1932

Abstract

Influenza is a common respiratory infection that causes considerable morbidity and mortality worldwide each year. In recent years, along with the improvement in computational resources, there have been a number of important developments in the science of influenza surveillance and forecasting. Influenza surveillance systems have been improved by synthesizing multiple sources of information. Influenza forecasting has developed into an active field, with annual challenges in the United States that have stimulated improved methodologies. Work continues on the optimal approaches to assimilating surveillance data and information on relevant driving factors to improve estimates of the current situation (nowcasting) and to forecast future dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-010720-021049
2021-04-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/42/1/annurev-publhealth-010720-021049.html?itemId=/content/journals/10.1146/annurev-publhealth-010720-021049&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aguirre A, Gonzalez E. 1992. The feasibility of forecasting influenza epidemics in Cuba. Mem. Inst. Oswaldo Cruz 87:429–32
    [Google Scholar]
  2. 2. 
    Aiello AE, Renson A, Zivich PN 2020. Social media- and Internet-based disease surveillance for public health. Annu. Rev. Public Health 41:101–18
    [Google Scholar]
  3. 3. 
    Ali ST, Cowling BJ, Lau EHY, Fang VJ, Leung GM 2018. Mitigation of influenza B epidemic with school closures, Hong Kong, 2018. Emerg. Infect. Dis. 24:2071–73
    [Google Scholar]
  4. 4. 
    Ali ST, Wu P, Cauchemez S, He D, Fang VJ et al. 2018. Ambient ozone and influenza transmissibility in Hong Kong. Eur. Respir. J. 51:1800369
    [Google Scholar]
  5. 5. 
    Axelsen JB, Yaari R, Grenfell BT, Stone L 2014. Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers. PNAS 111:9538–42
    [Google Scholar]
  6. 6. 
    Babakazo P, Kabamba-Tshilobo J, Wemakoy EO, Lubula L, Manya LK et al. 2019. Evaluation of the influenza sentinel surveillance system in the Democratic Republic of Congo, 2012–2015. BMC Public Health 19:1652
    [Google Scholar]
  7. 7. 
    Baguelin M, Flasche S, Camacho A, Demiris N, Miller E, Edmunds WJ 2013. Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study. PLOS Med 10:e1001527
    [Google Scholar]
  8. 8. 
    Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC et al. 2016. Results from the Centers for Disease Control and Prevention's Predict the 2013–2014 Influenza Season Challenge. BMC Infect. Dis. 16:357
    [Google Scholar]
  9. 9. 
    Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L 2014. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect. Dis. 14:480
    [Google Scholar]
  10. 10. 
    Biggerstaff M, Johansson M, Alper D, Brooks LC, Chakraborty P et al. 2018. Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics 24:26–33
    [Google Scholar]
  11. 11. 
    Bloom-Feshbach K, Alonso WJ, Charu V, Tamerius J, Simonsen L et al. 2013. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review. PLOS ONE 8:e54445
    [Google Scholar]
  12. 12. 
    Boëlle PY, Ansart S, Cori A, Valleron A-J 2011. Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza Other Respir. Viruses 5:306–16
    [Google Scholar]
  13. 13. 
    Broniatowski DA, Paul MJ, Dredze M 2013. National and local influenza surveillance through Twitter: an analysis of the 2012–2013 influenza epidemic. PLOS ONE 8:e83672
    [Google Scholar]
  14. 14. 
    Brownstein JS, Freifeld CC, Reis BY, Mandl KD 2008. Surveillance sans frontières: Internet-based emerging infectious disease intelligence and the HealthMap project. PLOS Med 5:e151
    [Google Scholar]
  15. 15. 
    Brownstein JS, Kleinman KP, Mandl KD 2005. Identifying pediatric age groups for influenza vaccination using a real-time regional surveillance system. Am. J. Epidemiol. 162:686–93
    [Google Scholar]
  16. 16. 
    Carneiro HA, Mylonakis E. 2009. Google Trends: a web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 49:1557–64
    [Google Scholar]
  17. 17. 
    Cauchemez S, Valleron A-J, Boëlle P-Y, Flahault A, Ferguson NM 2008. Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452:750–54
    [Google Scholar]
  18. 18. 
    CDC (Cent. Dis. Control Prev.) 2013. About CDC's flu forecasting efforts. Influenza (Flu) https://www.cdc.gov/flu/weekly/flusight/about-flu-forecasting.htm
    [Google Scholar]
  19. 19. 
