1932

Abstract

The human microbiome contributes metabolic functions, protects against pathogens, educates the immune system, and through these basic functions, directly or indirectly, affects most of our physiologic functions. Here, we consider the human microbiome and its relationship to several major noncommunicable human conditions, including orodigestive tract cancers, neurologic diseases, diabetes, and obesity. We also highlight the scope of contextual macroenvironmental factors (toxicological and chemical environment, built environment, and socioeconomic environment) and individual microenvironmental factors (smoking, alcohol, and diet) that may push the microbiota toward less healthy or more healthy conditions, influencing the development of these diseases. Last, we highlight current uncertainties and challenges in the study of environmental influences on the human microbiome and implications for understanding noncommunicable disease, suggesting a research agenda to strengthen the scientific evidence base.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-012420-105020
2021-04-01
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/42/1/annurev-publhealth-012420-105020.html?itemId=/content/journals/10.1146/annurev-publhealth-012420-105020&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK. 2020. Toxicomicrobiomics: the human microbiome versus pharmaceutical, dietary, and environmental xenobiotics. Front. Pharmacol. 11:390
    [Google Scholar]
  2. 2. 
    Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T et al. 2006. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N. Engl. J. Med. 355:763–78
    [Google Scholar]
  3. 3. 
    Agalliu I, Gapstur S, Chen Z, Wang T, Anderson RL et al. 2016. Associations of oral α-, β-, and γ-human papillomavirus types with risk of incident head and neck cancer. JAMA Oncol 2:599–606
    [Google Scholar]
  4. 4. 
    Ahn J, Chen CY, Hayes RB. 2012. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 23:399–404
    [Google Scholar]
  5. 5. 
    Ahn J, Sinha R, Pei Z, Dominianni C, Wu J et al. 2013. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 105:1907–11
    [Google Scholar]
  6. 6. 
    Anderson NB, Armstead CA. 1995. Toward understanding the association of socioeconomic status and health: a new challenge for the biopsychosocial approach. Psychosom. Med. 57:213–25
    [Google Scholar]
  7. 7. 
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLOS ONE 4:e7125
    [Google Scholar]
  8. 8. 
    Aune D, Chan DS, Lau R, Vieira R, Greenwood DC et al. 2011. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343:d6617
    [Google Scholar]
  9. 9. 
    Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R et al. 2019. The fungal mycobiome promotes pancreatic oncogenesis via MBL activation. Nature 574:264–67
    [Google Scholar]
  10. 10. 
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–23
    [Google Scholar]
  11. 11. 
    Bartold PM, Van Dyke TE. 2013. Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol 2000. 62:203–17
    [Google Scholar]
  12. 12. 
    Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L et al. 2010. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363:2211–19
    [Google Scholar]
  13. 13. 
    Blaser MJ. 2008. Understanding microbe-induced cancers. Cancer Prev. Res. 1:15–20
    [Google Scholar]
  14. 14. 
    Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE et al. 2015. Carcinogenicity of consumption of red and processed meat. Lancet Oncol 16:1599–600
    [Google Scholar]
  15. 15. 
    Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA. 2006. The medical effects of mold exposure. J. Allergy Clin. Immunol. 117:326–33
    [Google Scholar]
  16. 16. 
    Calatayud M, Xiong C, Du Laing G, Raber G, Francesconi K, van de Wiele T 2018. Salivary and gut microbiomes play a significant role in in vitro oral bioaccessibility, biotransformation, and intestinal absorption of arsenic from food. Environ. Sci. Technol. 52:14422–35
    [Google Scholar]
  17. 17. 
    Chen Y, Yang F, Lu H, Wang B, Chen Y et al. 2011. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54:562–72
    [Google Scholar]
  18. 18. 
    Collado MC, Isolauri E, Laitinen K, Salminen S. 2008. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 88:894–99
    [Google Scholar]
  19. 19. 
    Conlon MA, Bird AR. 2015. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44
    [Google Scholar]
  20. 20. 
