In the wake of a species extinction event unprecedented in human history, how the variety, distribution, and abundance of life on earth may influence health has gained credence as a worthy subject for research and study at schools of public health and for consideration among policy makers. This article reviews a few of the principal ways in which health depends on biodiversity, including the discovery of new medicines, biomedical research, the provision of food, and the distribution and spread of infections. It also examines how changes in biological diversity underlie much of the global burden of disease and how a more thorough understanding of life on earth and its relationships has the potential to greatly alleviate and prevent human suffering.

Associated Article

There are media items related to this article:
Biological Diversity and Public Health: A Slideshow by Aaron Bernstein

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. 1.  2009. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103:91579–88 [Google Scholar]
  2. Allen MF, Boosalis MG. 2.  1983. Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol. 93:167–76 [Google Scholar]
  3. Andreas B, Martin P. 3.  2006. The most widespread symbiosis on Earth. PLoS Biol. 4:7e239 [Google Scholar]
  4. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B. 4.  et al. 2011. Has the Earth's sixth mass extinction already arrived?. Nature 471:733651–57 [Google Scholar]
  5. Bernard C. 5.  1865. Introduction a l'étude de la médecine expérimentale Paris: J-B Baillière Fils [Google Scholar]
  6. Bian G, Joshi D, Dong Y, Lu P, Zhou G. 6.  et al. 2013. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340:6133748–51 [Google Scholar]
  7. Black R, Cousens S, Johnson H, Lawn J, Rudan I. 7.  et al. 2010. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 375:97301969–87 [Google Scholar]
  8. Blagrove MSC, Arias-Goeta C, Failloux A-B, Sinkins SP. 8.  2012. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc. Natl. Acad. Sci. USA 109:1255–60 [Google Scholar]
  9. Borody TJ, Warren EF, Leis S, Surace R, Ashman O. 9.  2003. Treatment of ulcerative colitis using fecal bacteriotherapy. J. Clin. Gastroenterol. 37:142–47 [Google Scholar]
  10. Boyles JG, Cryan PM, McCracken GF, Kunz TH. 10.  2011. Conservation. Economic importance of bats in agriculture. Science 332:602541–42 [Google Scholar]
  11. Burkle LA, Marlin JC, Knight TM. 11.  2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:61271611–15 [Google Scholar]
  12. Calderone NW. 12.  2012. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7:5e37235 [Google Scholar]
  13. Campagnac E, Fontaine J, Lounès-Hadj Sahraoui A, Laruelle F, Durand R, Grandmougin-Ferjani A. 13.  2009. Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 19:6365–74 [Google Scholar]
  14. Chapman AD. 14.  2009. Numbers of Living Species in Australia and the World Canberra: Rep. Aust. Biol. Resourc. Study Canberra, Aust., Sept. [Google Scholar]
  15. Cossani CM, Reynolds MP. 15.  2012. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 160:41710–18 [Google Scholar]
  16. Cragg GM, Newman DJ. 16.  2013. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830:63670–95 [Google Scholar]
  17. D'Costa VM, King CE, Kalan L, Morar M, Sung WWL. 17.  et al. 2011. Antibiotic resistance is ancient. Nature 477:7365457–61 [Google Scholar]
  18. Dalton T, Cegielski P, Akksilp S, Asencios L, Campos Caoili J. 18.  et al. 2012. Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet 380:98511406–17 [Google Scholar]
  19. Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK. 19.  et al. 2012. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect. Dis. 12:9687–95 [Google Scholar]
  20. Dunning Hotopp JC, Clark ME, Oliveira DCSG, Foster JM, Fischer P. 20.  et al. 2007. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:58451753–56 [Google Scholar]
  21. Felmingham D, White AR, Jacobs MR, Appelbaum PC, Poupard J. 21.  et al. 2005. The Alexander Project: the benefits from a decade of surveillance. J. Antimicrob. Chemother. 56:Suppl. 23–21 [Google Scholar]
  22. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z. 22.  2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:4185–90 [Google Scholar]
  23. Gallai N, Salles J-M, Settele J, Vaissière BE. 23.  2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:3810–21 [Google Scholar]
  24. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R. 24.  et al. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:61271608–11 [Google Scholar]
  25. Gilchrist MJ, Greko C, Wallinga DB, Beran GW, Riley DG, Thorne PS. 25.  2007. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 115:2313–16 [Google Scholar]
  26. Gray GC, Baker WS. 26.  2011. The problem with pigs: It's not about bacon. Clin. Infect. Dis. 52:119–22 [Google Scholar]
  27. Grube A, Donaldson D, Kiely T, Wu L. 27.  2011. Pesticide Industry Sales and Usage: 2006–2007 Market Estimates. Washington, DC: US Environ. Prot. Agency http://www.epa.gov/opp00001/pestsales/07pestsales/market_estimates2007.pdf [Google Scholar]