    CDC (Cent. Dis. Control Prev.) 2013. CDC competition encourages use of social media to predict flu Press Release, Nov. 25, CDC Atlanta: https://www.cdc.gov/flu/news/predict-flu-challenge.htm
    [Google Scholar]
  20. 20. 
    CDC (Cent. Dis. Control Prev.) 2020. Flu activity & surveillance. Influenza (Flu) https://www.cdc.gov/flu/weekly/fluactivitysurv.htm
    [Google Scholar]
  21. 21. 
    CDC (Cent. Dis. Control Prev.) 2020. Overview of influenza testing methods. Influenza (Flu) https://www.cdc.gov/flu/professionals/diagnosis/overview-testing-methods.htm#culture
    [Google Scholar]
  22. 22. 
    Chew FT, Doraisingham S, Ling AE, Kumarasinghe G, Lee BW 1998. Seasonal trends of viral respiratory tract infections in the tropics. Epidemiol. Infect. 121:121–28
    [Google Scholar]
  23. 23. 
    Choi BCK. 2012. The past, present, and future of public health surveillance. Scientifica (Cairo) 2012:875253
    [Google Scholar]
  24. 24. 
    Chretien J-P, George D, Shaman J, Chitale RA, McKenzie FE 2014. Influenza forecasting in human populations: a scoping review. PLOS ONE 9:e94130
    [Google Scholar]
  25. 25. 
    Cook S, Conrad C, Fowlkes AL, Mohebbi MH 2011. Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLOS ONE 6:e23610
    [Google Scholar]
  26. 26. 
    Cori A, Ferguson NM, Fraser C, Cauchemez S 2013. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178:1505–12
    [Google Scholar]
  27. 27. 
    Cox NJ, Subbarao K. 1999. Influenza. Lancet 354:1277–82
    [Google Scholar]
  28. 28. 
    Dowell SF, Ho MS. 2004. Seasonality of infectious diseases and severe acute respiratory syndrome—what we don't know can hurt us. Lancet Infect. Dis. 4:704–8
    [Google Scholar]
  29. 29. 
    Du X, King AA, Woods RJ, Pascual M 2017. Evolution-informed forecasting of seasonal influenza A (H3N2). Sci. Transl. Med. 9:eaan5325
    [Google Scholar]
  30. 30. 
    Dushoff J, Plotkin JB, Levin SA, Earn DJD 2004. Dynamical resonance can account for seasonality of influenza epidemics. PNAS 101:16915–16
    [Google Scholar]
  31. 31. 
    ECDPC (Eur. Cent. Dis. Prev. Control) 2020. Sentinel surveillance. Seasonal Influenza https://www.ecdc.europa.eu/en/seasonal-influenza/surveillance-and-disease-data/facts-sentinel-surveillance
    [Google Scholar]
  32. 32. 
    Eysenbach G. 2006. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. AMIA Annu. Symp. Proc. 2006:244–48
    [Google Scholar]
  33. 33. 
    Ferguson NM, Galvani AP, Bush RM 2003. Ecological and immunological determinants of influenza evolution. Nature 422:428–33
    [Google Scholar]
  34. 34. 
    Fitch WM, Leiter JM, Li XQ, Palese P 1991. Positive Darwinian evolution in human influenza A viruses. PNAS 88:4270–74
    [Google Scholar]
  35. 35. 
    Flu Trends Team 2015. The next chapter for flu trends. Google AI Blog Aug. 20. https://ai.googleblog.com/2015/08/the-next-chapter-for-flu-trends.html
    [Google Scholar]
  36. 36. 
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L 2009. Detecting influenza epidemics using search engine query data. Nature 457:1012–14
    [Google Scholar]
  37. 37. 
    Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M 2011. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method. PLOS Med 8:e1001051
    [Google Scholar]
  38. 38. 
    Hall IM, Gani R, Hughes HE, Leach S 2007. Real-time epidemic forecasting for pandemic influenza. Epidemiol. Infect. 135:372–85
    [Google Scholar]
  39. 39. 
    Heffernan R, Mostashari F, Das D, Karpati A, Kulldorff M, Weiss D 2004. Syndromic surveillance in public health practice, New York City. Emerg. Infect. Dis. 10:858–64
    [Google Scholar]
  40. 40. 
    Hiller KM, Stoneking L, Min A, Rhodes SM 2013. Syndromic surveillance for influenza in the emergency department—a systematic review. PLOS ONE 8:e73832
    [Google Scholar]
  41. 41. 
    Ina Y, Gojobori T. 1994. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. PNAS 91:8388–92
    [Google Scholar]
  42. 42. 