    Daisley BA, Monachese M, Trinder M, Bisanz JE, Chmiel JA et al. 2019. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes 10:321–33
    [Google Scholar]
  21. 21. 
    Darveau RP. 2010. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8:481–90
    [Google Scholar]
  22. 22. 
    Dong TS, Gupta A. 2019. Influence of early life, diet, and the environment on the microbiome. Clin. Gastroenterol. Hepatol. 17:231–42
    [Google Scholar]
  23. 23. 
    Donohoe DR, Holley D, Collins LB, Montgomery SA, Whitmore AC et al. 2014. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov 4:1387–97
    [Google Scholar]
  24. 24. 
    Douglas AE. 2019. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17:764–75
    [Google Scholar]
  25. 25. 
    Dreher ML. 2018. Whole fruits and fruit fiber emerging health effects. Nutrients 10:1833
    [Google Scholar]
  26. 26. 
    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM et al. 2008. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32:1720–24
    [Google Scholar]
  27. 27. 
    Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R et al. 2017. Microbes and cancer. Annu. Rev. Immunol. 35:199–228
    [Google Scholar]
  28. 28. 
    Eder W, von Mutius E 2004. Hygiene hypothesis and endotoxin: What is the evidence?. Curr. Opin. Allergy Clin. Immunol. 4:113–17
    [Google Scholar]
  29. 29. 
    Ege MJ, Mayer M, Normand A-C, Genuneit J, Cookson WOCM et al. 2011. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364:701–9
    [Google Scholar]
  30. 30. 
    Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA et al. 2017. Schrödinger's microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5:86
    [Google Scholar]
  31. 31. 
    Enberg N, Alho H, Loimaranta V, Lenander-Lumikari M. 2001. Saliva flow rate, amylase activity, and protein and electrolyte concentrations in saliva after acute alcohol consumption.. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 92:292–98
    [Google Scholar]
  32. 32. 
    Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. 2015. The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res 37:223–36
    [Google Scholar]
  33. 33. 
    Fahimipour AK, Hartmann EM, Siemens A, Kline J, Levin DA et al. 2018. Daylight exposure modulates bacterial communities associated with household dust. Microbiome 6:175
    [Google Scholar]
  34. 34. 
    Fan X, Alekseyenko V, Wu J, Peters BA, Jacobs E et al. 2018. Human oral microbiota and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67:1120–27
    [Google Scholar]
  35. 35. 
    Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. 2014. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLOS ONE 9:e84689
    [Google Scholar]
  36. 36. 
    Gilbert JA, Stephens B. 2018. Microbiology of the built environment. Nat. Rev. Microbiol. 16:661–70
    [Google Scholar]
  37. 37. 
    Griffiths JA, Mazmanian SK. 2018. Emerging evidence linking the gut microbiome to neurologic disorders. Genome Med 10:98
    [Google Scholar]
  38. 38. 
    Gupta VK, Paul S, Dutta C. 2017. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8:1162
    [Google Scholar]
  39. 39. 
    Gurung M, Li Z, You H, Rodrigues R, Jump DB et al. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590
    [Google Scholar]
  40. 40. 
    Hadrich D. 2018. Microbiome research is becoming the key to better understanding health and nutrition. Front. Genet. 9:212
    [Google Scholar]
  41. 41. 
    Hajishengallis G, Lamont RJ. 2016. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol 24:477–89
    [Google Scholar]
  42. 42. 
    Halden RU. 2016. Lessons learned from probing for impacts of triclosan and triclocarban on human microbiomes. mSphere 1:e00089–16
    [Google Scholar]
  43. 43. 
    Hayes RB, Ahn J, Fan X, Peters BA, Ma Y et al. 2018. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 4:358–65
    [Google Scholar]
  44. 44. 
    Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M et al. 2009. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–24.e1–2
    [Google Scholar]
  45. 45. 
    Human Microbiome Proj. Consort 2012. Human Microbiome Project: structure, function and diversity of the healthy human microbiome. Nature 486:207–14
    [Google Scholar]
  46. 46. 