  28. Harrison EM, Paterson GK, Holden MTG, Larsen J, Stegger M. 28.  et al. 2013. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5:4509–15 [Google Scholar]
  29. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. 29.  2008. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol. Lett. 281:2215–20 [Google Scholar]
  30. 30. Hum. Microbiome Proj. Consort 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:7402207–14 [Google Scholar]
  31. 31. Int. Union Conserv. Nat 2012. Numbers of threatened species by major groups of organisms (1996–2012). IUCN Red List v 20122 http://www.iucnredlist.org/documents/summarystatistics/2012_2_RL_Stats_Table_1.pdf [Google Scholar]
  32. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D. 32.  et al. 2008. Global trends in emerging infectious diseases. Nature 451:7181990–93 [Google Scholar]
  33. Kabir Z. 33.  2005. Tillage or no-tillage: impact on mycorrhizae. Can. J. Plant Sci. 85:123–29 [Google Scholar]
  34. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD. 34.  et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:7324647–52 [Google Scholar]
  35. Kelly CR, de Leon L, Jasutkar N. 35.  2012. Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J. Clin. Gastroenterol. 46:2145–49 [Google Scholar]
  36. Key N, McBride W. 36.  2007. The changing economics of U.S. hog production. Econ. Res. Rep. No. ERR-52. Econ. Res. Serv., U.S. Dep. Agric. [Google Scholar]
  37. Krogh A. 37.  1929. The progress of physiology. Am. J. Physiol. 90:2243–51 [Google Scholar]
  38. Ley RE. 38.  2010. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26:15–11 [Google Scholar]
  39. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 39.  2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:71221022–23 [Google Scholar]
  40. Li L, Li S-M, Sun J-H, Zhou L-L, Bao X-G. 40.  et al. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 104:2711192–96 [Google Scholar]
  41. Lin BB. 41.  2011. Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 61:3183–93 [Google Scholar]
  42. LoBue P, Sizemore C, Castro KG. 42.  2009. Plan to combat extensively drug-resistant tuberculosis: recommendations of the Federal Tuberculosis Task Force. MMWR. Recomm. Rep. 58:RR-31–43 [Google Scholar]
  43. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F. 43.  2003. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 100:2567–71 [Google Scholar]
  44. Manavalan LP, Guttikonda SK, Tran L-S, Nguyen HT. 44.  2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 50:71260–76 [Google Scholar]
  45. Marshall BM, Levy SB. 45.  2011. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24:4718–33 [Google Scholar]
  46. Mathew RP, Feng Y, Githinji L, Ankumah R, Balkcom KS. 46.  2012. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012:1–10 [Google Scholar]
  47. Mishra KK, Vikram P, Yadaw RB, Swamy BPM, Dixit S. 47.  et al. 2013. qDTY12.1: a locus with a consistent effect on grain yield under drought in rice. BMC Genet. 14:12 [Google Scholar]
  48. Moellering RC Jr. 48.  2010. NDM-1—a cause for worldwide concern. N. Engl. J. Med. 363:252377–79 [Google Scholar]
  49. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. 49.  2011. How many species are there on Earth and in the ocean?. PLoS Biol. 9:8e1001127 [Google Scholar]
  50. Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D. 50.  et al. 2012. Prediction and prevention of the next pandemic zoonosis. Lancet 380:98571956–65 [Google Scholar]
  51. Mt. Pleasant J, Burt RF. 51.  2010. Estimating productivity of traditional Iroquoian cropping systems from field experiments and historical literature. J. Ethnobiol. 30:152–79 [Google Scholar]
  52. Murillo-Williams A, Pedersen P. 52.  2008. Arbuscular mycorrhizal colonization response to three seed-applied fungicides. Agronomy J. 100:3795–800 [Google Scholar]
  53. Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD. 53.  et al. 2012. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:98592197–223 [Google Scholar]
  54. Newman DJ, Cragg GM. 54.  2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:3311–35 [Google Scholar]
  55. Ostfeld RS, Keesing F. 55.  2012. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43:1157–82 [Google Scholar]
  56. Parrish CR, Holmes EC, Morens DM, Park E-C, Burke DS. 56.  et al. 2008. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72:3457–70 [Google Scholar]
  57. Pimm SL, Russell GJ, Gittleman JL, Brooks TM. 57.  1995. The future of biodiversity. Science 269:5222347–50 [Google Scholar]
  58. Ratnieks FLW, Carreck NL. 58.  2010. Ecology. Clarity on honey bee collapse?. Science 327:5962152–53 [Google Scholar]
  59. Saint André A, von Blackwell NM, Hall LR, Hoerauf A, Brattig NW. 59.  et al. 2002. The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 295:55611892–95 [Google Scholar]