    Johnson HA, Wagner MM, Hogan WR, Chapman W, Olszewski RT et al. 2004. Analysis of Web access logs for surveillance of influenza. Stud. Health Technol. Inform. 107:1202–6
    [Google Scholar]
  43. 43. 
    Kandula S, Pei S, Shaman J 2019. Improved forecasts of influenza-associated hospitalization rates with Google Search Trends. J. R. Soc. Interface 16:20190080
    [Google Scholar]
  44. 44. 
    Kandula S, Yamana T, Pei S, Yang W, Morita H, Shaman J 2018. Evaluation of mechanistic and statistical methods in forecasting influenza-like illness. J. R. Soc. Interface 15:20180174
    [Google Scholar]
  45. 45. 
    Koppeschaar CE, Colizza V, Guerrisi C, Turbelin C, Duggan J et al. 2017. Influenzanet: citizens among 10 countries collaborating to monitor influenza in Europe. JMIR Public Health Surveill 3:e66
    [Google Scholar]
  46. 46. 
    Lazarus R, Kleinman K, Dashevsky I, Adams C, Kludt P et al. 2002. Use of automated ambulatory-care encounter records for detection of acute illness clusters, including potential bioterrorism events. Emerg. Infect. Dis. 8:753–60
    [Google Scholar]
  47. 47. 
    Lazer D, Kennedy R, King G, Vespignani A 2014. The parable of Google Flu: traps in big data analysis. Science 343:1203–5
    [Google Scholar]
  48. 48. 
    Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN 2007. Influenza seasonality: underlying causes and modeling theories. J. Virol. 81:5429–36
    [Google Scholar]
  49. 49. 
    Longini IM Jr, Fine PE, Thacker SB. 1986. Predicting the global spread of new infectious agents. Am. J. Epidemiol. 123:383–91
    [Google Scholar]
  50. 50. 
    Madoff LC, Woodall JP. 2005. The Internet and the global monitoring of emerging diseases: lessons from the first 10 years of ProMED-mail. Arch. Med. Res. 36:724–30
    [Google Scholar]
  51. 51. 
    Mandl KD, Overhage JM, Wagner MM, Lober WB, Sebastiani P et al. 2004. Implementing syndromic surveillance: a practical guide informed by the early experience. J. Am. Med. Inform. Assoc. 11:141–50
    [Google Scholar]
  52. 52. 
    Massad E, Burattini MN, Lopez LF, Coutinho FAB 2005. Forecasting versus projection models in epidemiology: the case of the SARS epidemics. Med. Hypotheses 65:17–22
    [Google Scholar]
  53. 53. 
    Moore K, Black J, Rowe S, Franklin L 2011. Syndromic surveillance for influenza in two hospital emergency departments. Relationships between ICD-10 codes and notified cases, before and during a pandemic. BMC Public Health 11:338
    [Google Scholar]
  54. 54. 
    Moss R, Zarebski A, Dawson P, McCaw JM 2017. Retrospective forecasting of the 2010–2014 Melbourne influenza seasons using multiple surveillance systems. Epidemiol. Infect. 145:156–69
    [Google Scholar]
  55. 55. 
    Nouvellet P, Cori A, Garske T, Blake IM, Dorigatti I et al. 2018. A simple approach to measure transmissibility and forecast incidence. Epidemics 22:29–35
    [Google Scholar]
  56. 56. 
    Nsoesie EO, Brownstein JS, Ramakrishnan N, Marathe MV 2014. A systematic review of studies on forecasting the dynamics of influenza outbreaks. Influenza Other Respir. Viruses 8:309–16
    [Google Scholar]
  57. 57. 
    Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L 2013. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLOS Comput. Biol. 9:e1003256
    [Google Scholar]
  58. 58. 
    Opatowski L, Fraser C, Griffin J, de Silva E, Van Kerkhove MD et al. 2011. Transmission characteristics of the 2009 H1N1 influenza pandemic: comparison of 8 Southern hemisphere countries. PLOS Pathog 7:e1002225
    [Google Scholar]
  59. 59. 
    Osthus D, Hickmann KS, Caragea PC, Higdon D, Del Valle SY 2017. Forecasting seasonal influenza with a state-space SIR model. Ann. Appl. Stat. 11:202–24
    [Google Scholar]
  60. 60. 
    Patterson-Lomba O, Van Noort S, Cowling BJ, Wallinga J, Gomes MGM et al. 2014. Utilizing syndromic surveillance data for estimating levels of influenza circulation. Am. J. Epidemiol. 179:1394–401
    [Google Scholar]
  61. 61. 