    Ingram LO. 1990. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9:305–19
    [Google Scholar]
  47. 47. 
    Integr. HMP (iHMP) Res. Netw. Consort 2019. The Integrative Human Microbiome Project. Nature 569:641–48
    [Google Scholar]
  48. 48. 
    Jabbour Z, do Nascimento C, dos Santos Kotake BG, El-Hakim M, Henderson JE, de Albuquerque RF Jr. 2013. Assessing the oral microbiota of healthy and alcohol-treated rats using whole-genome DNA probes from human bacteria. Arch. Oral Biol. 58:317–23
    [Google Scholar]
  49. 49. 
    Jansson L. 2008. Association between alcohol consumption and dental health. J. Clin. Periodontol. 35:379–84
    [Google Scholar]
  50. 50. 
    Kantorski KZ, de Souza DM, Yujra VQ, Junqueira JC, Jorge AOC, da Rocha RF. 2007. Effect of an alcoholic diet on dental caries and on Streptococcus of the mutans group. Study in rats. Braz. Oral Res. 21:101–5
    [Google Scholar]
  51. 51. 
    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ et al. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103
    [Google Scholar]
  52. 52. 
    Koppel N, Maini Rekdal V, Balskus EP 2017. Chemical transformation of xenobiotics by the human gut microbiota. Science 356:eaag2770
    [Google Scholar]
  53. 53. 
    Korpi A, Pasanen A-L, Pasanen P. 1998. Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions. Appl. Environ. Microbiol. 64:2914–19
    [Google Scholar]
  54. 54. 
    Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–15
    [Google Scholar]
  55. 55. 
    Krogh P, Hald B, Holmstrup P. 1987. Possible mycological etiology of oral mucosal cancer: catalytic potential of infecting Candida albicans and other yeasts in production of N-nitrosobenzylmethylamine. Carcinogenesis 8:1543–48
    [Google Scholar]
  56. 56. 
    Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM et al. 2014. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–52
    [Google Scholar]
  57. 57. 
    Ley RE. 2010. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26:5–11
    [Google Scholar]
  58. 58. 
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI 2005. Obesity alters gut microbial ecology. PNAS 102:11070–75
    [Google Scholar]
  59. 59. 
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–23
    [Google Scholar]
  60. 60. 
    Lin A, Bik EM, Costello EK, Dethlefsen L, Haque R et al. 2013. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLOS ONE 8:e53838
    [Google Scholar]
  61. 61. 
    Locey KJ, Lennon JT 2016. Scaling laws predict global microbial diversity. PNAS 113:5970–75
    [Google Scholar]
  62. 62. 
    Lu Y, Loos RJ. 2013. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med 5:55
    [Google Scholar]
  63. 63. 
    Macgregor ID. 1989. Effects of smoking on oral ecology. A review of the literature. Clin. Prev. Dent. 11:3–7
    [Google Scholar]
  64. 64. 
    Mai V, McCrary QM, Sinha R, Glei M. 2009. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr. J. 8:49
    [Google Scholar]
  65. 65. 
    Maier H, Born IA, Mall G. 1988. Effect of chronic ethanol and nicotine consumption on the function and morphology of the salivary glands. Klinische Wochenschr 66:Suppl 11140–50
    [Google Scholar]
  66. 66. 
    Marmot M. 2006. Smoking and inequalities. Lancet 368:341–42
    [Google Scholar]
  67. 67. 
    Marttila E, Bowyer P, Sanglard D, Uittamo J, Kaihovaara P et al. 2013. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Mol. Oral Microbiol. 28:281–91
    [Google Scholar]
  68. 68. 
    Marttila E, Uittamo J, Rusanen P, Lindqvist C, Salaspuro M, Rautemaa R 2013. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol 116:61–68
    [Google Scholar]
  69. 69. 
    Miller GE, Engen PA, Gillevet PM, Shaikh M, Sikaroodi M et al. 2016. Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. PLOS ONE 11:e0148952
    [Google Scholar]
  70. 70. 
