1932

Abstract

The human microbiome represents a new frontier in understanding the biology of human health. While epidemiology in this area is still in its infancy, its scope will likely expand dramatically over the coming years. To rise to the challenge, we argue that epidemiology should capitalize on its population perspective as a critical complement to molecular microbiome research, allowing for the illumination of contextual mechanisms that may vary more across populations rather than among individuals. We first briefly review current research on social context and the gut microbiome, focusing specifically on socioeconomic status (SES) and race/ethnicity. Next, we reflect on the current state of microbiome epidemiology through the lens of one specific area, the association of the gut microbiome and metabolic disorders. We identify key methodological shortcomings of current epidemiological research in this area, including extensive selection bias, the use of noncompositionally robust measures, and a lack of attention to social factors as confounders or effect modifiers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-040119-094423
2020-04-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/41/1/annurev-publhealth-040119-094423.html?itemId=/content/journals/10.1146/annurev-publhealth-040119-094423&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aatsinki A-K, Uusitupa H-M, Munukka E, Pesonen H, Rintala A, et al. 2018.. Gut microbiota composition in mid-pregnancy is associated with gestational weight gain but not prepregnancy body mass index. . J. Women's Health 27::1293301
    [Google Scholar]
  2. 2. 
    Aitchison J. 1986.. The Statistical Analysis of Compositional Data. London:: Chapman Hall
    [Google Scholar]
  3. 3. 
    Al-Obaide M, Singh R, Datta P, Rewers-Felkins K, Salguero M, et al. 2017.. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. . J. Clin. Med. 6::86
    [Google Scholar]
  4. 4. 
    Allen AP, Dinan TG, Clarke G, Cryan JF. 2017.. A psychology of the human brain–gut–microbiome axis. . Soc. Pers. Psychol. Compass 11::e12309
    [Google Scholar]
  5. 5. 
    Angelakis E, Armougom F, Carrière F, Bachar D, Laugier R, et al. 2015.. A metagenomic investigation of the duodenal microbiota reveals links with obesity. . PLOS ONE 10::e0137784
    [Google Scholar]
  6. 6. 
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, et al. 2004.. The gut microbiota as an environmental factor that regulates fat storage. . PNAS 101::1571823
    [Google Scholar]
  7. 7. 
    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. 2007.. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. . PNAS 104::97984
    [Google Scholar]
  8. 8. 
    Bai J, Hu Y, Bruner DW. 2019.. Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7–18 years old children from the American Gut Project. . Pediatr. Obes. 14::e12480
    [Google Scholar]
  9. 9. 
    Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER, et al. 2016.. Heritable components of the human fecal microbiome are associated with visceral fat. . Genome Biol. 17::189
    [Google Scholar]
  10. 10. 
    Bowyer RCE, Jackson MA, Le Roy CI, Ni Lochlainn M, Spector TD, et al. 2019.. Socioeconomic status and the gut microbiome: a TwinsUK cohort study. . Microorganisms 7::17
    [Google Scholar]
  11. 11. 
    Brooks AW, Priya S, Blekhman R, Bordenstein SR. 2018.. Gut microbiota diversity across ethnicities in the United States. . PLOS Biol. 16::e2006842
    [Google Scholar]
  12. 12. 
    Burkert NT, Rásky E, Großschädl F, Muckenhuber J, Freidl W. 2013.. The influence of socioeconomic factors on health parameters in overweight and obese adults. . PLOS ONE 8::e65407
    [Google Scholar]
  13. 13. 
    Castaner O, Goday A, Park Y-M, Lee S-H, Magkos F, et al. 2018.. The gut microbiome profile in obesity: a systematic review. . Int. J. Endocrinol. 2018::4095789
    [Google Scholar]
  14. 14. 
    Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, Hernández-Quiroz F, Ramírez-del-Alto S, et al. 2019.. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. . Int. J. Mol. Sci. 20::438
    [Google Scholar]
  15. 15. 
    Chen L, Reeve J, Zhang L, Huang S, Wang X, Chen J. 2018.. GMPR: a robust normalization method for zero-inflated count data with application to microbiome sequencing data. . PeerJ 6::e4600
    [Google Scholar]
  16. 16. 
    Ciubotaru I, Green SJ, Kukreja S, Barengolts E. 2015.. Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. . Transl. Res. 166:(5):40111
    [Google Scholar]
  17. 17. 
    Cohen AK, Rehkopf DH, Deardorff J, Abrams B. 2013.. Education and obesity at age 40 among American adults. . Soc. Sci. Med. 78::3441
    [Google Scholar]
  18. 18. 
    Crusell MKW, Hansen TH, Nielsen T, Højgaard Allin K, Rühlemann MC, et al. 2018.. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. . Microbiome 6::89
    [Google Scholar]
  19. 19. 
    Dahl C, Stigum H, Valeur J, Iszatt N, Lenters V, et al. 2018.. Preterm infants have distinct microbiomes not explained by mode of delivery, breastfeeding duration or antibiotic exposure. . Int. J. Epidemiol. 47::165869
    [Google Scholar]
  20. 20. 
    Davey Smith G, Ebrahim S. 2003.. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?. Int. J. Epidemiol. 32::122
    [Google Scholar]
  21. 21. 
