21
    [Google Scholar]
  39. 39.  Ellis JG, Lawrence GJ, Luck JE, Dodds PN 1999. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506
    [Google Scholar]
  40. 40.  Farnham G, Baulcombe DC 2006. Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. PNAS 103:18828–33
    [Google Scholar]
  41. 41.  Fenyk S, Dixon CH, Gittens WH, Townsend PD, Sharples GJ et al. 2016. The tomato nucleotide-binding leucine-rich repeat immune receptor I-2 couples DNA-binding to nucleotide-binding domain nucleotide exchange. J. Biol. Chem. 291:1137–47
    [Google Scholar]
  42. 42.  Fenyk S, Townsend PD, Dixon CH, Spies GB, de San Eustaquio Campillo A et al. 2015. The potato nucleotide-binding leucine-rich repeat (NLR) immune receptor Rx1 is a pathogen-dependent DNA-deforming protein. J. Biol. Chem. 290:24945–60
    [Google Scholar]
  43. 43.  Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–85
    [Google Scholar]
  44. 44.  Flor HH 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96
    [Google Scholar]
  45. 45.  Fluhr R 2001. Sentinels of disease. Plant resistance genes. Plant Physiol 127:1367–74
    [Google Scholar]
  46. 46.  Gan X, Stegle O, Behr J, Steffen JG, Drewe P et al. 2011. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. . Nature 477:419–23
    [Google Scholar]
  47. 47.  Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T et al. 2017. Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat. Commun. 8:15708
    [Google Scholar]
  48. 48.  Giolai M, Paajanen P, Verweij W, Percival-Alwyn L, Baker D et al. 2016. Targeted capture and sequencing of gene-sized DNA molecules. Biotechniques 61:315–22
    [Google Scholar]
  49. 49.  Giolai M, Paajanen P, Verweij W, Witek K, Jones JDG, Clark MD 2017. Comparative analysis of targeted long read sequencing approaches for characterization of a plant's immune receptor repertoire. BMC Genom 18:564
    [Google Scholar]
  50. 50.  Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H et al. 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. . Commun 7:13390
    [Google Scholar]
  51. 51.  Goritschnig S, Steinbrenner AD, Grunwald DJ, Staskawicz BJ 2016. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector. New Phytol 210:984–96
    [Google Scholar]
  52. 52.  Gruber M, Soding J, Lupas AN 2005. REPPER: repeats and their periodicities in fibrous proteins. Nucleic Acids Res 33:W239–43
    [Google Scholar]
  53. 53.  Guo Y-L, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D 2011. Genome-wide comparison of nucleotide-binding site–leucine-rich repeat-encoding genes in Arabidopsis. . Plant Physiol 157:757–69
    [Google Scholar]
  54. 54.  Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P 2017. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55:565–89
    [Google Scholar]
  55. 55.  Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E 2013. TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41:D387–95
    [Google Scholar]
  56. 56.  Harris CJ, Slootweg EJ, Goverse A, Baulcombe DC 2013. Stepwise artificial evolution of a plant disease resistance gene. PNAS 110:21189–94
    [Google Scholar]
  57. 57.  Howles P, Lawrence G, Finnegan J, McFadden H, Ayliffe M et al. 2005. Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol. Plant-Microbe Interact. 18:570–82
    [Google Scholar]
  58. 58.  Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y et al. 2017. Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLOS Pathog 13:e1006376
    [Google Scholar]
  59. 59.  Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D et al. 2014. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. . Plant J 79:904–13
    [Google Scholar]
  60. 60.  Jacob F, Vernaldi S, Maekawa T 2013. Evolution and conservation of plant NLR functions. Front. Immunol. 4:297
    [Google Scholar]
  61. 61.  Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–14
    [Google Scholar]
  62. 62.  Jones JDG, Dangl JL 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  63. 63.  Jones JDG, Vance RE, Dangl JL 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  64. 64.  Jupe F, Chen X, Verweij W, Witek K, Jones JDG, Hein I 2014. Genomic DNA library preparation for resistance gene enrichment and sequencing (RenSeq) in plants. Methods Mol. Biol. 1127:291–303
    [Google Scholar]
  65. 65.  Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L et al. 2013. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–44
    [Google Scholar]
  66. 66.  Kemmerling B, Halter T, Mazzotta S, Mosher S, Nürnberger T 2011. A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. Front. Plant Sci. 2:88
    [Google Scholar]
  67. 67.  Kim J, Lim CJ, Lee B-W, Choi J-P, Oh S-K et al. 2012. A genome-wide comparison of NB-LRR type of resistance gene analogs (RGA) in the plant kingdom. Mol. Cells 33:385–92
    [Google Scholar]