    Murphy EF, Cotter PD, Healy S, Marques TM, O'Sullivan O et al. 2010. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635–42
    [Google Scholar]
  71. 71. 
    Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C et al. 2018. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ. Pollut. 240:817–30
    [Google Scholar]
  72. 72. 
    Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A et al. 2012. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G966–78
    [Google Scholar]
  73. 73. 
    Nieminen MT, Salaspuro M. 2018. Local acetaldehyde—an essential role in alcohol-related upper gastrointestinal tract carcinogenesis. Cancers 10:11
    [Google Scholar]
  74. 74. 
    NIH (Natl. Inst. Health) Hum. Microbiome Portf. Anal. Team 2019. A review of 10 years of human microbiome research activities at the US National Institutes of Health, fiscal years 2007–2016. Microbiome 7:31
    [Google Scholar]
  75. 75. 
    Nishijima S, Suda W, Oshima K, Kim S-W, Hirose Y et al. 2016. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res 23:125–33
    [Google Scholar]
  76. 76. 
    Nociti FH Jr., Casati MZ, Duarte PM. 2015. Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontol 2000. 67:187–210
    [Google Scholar]
  77. 77. 
    Ogden GR, Wight AJ, Rice P. 1999. Effect of alcohol on the oral mucosa assessed by quantitative cytomorphometry. J. Oral Pathol. Med. 28:216–20
    [Google Scholar]
  78. 78. 
    O'Grady JF, Reade PC. 1992. Candida albicans as a promoter of oral mucosal neoplasia. Carcinogenesis 13:783–86
    [Google Scholar]
  79. 79. 
    O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F et al. 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6:6342
    [Google Scholar]
  80. 80. 
    Olsen I, Yilmaz O. 2019. Possible role of Porphyromonas gingivalis in orodigestive cancers. J. Oral Microbiol. 11:1563410
    [Google Scholar]
  81. 81. 
    Parkin DM. 2006. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118:3030–44
    [Google Scholar]
  82. 82. 
    Patterson AD, Turnbaugh PJ. 2014. Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology. Cell Metab 20:761–68
    [Google Scholar]
  83. 83. 
    Pepersack T, Fuss M, Otero J, Bergmann P, Valsamis J, Corvilain J. 1992. Longitudinal study of bone metabolism after ethanol withdrawal in alcoholic patients. J. Bone Miner. Res. 7:383–87
    [Google Scholar]
  84. 84. 
    Perera M, Al-Hebshi NN, Speicher DJ, Perera I, Johnson NW. 2016. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria. J. Oral Microbiol. 8:32762
    [Google Scholar]
  85. 85. 
    Peters BA, Dominianni C, Shapiro JA, Church TR, Wu J et al. 2016. The gut microbiome in conventional and serrated precursors of colorectal cancer. Microbiome 4:169
    [Google Scholar]
  86. 86. 
    Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C et al. 2018. A taxonomic signature of obesity in a large study of American adults. Sci. Rep. 8:9749
    [Google Scholar]
  87. 87. 
    Peters BA, Wu J, Pei Z, Yang L, Purdue MP et al. 2017. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res 77:236777–87
    [Google Scholar]
  88. 88. 
    Pitiphat W, Merchant AT, Rimm EB, Joshipura KJ. 2003. Alcohol consumption increases periodontitis risk. J. Dent. Res. 82:509–13
    [Google Scholar]
  89. 89. 
    Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E et al. 2018. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–16
    [Google Scholar]
  90. 90. 
    Qin J, Li Y, Cai Z, Li S, Zhu J et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60
    [Google Scholar]
  91. 91. 
    Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M et al. 2012. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 95:1323–34
    [Google Scholar]
  92. 92. 
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214
    [Google Scholar]
  93. 93. 
    Rodgman A, Perfetti TA 2013. The alphabetical index to components identified in tobacco, tobacco smoke, and tobacco substitute smoke. The Chemical Components of Tobacco and Tobacco Smoke A Rodgman, TA Perfetti 1713–2064 New York: CRC Press. , 2nd ed..