  60. Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M. 60.  et al. 2009. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17:101906–15 [Google Scholar]
  61. Schlenker W, Roberts MJ. 61.  2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 106:3715594–98 [Google Scholar]
  62. Schmidt CW. 62.  2009. Swine CAFOs and novel H1N1 flu: separating facts from fears. Environ. Health Perspect. 117:9A394–401 [Google Scholar]
  63. Schmidt KA, Ostfeld RS. 63.  2001. Biodiversity and the dilution effect in disease ecology. Ecology 82:3609–19 [Google Scholar]
  64. Schneider CW, Tautz J, Grünewald B, Fuchs S. 64.  2012. RFID tracking of sublethal effects of two neo-nicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7:1e30023 [Google Scholar]
  65. Schubert S, Neubert A, Schierholt A, Sümer A, Zörb C. 65.  2009. Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci. 177:3196–202 [Google Scholar]
  66. Smith KF, Guégan J-FJ. 66.  2010. Changing geographic distributions of human pathogens. Annu. Rev. Ecol. Evol. Syst. 41:1231–50 [Google Scholar]
  67. Smith KF, Sax DF, Gaines SD, Guernier V, Guégan J-F. 67.  2007. Globalization of human infectious disease. Ecology 88:81903–10 [Google Scholar]
  68. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R. 68.  et al. 2013. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:6119548–54 [Google Scholar]
  69. Smith SE, Smith FA. 69.  2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62:227–50 [Google Scholar]
  70. Taylor LH, Latham SM, Woolhouse ME. 70.  2001. Risk factors for human disease emergence. Philos. Trans. R. Soc. B 356:1411983–89 [Google Scholar]
  71. Taylor MJ, Hoerauf A, Bockarie M. 71.  2010. Lymphatic filariasis and onchocerciasis. Lancet 376:97471175–85 [Google Scholar]
  72. Thomas C, Cameron A, Green R. 72.  2004. Extinction risk from climate change. Nature 427:6970145–48 [Google Scholar]
  73. Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P. 73.  et al. 2011. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci. Rep. 1:13 [Google Scholar]
  74. Trehan I, Goldbach HS, LaGrone LN, Meuli GJ, Wang RJ. 74.  et al. 2013. Antibiotics as part of the management of severe acute malnutrition. N. Engl. J. Med. 368:5425–35 [Google Scholar]
  75. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A. 75.  et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:7228480–84 [Google Scholar]
  76. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 76.  2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:71221027–31 [Google Scholar]
  77. 77. US Dep. Agric 2013. Honey bees and colony collapse disorder. Agric. Res. Serv., Washington, DC. http://www.ars.usda.gov/News/docs.htm?docid=15572 [Google Scholar]
  78. 78. US Fish Wildl. Serv 2013. North American bat death toll exceeds 5.5 million from white-nose syndrome. News release, Jan. 17, US Fish Wildl. Serv., Washington, DC. http://www.fws.gov/northeast/feature_archive/Feature.cfm?id=794592078 [Google Scholar]
  79. 79. US Food Drug Adm. Cent. Vet. Med 2013. 2011 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Silver Spring, MD: US FDA [Google Scholar]
  80. 80. US Geol. Surv 2013. White-nose syndrome (WNS). Natl. Wildl. Health Cent., Madison, Wis. http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/ [Google Scholar]
  81. Van Kerkhove MD, Hirve S, Koukounari A, Mounts AW. 81.  2013. Estimating age-specific cumulative incidence for the 2009 influenza pandemic: a meta-analysis of A(H1N1)pdm09 serological studies from 19 countries. Influenza Other Respir. Viruses 7:5872–95 [Google Scholar]
  82. Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V. 82.  et al. 2012. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. USA 109:186999–7003 [Google Scholar]
  83. Whitaker JO. 83.  1995. Food of the big brown bat Eptesicus fuscus from maternity colonies in Indiana and Illinois. Am. Midl. Nat. 134:2346–60 [Google Scholar]
  84. Whittaker RH. 84.  1969. New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 163:150–60 [Google Scholar]
  85. Woese CR, Fox GE. 85.  1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:115088–90 [Google Scholar]
  86. 86. World Health Organ. (WHO) 2012. Global Tuberculosis Report 2012 Geneva: WHO [Google Scholar]
  87. 87. World Health Organ. (WHO) 2009. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks Geneva: WHO [Google Scholar]
  88. Yu S, Liao F, Wang F, Wen W, Li J. 88.  et al. 2012. Identification of rice transcription factors associated with drought tolerance using the ecotilling method. PLoS One 7:2e30765 [Google Scholar]
  89. Zhu Y, Chen H, Fan J, Wang Y, Li Y. 89.  et al. 2000. Genetic diversity and disease control in rice. Nature 406:6797718–22 [Google Scholar]

Data & Media loading...

Author Aaron Bernstein presents a slideshow examining the various roles biodiversity has played in human health and explains how biodiversity loss threatens our wellbeing.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error