  68. 68.  Kim SH, Qi D, Ashfield T, Helm M, Innes RW 2016. Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351:684–87
    [Google Scholar]
  69. 69.  Knepper C, Savory EA, Day B 2011. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane–cell wall adhesion. Plant Physiol 156:286–300
    [Google Scholar]
  70. 70.  Kourelis J, van der Hoorn RAL, Sueldo DJ 2016. Decoy engineering: the next step in resistance breeding. Trends Plant Sci 21:371–73
    [Google Scholar]
  71. 71.  Krasileva KV, Dahlbeck D, Staskawicz BJ 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:2444–58
    [Google Scholar]
  72. 72.  Kroj T, Chanclud E, Michel-Romiti C, Grand X, Morel J-B 2016. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 210:618–26
    [Google Scholar]
  73. 73.  Kuang H, Wei F, Marano MR, Wirtz U, Wang X et al. 2005. The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. . Plant J 44:37–51
    [Google Scholar]
  74. 74.  Kuang H, Woo S-S, Meyers BC, Nevo E, Michelmore RW 2004. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–94
    [Google Scholar]
  75. 75.  Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D et al. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28:365–69
    [Google Scholar]
  76. 76.  Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074–88
    [Google Scholar]
  77. 77.  Leppik EE 1970. Gene centers of plants as sources of disease resistance. Annu. Rev. Phytopathol. 8:323–44
    [Google Scholar]
  78. 78.  Letunic I, Doerks T, Bork P 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–60
    [Google Scholar]
  79. 79.  Li X, Kapos P, Zhang Y 2015. NLRs in plants. Curr. Opin. Immunol. 32:114–21
    [Google Scholar]
  80. 80.  Liu Z, Halterman D 2006. Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum. Physiol. Mol. . Plant Pathol 69:230–39
    [Google Scholar]
  81. 81.  Lu X, Kracher B, Saur IML, Bauer S, Ellwood SR et al. 2016. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. PNAS 113:E6486–95
    [Google Scholar]
  82. 82.  Lupas A, Van Dyke M, Stock J 1991. Predicting coiled coils from protein sequences. Science 252:1162–64
    [Google Scholar]
  83. 83.  Maekawa T, Cheng W, Spiridon LN, Töller A, Lukasik E et al. 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187–99
    [Google Scholar]
  84. 84.  Maekawa T, Kufer TA, Schulze-Lefert P 2011. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12:817–26
    [Google Scholar]
  85. 85.  Maqbool A, Saitoh H, Franceschetti M, Stevenson C, Uemura A et al. 2015. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4:e08709
    [Google Scholar]
  86. 86.  McDonnell AV, Jiang T, Keating AE, Berger B 2006. Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22:356–58
    [Google Scholar]
  87. 87.  McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S et al. 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. . Plant Cell 10:1861–74
    [Google Scholar]
  88. 88.  Mestre P 2006. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18:491–501
    [Google Scholar]
  89. 89.  Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND 1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–32
    [Google Scholar]
  90. 90.  Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. . Plant Cell 15:809–34
    [Google Scholar]
  91. 91.  Meyers BC, Morgante M, Michelmore RW 2002. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92
    [Google Scholar]
  92. 92.  Mindrinos M, Katagiri F, Yu GL, Ausubel FM 1994. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–99
    [Google Scholar]
  93. 93.  Mott GA, Middleton MA, Desveaux D, Guttman DS 2014. Peptides and small molecules of the plant-pathogen apoplastic arena. Front. Plant Sci. 5:677
    [Google Scholar]
  94. 94.  Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T et al. 2009. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60:218–26
    [Google Scholar]
  95. 95.  Nepal MP, Andersen EJ, Neupane S, Benson BV 2017. Comparative genomics of non-TNL disease resistance genes from six plant species. Genes 8:10E249
    [Google Scholar]
  96. 96.  Nishimura MT, Anderson RG, Cherkis KA, Law TF, Liu QL et al. 2017. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis. . PNAS 114:E2053–62
    [Google Scholar]
  97. 97.  Nishimura MT, Monteiro F, Dangl JL 2015. Treasure your exceptions: unusual domains in immune receptors reveal host virulence targets. Cell 161:957–60
    [Google Scholar]
  98. 98.  Noël L, Moores TL, van der Biezen EA, Parniske M, Daniels MJ et al. 1999. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. . Plant Cell 11:2099–112
    [Google Scholar]
  99. 99.  O'Neill LAJ, Bowie AG 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7:353–64
    [Google Scholar]
  100. 100.  Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A, Sundesha V, Andolfo G et al. 2018. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res 46:D1197–201
    [Google Scholar]