    [Google Scholar]
  94. 94. 
    Rook GAW, Raison CL, Lowry CA. 2014. Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin. Exp. Immunol. 177:1–12
    [Google Scholar]
  95. 95. 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–15
    [Google Scholar]
  96. 96. 
    Salaspuro V, Salaspuro M. 2004. Synergistic effect of alcohol drinking and smoking on in vivo acetaldehyde concentration in saliva. Int. J. Cancer 111:480–83
    [Google Scholar]
  97. 97. 
    Sampson TR, Mazmanian SK. 2015. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17:565–76
    [Google Scholar]
  98. 98. 
    Savin Z, Kivity S, Yonath H, Yehuda S. 2018. Smoking and the intestinal microbiome. Arch. Microbiol. 200:677–84
    [Google Scholar]
  99. 99. 
    Scannapieco FA. 1994. Saliva-bacterium interactions in oral microbial ecology. Crit. Rev. Oral Biol. Med. 5:203–48
    [Google Scholar]
  100. 100. 
    Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA et al. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–95
    [Google Scholar]
  101. 101. 
    Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S et al. 2020. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145:106084
    [Google Scholar]
  102. 102. 
    Semlali A, Killer K, Alanazi H, Chmielewski W, Rouabhia M. 2014. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression. BMC Microbiol 14:61
    [Google Scholar]
  103. 103. 
    Sharma A, Richardson M, Cralle L, Stamper CE, Maestre JP et al. 2019. Longitudinal homogenization of the microbiome between both occupants and the built environment in a cohort of United States Air Force Cadets. Microbiome 7:70
    [Google Scholar]
  104. 104. 
    Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. 2016. The central nervous system and the gut microbiome. Cell 167:915–32
    [Google Scholar]
  105. 105. 
    Signorello LB, Cohen SS, Williams DR, Munro HM, Hargreaves MK, Blot WJ. 2014. Socioeconomic status, race, and mortality: a prospective cohort study. Am. J. Public Health 104:e98–107
    [Google Scholar]
  106. 106. 
    Signoretto C, Bianchi F, Burlacchini G, Sivieri F, Spratt D, Canepari P. 2010. Drinking habits are associated with changes in the dental plaque microbial community. J. Clin. Microbiol. 48:347–56
    [Google Scholar]
  107. 107. 
    Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D et al. 2017. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15:73
    [Google Scholar]
  108. 108. 
    Soliman GA. 2019. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 11:1155
    [Google Scholar]
  109. 109. 
    Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20:779–86
    [Google Scholar]
  110. 110. 
    Sopori M. 2002. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol. 2:372–77
    [Google Scholar]
  111. 111. 
    Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. 2016. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14:273–87
    [Google Scholar]
  112. 112. 
    Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V et al. 2016. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375:411–21
    [Google Scholar]
  113. 113. 
    Sutton D, Butler AM, Nadin L, Murray M. 1997. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J. Pharmacol. Exp. Ther. 282:294–300
    [Google Scholar]
  114. 114. 
    Szabo G. 1999. Consequences of alcohol consumption on host defence. Alcohol Alcohol 34:830–41
    [Google Scholar]
  115. 115. 
    Szabo G, Mandrekar P, Girouard L, Catalano D. 1996. Regulation of human monocyte functions by acute ethanol treatment: decreased tumor necrosis factor-alpha, interleukin-1 beta and elevated interleukin-10, and transforming growth factor-beta production. Alcohol. Clin. Exp. Res. 20:900–7
    [Google Scholar]
  116. 116. 
    Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W et al. 2014. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 74:1311–18
    [Google Scholar]
  117. 117. 
    Takeshita T, Kageyama S, Furuta M, Tsuboi H, Takeuchi K et al. 2016. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci. Rep. 6:22164
    [Google Scholar]
  118. 118. 
    Tap J, Furet J-P, Bensaada M, Philippe C, Roth H et al. 2015. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17:4954–64
    [Google Scholar]
  119. 119. 