    Perrotta D, Bella A, Rizzo C, Paolotti D 2017. Participatory online surveillance as a supplementary tool to sentinel doctors for influenza-like illness surveillance in Italy. PLOS ONE 12:e0169801
    [Google Scholar]
  62. 62. 
    Polgreen PM, Nelson FD, Neumann GR 2007. Use of prediction markets to forecast infectious disease activity. Clin. Infect. Dis. 44:272–79
    [Google Scholar]
  63. 63. 
    Preis T, Moat HS. 2014. Adaptive nowcasting of influenza outbreaks using Google searches. R. Soc. Open Sci. 1:140095
    [Google Scholar]
  64. 64. 
    Priedhorsky R, Osthus D, Daughton AR, Moran KR, Generous N et al. 2017. Measuring global disease with Wikipedia: success, failure, and a research agenda. CSCW Conf. Comput. Support. Coop. Work 2017:1812–34
    [Google Scholar]
  65. 65. 
    Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ et al. 2019. A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. PNAS 116:3146–54
    [Google Scholar]
  66. 66. 
    Ryu S, Ali ST, Cowling BJ, Lau EHY 2020. Effects of school holidays on seasonal influenza in South Korea, 2014–2016. J. Infect. Dis. 222:832–35
    [Google Scholar]
  67. 67. 
    Sanicas M, Forleo E, Pozzi G, Diop D 2014. A review of the surveillance systems of influenza in selected countries in the tropical region. Pan Afr. Med. J. 19:121
    [Google Scholar]
  68. 68. 
    Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS 2015. Combining search, social media, and traditional data sources to improve influenza surveillance. PLOS Comput. Biol. 11:e1004513
    [Google Scholar]
  69. 69. 
    Santillana M, Zhang DW, Althouse BM, Ayers JW 2014. What can digital disease detection learn from (an external revision to) Google Flu Trends. ? Am. J. Prev. Med. 47:341–47
    [Google Scholar]
  70. 70. 
    Schmidt C. 2019. Real-time flu tracking. Nature 573:S58–59
    [Google Scholar]
  71. 71. 
    Shaman J, Karspeck A. 2012. Forecasting seasonal outbreaks of influenza. PNAS 109:20425–30
    [Google Scholar]
  72. 72. 
    Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M 2013. Real-time influenza forecasts during the 2012–2013 season. Nat. Commun. 4:2837
    [Google Scholar]
  73. 73. 
    Shaman J, Kohn M. 2009. Absolute humidity modulates influenza survival, transmission, and seasonality. PNAS 106:3243–48
    [Google Scholar]
  74. 74. 
    Simonsen L, Gog JR, Olson D, Viboud C 2016. Infectious disease surveillance in the big data era: towards faster and locally relevant systems. J. Infect. Dis. 214:S380–85
    [Google Scholar]
  75. 75. 
    Simusika P, Tempia S, Chentulo E, Polansky L, Mazaba ML et al. 2020. An evaluation of the Zambia influenza sentinel surveillance system, 2011–2017. BMC Health Serv. Res. 20:35
    [Google Scholar]
  76. 76. 
    Smith PF, Hadler JL, Stanbury M, Rolfs RT, Hopkins RSCSTE Surveill. Strategy Group 2013. “Blueprint version 2.0”: updating public health surveillance for the 21st century. J. Public Health Manag. Pract. 19:231–39
    [Google Scholar]
  77. 77. 
    Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM et al. 2015. Flu Near You: crowdsourced symptom reporting spanning 2 influenza seasons. Am. J. Public Health 105:2124–30
    [Google Scholar]
  78. 78. 
    Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio CK et al. 2013. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLOS Pathog 9:e1003194
    [Google Scholar]
  79. 79. 
    Thompson LH, Malik MT, Gumel A, Strome T, Mahmud SM 2014. Emergency department and ‘Google Flu Trends’ data as syndromic surveillance indicators for seasonal influenza. Epidemiol. Infect. 142:2397–405
    [Google Scholar]
  80. 80. 
    Thompson RN, Stockwin JE, van Gaalen RD, Polonsky JA, Kamvar ZN et al. 2019. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 29:100356
    [Google Scholar]
  81. 81. 