  101. 101.  Pan Q, Wendel J, Fluhr R 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50:203–13
    [Google Scholar]
  102. 102.  Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr. Biol. 15:968–73
    [Google Scholar]
  103. 103.  Peele HM, Guan N, Fogelqvist J, Dixelius C 2014. Loss and retention of resistance genes in five species of the Brassicaceae family. BMC Plant Biol 14:298
    [Google Scholar]
  104. 104. Potato Genome Seq. Consort. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475:189–95
    [Google Scholar]
  105. 105.  Sarris PF, Cevik V, Dagdas G, Jones JDG, Krasileva KV 2016. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14:8
    [Google Scholar]
  106. 106.  Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–100
    [Google Scholar]
  107. 107.  Schreiber KJ, Bentham A, Williams SJ, Kobe B, Staskawicz BJ 2016. Multiple domain associations within the Arabidopsis immune receptor RPP1 regulate the activation of programmed cell death. PLOS Pathog 12:e1005769
    [Google Scholar]
  108. 108.  Segretin ME, Pais M, Franceschetti M, Chaparro-Garcia A, Bos JI et al. 2014. Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors. Mol. Plant-Microbe Interact. 27:624–37
    [Google Scholar]
  109. 109.  Shao Z-Q, Xue J-Y, Wu P, Zhang Y-M, Wu Y et al. 2016. Large-scale analyses of angiosperm nucleotide-binding site–leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170:2095–109
    [Google Scholar]
  110. 110.  Shirasu K 2009. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu. Rev. Plant Biol. 60:139–64
    [Google Scholar]
  111. 111.  Slootweg E, Koropacka K, Roosien J, Dees R, Overmars H et al. 2017. Sequence exchange between homologous NB-LRR genes converts virus resistance into nematode resistance, and vice versa. Plant Physiol 175:498–510
    [Google Scholar]
  112. 112.  Slootweg EJ, Spiridon LN, Roosien J, Butterbach P, Pomp R et al. 2013. Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and Gpa2. Plant Physiol 162:1510–28
    [Google Scholar]
  113. 113.  Staal J, Kaliff M, Dewaele E, Persson M, Dixelius C 2008. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J 55:188–200
    [Google Scholar]
  114. 114.  Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J 1999. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. . Nature 400:667–71
    [Google Scholar]
  115. 115.  Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD 1995. Molecular genetics of plant disease resistance. Science 268:661–67
    [Google Scholar]
  116. 116.  Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN et al. 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34:6652–55
    [Google Scholar]
  117. 117.  Stirnweis D, Milani SD, Jordan T, Keller B, Brunner S 2014. Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3F resistance spectrum in wheat. Mol. Plant-Microbe Interact. 27:265–76
    [Google Scholar]
  118. 118.  Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR et al. 2016. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like resistance locus underlies three different cases of EDS1-conditioned autoimmunity. PLOS Genet 12:e1005990
    [Google Scholar]
  119. 119.  Swiderski MR, Birker D, Jones JDG 2009. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol. Plant-Microbe Interact. 22:157–65
    [Google Scholar]
  120. 120.  Takken FL, Albrecht M, Tameling WI 2006. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 9:383–90
    [Google Scholar]
  121. 121.  Takken FLW, Goverse A 2012. How to build a pathogen detector: structural basis of NB-LRR function. Curr. Opin. Plant Biol. 15:375–84
    [Google Scholar]
  122. 122.  Tameling WI, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW et al. 2002. The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–39
    [Google Scholar]
  123. 123.  Tan S, Wu S 2012. Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp. Funct. . Genom 2012:418208
    [Google Scholar]
  124. 124.  Tang D, Wang G, Zhou J-M 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29:618–37
    [Google Scholar]
  125. 125.  Thomma BPHJ, Nürnberger T, Joosten MHAJ 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15
    [Google Scholar]
  126. 126.  Tian D, Araki H, Stahl E, Bergelson J, Kreitman M 2002. Signature of balancing selection in Arabidopsis. . PNAS 99:11525–30
    [Google Scholar]
  127. 127.  Tomato Genome Consort 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–41
    [Google Scholar]
  128. 128.  Tran DTN, Chung E-H, Habring-Müller A, Demar M, Schwab R et al. 2017. Activation of a plant NLR complex through heteromeric association with an autoimmune risk variant of another NLR. Curr. Biol. 27:1148–60
    [Google Scholar]
  129. 129.  Urbach JM, Ausubel FM 2017. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. PNAS 114:1063–68
    [Google Scholar]