    Tenovuo J. 1998. Antimicrobial function of human saliva—how important is it for oral health? Acta Odontol. Scand. 56:250–56
    [Google Scholar]
  120. 120. 
    Tezal M, Grossi SG, Ho AW, Genco RJ. 2004. Alcohol consumption and periodontal disease—The Third National Health and Nutrition Examination Survey. J. Clin. Periodontol. 31:484–88
    [Google Scholar]
  121. 121. 
    Thomas AM, Gleber-Netto FO, Fernandes GR, Amorim M, Barbosa LF et al. 2014. Alcohol and tobacco consumption affects bacterial richness in oral cavity mucosa biofilms. BMC Microbiol 14:250
    [Google Scholar]
  122. 122. 
    Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH et al. 2013. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J 7:707–17
    [Google Scholar]
  123. 123. 
    Tlaskalova-Hogenova H, Vannucci L, Klimesova K, Stepankova R, Krizan J, Kverka M. 2014. Microbiome and colorectal carcinoma: insights from germ-free and conventional animal models. Cancer J 20:217–24
    [Google Scholar]
  124. 124. 
    Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. 2017. The gut microbiome in human neurological disease: a review. Ann. Neurol. 81:369–82
    [Google Scholar]
  125. 125. 
    Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–23
    [Google Scholar]
  126. 126. 
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:480–84
    [Google Scholar]
  127. 127. 
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The Human Microbiome Project. Nature 449:804–10
    [Google Scholar]
  128. 128. 
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31
    [Google Scholar]
  129. 129. 
    Velmurugan G, Ramprasath T, Gilles M, Swaminathan K, Ramasamy S. 2017. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol. Metab. 28:612–25
    [Google Scholar]
  130. 130. 
    Vermeulen R, Schymanski EL, Barabási AL, Miller GW. 2020. The exposome and health: where chemistry meets biology. Science 367:392–96
    [Google Scholar]
  131. 131. 
    Vogelmann R, Amieva MR. 2007. The role of bacterial pathogens in cancer. Curr. Opin. Microbiol. 10:76–81
    [Google Scholar]
  132. 132. 
    Walters WA, Xu Z, Knight R. 2014. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 588:4223–33
    [Google Scholar]
  133. 133. 
    Waterland RA. 2014. Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers. Annu. Rev. Nutr. 34:337–55
    [Google Scholar]
  134. 134. 
    WHO (World Health Organ.) 2000. Obesity: preventing and managing the global epidemic. Report of a WHO consultation Tech. Rep. Ser. 894, World Health Organ Geneva: https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/
    [Google Scholar]
  135. 135. 
    WHO (World Health Organ.) 2012. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Lyon, France: IARC
    [Google Scholar]
  136. 136. 
    Wilson ID, Nicholson JK. 2017. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 179:204–22
    [Google Scholar]
  137. 137. 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8
    [Google Scholar]
  138. 138. 
    Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R et al. 2017. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23:850–58
    [Google Scholar]
  139. 139. 
    Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z et al. 2016. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J 10:2435–46
    [Google Scholar]
  140. 140. 
    Yeung F, Chen Y-H, Lin J-D, Leung JM, McCauley C et al. 2020. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 27:809–22.e6
    [Google Scholar]
  141. 141. 
    Zahran SA, Ali-Tammam M, Hashem AM, Aziz RK, Ali AE. 2019. Azoreductase activity of dye-decolorizing bacteria isolated from the human gut microbiota. Sci. Rep. 9:5508
    [Google Scholar]
  142. 142. 
    Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–94
    [Google Scholar]
  143. 143. 
    Zhou W, Sailani MR, Contrepois K, Zhou Y, Ahadi S et al. 2019. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 569:663–71
    [Google Scholar]
  144. 144. 
    Zinöcker MK, Lindseth IA. 2018. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 10:365
    [Google Scholar]
/content/journals/10.1146/annurev-publhealth-012420-105020
Loading
/content/journals/10.1146/annurev-publhealth-012420-105020
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error