    Towers S, Feng Z. 2009. Pandemic H1N1 influenza: predicting the course of a pandemic and assessing the efficacy of the planned vaccination programme in the United States. Euro Surveill 14:19358
    [Google Scholar]
  82. 82. 
    van de Kassteele J, Eilers PHC, Wallinga J 2019. Nowcasting the number of new symptomatic cases during infectious disease outbreaks using constrained P-spline smoothing. Epidemiology 30:737–45
    [Google Scholar]
  83. 83. 
    Viboud C, Boëlle PY, Carrat F, Valleron A-J, Flahault A 2003. Prediction of the spread of influenza epidemics by the method of analogues. Am. J. Epidemiol. 158:996–1006
    [Google Scholar]
  84. 84. 
    Viboud C, Vespignani A. 2019. The future of influenza forecasts. PNAS 116:2802–4
    [Google Scholar]
  85. 85. 
    Waalen K, Kilander A, Dudman SG, Ramos-Ocao R, Hungnes O 2012. Age-dependent prevalence of antibodies cross-reactive to the influenza A(H3N2) variant virus in sera collected in Norway in 2011. Euro Surveill 17:20170
    [Google Scholar]
  86. 86. 
    WHO (World Health Organ.) 2012. World Health Organization interim global epidemiological surveillance standards for influenza (July 2012) Rep., WHO, Geneva. https://www.who.int/influenza/resources/documents/INFSURVMANUAL.pdf
    [Google Scholar]
  87. 87. 
    WHO (World Health Organ.) 2020. Influenza (seasonal). Ask the expert: influenza Q&A. Influenza Fact Sheet WHO, Geneva: http://www.who.int/mediacentre/factsheets/fs211/en/index.html
    [Google Scholar]
  88. 88. 
    WHO (World Health Organ.) 2020. Into the history of influenza control. Influenza http://www.who.int/influenza/gip-anniversary/en/
    [Google Scholar]
  89. 89. 
    WHO (World Health Organ.) 2020. Public health surveillance. Immunization, Vaccines and Biologicals https://www.who.int/immunization/monitoring_surveillance/burden/vpd/en/
    [Google Scholar]
  90. 90. 
    Wong C-M, Chan K-P, Hedley AJ, Peiris JSM 2004. Influenza-associated mortality in Hong Kong. Clin. Infect. Dis. 39:1611–17
    [Google Scholar]
  91. 91. 
    Wong JY, Wu P, Nishiura H, Goldstein E, Lau EH et al. 2013. Infection fatality risk of the pandemic A(H1N1)2009 virus in Hong Kong. Am. J. Epidemiol. 177:834–40
    [Google Scholar]
  92. 92. 
    Wu P, Presanis AM, Bond HS, Lau EHY, Fang VJ, Cowling BJ 2017. A joint analysis of influenza-associated hospitalizations and mortality in Hong Kong, 1998–2013. Sci. Rep. 7:929
    [Google Scholar]
  93. 93. 
    Xu Q, Gel YR, Ramirez Ramirez LL, Nezafati K, Zhang Q, Tsui K-L 2017. Forecasting influenza in Hong Kong with Google search queries and statistical model fusion. PLOS ONE 12:e0176690
    [Google Scholar]
  94. 94. 
    Yamana TK, Kandula S, Shaman J 2017. Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States. PLOS Comput. Biol. 13:e1005801
    [Google Scholar]
  95. 95. 
    Yang S, Santillana M, Brownstein JS, Gray J, Richardson S, Kou SC 2017. Using electronic health records and Internet search information for accurate influenza forecasting. BMC Infect. Dis. 17:332
    [Google Scholar]
  96. 96. 
    Yang W, Cowling BJ, Lau EH, Shaman J 2015. Forecasting influenza epidemics in Hong Kong. PLOS Comput. Biol. 11:e1004383
    [Google Scholar]
  97. 97. 
    Yang W, Olson DR, Shaman J 2016. Forecasting influenza outbreaks in boroughs and neighborhoods of New York City. PLOS Comput. Biol. 12:e1005201
    [Google Scholar]
  98. 98. 
    Zheng W, Aitken R, Muscatello DJ, Churches T 2007. Potential for early warning of viral influenza activity in the community by monitoring clinical diagnoses of influenza in hospital emergency departments. BMC Public Health 7:250
    [Google Scholar]
  99. 99. 
    Ziegler T, Mamahit A, Cox NJ 2018. 65 years of influenza surveillance by a World Health Organization-coordinated global network. Influenza Other Respir. Viruses 12:558–65
    [Google Scholar]
/content/journals/10.1146/annurev-publhealth-010720-021049
Loading
/content/journals/10.1146/annurev-publhealth-010720-021049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error