  130. 130.  van der Biezen EA, Jones JD 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23:454–56
    [Google Scholar]
  131. 131.  Varden FA, De la Concepcion JC, Maidment JH, Banfield MJ 2017. Taking the stage: effectors in the spotlight. Curr. Opin. Plant Biol. 38:25–33
    [Google Scholar]
  132. 132.  Vavilov NI 1951. The origin, variation, immunity and breeding of cultivated plants. Soil Sci 72:482
    [Google Scholar]
  133. 133.  Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E et al. 2013. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14:619–30
    [Google Scholar]
  134. 134.  Wang GL, Ruan DL, Song WY, Sideris S, Chen L et al. 1998. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–79
    [Google Scholar]
  135. 135.  Wang Y, Zhang Y, Wang Z, Zhang X, Yang S 2013. A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. . Plant J 75:553–65
    [Google Scholar]
  136. 136.  Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–15
    [Google Scholar]
  137. 137.  Wiermer M, Feys BJ, Parker JE 2005. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8:383–89
    [Google Scholar]
  138. 138.  Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303
    [Google Scholar]
  139. 139.  Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B et al. 2011. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol. Plant-Microbe Interact. 24:897–906
    [Google Scholar]
  140. 140.  Witek K, Jupe F, Witek AI, Baker D, Clark MD, Jones JDG 2016. Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 34:656–60
    [Google Scholar]
  141. 141.  Wolf E, Kim PS, Berger B 1997. MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6:1179–89
    [Google Scholar]
  142. 142.  Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R et al. 2017. NLR network mediates immunity to diverse plant pathogens. PNAS 114:8113–18
    [Google Scholar]
  143. 143.  Wu C-H, Krasileva KV, Banfield MJ, Terauchi R, Kamoun S 2015. The “sensor domains” of plant NLR proteins: more than decoys?. Front. Plant Sci. 6:134
    [Google Scholar]
  144. 144.  Xiao S, Ellwood S, Calis O, Patrick E, Li T et al. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–20
    [Google Scholar]
  145. 145.  Yang S, Feng Z, Zhang X, Jiang K, Jin X et al. 2006. Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol. Biol. 62:181–93
    [Google Scholar]
  146. 146.  Yu J, Tehrim S, Zhang F, Tong C, Huang J et al. 2014. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. . BMC Genom 15:3
    [Google Scholar]
  147. 147.  Yu X, Feng B, He P, Shan L 2017. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55:109–37
    [Google Scholar]
  148. 148.  Yue J-X, Meyers BC, Chen J-Q, Tian D, Yang S 2012. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193:1049–63
    [Google Scholar]
  149. 149.  Zbierzak AM, Porfirova S, Griebel T, Melzer M, Parker JE, Dörmann P 2013. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. Plant J 75:539–52
    [Google Scholar]
  150. 150.  Zhai C, Zhang Y, Yao N, Lin F, Liu Z et al. 2014. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLOS ONE 9:e98067
    [Google Scholar]
  151. 151.  Zhang X, Bernoux M, Bentham AR, Newman TE, Ve T et al. 2017. Multiple functional self-association interfaces in plant TIR domains. PNAS 114:E2046–52
    [Google Scholar]
  152. 152.  Zhang X, Dodds PN, Bernoux M 2017. What do we know about NOD-like receptors in plant immunity?. Annu. Rev. Phytopathol. 55:205–29
    [Google Scholar]
  153. 153.  Zhang Y, Wang Y, Liu J, Ding Y, Wang S et al. 2017. Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. . New Phytol 213:1330–45
    [Google Scholar]
  154. 154.  Zhang Y-M, Shao Z-Q, Wang Q, Hang Y-Y, Xue J-Y et al. 2016. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J. Integr. Plant Biol. 58:2165–77
    [Google Scholar]
  155. 155.  Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S 2005. A maize resistance gene functions against bacterial streak disease in rice. PNAS 102:15383–88
    [Google Scholar]
  156. 156.  Zhao T, Rui L, Li J, Nishimura MT, Vogel JP et al. 2015. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLOS Genet 11:e1004945
    [Google Scholar]
  157. 157.  Zheng F, Wu H, Zhang R, Li S, He W et al. 2016. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genom 17:402
    [Google Scholar]
  158. 158.  Zhong Y, Cheng Z-M 2016. A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication. Sci. Rep. 6:32923
    [Google Scholar]
  159. 159.  Zhou T, Wang Y, Chen J-Q, Araki H, Jing Z et al. 2004. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genom. 271:4402–15
    [Google Scholar]
  160. 160.  Zipfel C 2014. Plant pattern-recognition receptors. Trends Immunol 35:345–51
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-045817
Loading
/content/journals/10.1146/annurev-phyto-080417-045817
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error