    Davey Smith G, Ebrahim S. 2008.. Mendelian randomization: genetic variants as instruments for strengthening causal inference in observational studies. . In Biosocial Surveys, ed. M Weinstein, JW Vaupel, KW Wachter , pp. 33666. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  22. 22. 
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, et al. 2014.. Diet rapidly and reproducibly alters the human gut microbiome. . Nature 505::55963
    [Google Scholar]
  23. 23. 
    de la Cuesta-Zuluaga J, Corrales-Agudelo V, Carmona JA, Abad JM, Escobar JS. 2018.. Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. . Int. J. Obes. 42::42432
    [Google Scholar]
  24. 24. 
    de la Cuesta-Zuluaga J, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. 2018.. Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization. . Sci. Rep. 8::11356
    [Google Scholar]
  25. 25. 
    de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, Velásquez-Mejía EP, Sierra JA, et al. 2019.. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. . Nutrients 11::51
    [Google Scholar]
  26. 26. 
    Debelius JW, Vázquez-Baeza Y, McDonald D, Xu Z, Wolfe E, Knight R. 2016.. Turning participatory microbiome research into usable data: lessons from the American Gut Project. . J. Microbiol. Biol. Educ. 17::4650
    [Google Scholar]
  27. 27. 
    Del Chierico F, Abbatini F, Russo A, Quagliariello A, Reddel S, et al. 2018.. Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns. . Front. Microbiol. 9::1210
    [Google Scholar]
  28. 28. 
    Deschasaux M, Bouter KE, Prodan A, Levin E, Groen AK, et al. 2018.. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. . Nat. Med. 24::152631
    [Google Scholar]
  29. 29. 
    Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, et al. 2019.. Close social relationships correlate with human gut microbiota composition. . Sci. Rep. 9::703
    [Google Scholar]
  30. 30. 
    Dowd JB, Renson A. 2018.. “Under the skin” and into the gut: social epidemiology of the microbiome. . Curr. Epidemiol. Rep. 5::43241
    [Google Scholar]
  31. 31. 
    Ejtahed H-S, Angoorani P, Hasani-Ranjbar S, Siadat S-D, Ghasemi N, et al. 2018.. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. . Microb. Pathog. 116::1321
    [Google Scholar]
  32. 32. 
    Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. 2014.. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. . Microbiome 2::15
    [Google Scholar]
  33. 33. 
    Ferrocino I, Ponzo V, Gambino R, Zarovska A, Leone F, et al. 2018.. Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM). . Sci. Rep. 8::12216
    [Google Scholar]
  34. 34. 
    Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. 2014.. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. . PLOS ONE 9::e84689
    [Google Scholar]
  35. 35. 
    Fortenberry JD. 2013.. The uses of race and ethnicity in human microbiome research. . Trends Microbiol. 21::16566
    [Google Scholar]
  36. 36. 
    Friedman J, Alm EJ. 2012.. Inferring correlation networks from genomic survey data. . PLOS Comput. Biol. 8::e1002687
    [Google Scholar]
  37. 37. 
    Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, et al. 2017.. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. . Am. J. Epidemiol. 186::102634
    [Google Scholar]
  38. 38. 
    Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, et al. 2015.. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. . Circ. Res. 117::81724
    [Google Scholar]
  39. 39. 
    Gao R, Zhu C, Li H, Yin M, Pan C, et al. 2018.. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. . Obesity 26::35161
    [Google Scholar]
  40. 40. 
    Gao X, Zhang M, Xue J, Huang J, Zhuang R, et al. 2018.. Body mass index differences in the gut microbiota are gender specific. . Front. Microbiol. 9::1250
    [Google Scholar]
  41. 41. 
    Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. 2018.. Current understanding of the human microbiome. . Nat. Med. 24::392400
    [Google Scholar]
  42. 42. 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017.. Microbiome datasets are compositional: and this is not optional. . Front. Microbiol. 8::2224
    [Google Scholar]
  43. 43. 
    Goldman D, Smith JP. 2011.. The increasing value of education to health. . Soc. Sci. Med. 72::172837
    [Google Scholar]
  44. 44. 
    Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, et al. 2016.. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. . Diabetes 65::221423
    [Google Scholar]
  45. 45. 
    Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M. 2016.. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. . Hypertension 68::97481
    [Google Scholar]
  46. 46. 
    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, et al. 2014.. Human genetics shape the gut microbiome. . Cell 159::78999
    [Google Scholar]
  47. 47. 
    Gózd-Barszczewska A, Kozioł-Montewka M, Barszczewski P, Młodzińska A, Humińska K. 2017.. Gut microbiome as a biomarker of cardiometabolic disorders. . Ann. Agric. Environ. Med. 24::41622
    [Google Scholar]
  48. 48. 
    Guo Y, Huang Z-P, Liu C-Q, Qi L, Sheng Y, Zou D-J. 2018.. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. . Eur. J. Endocrinol. 178::4356
    [Google Scholar]
  49. 49. 
    Hawinkel S, Mattiello F, Bijnens L, Thas O. 2019.. A broken promise: microbiome differential abundance methods do not control the false discovery rate. . Brief. Bioinform. 20::21021
    [Google Scholar]
  50. 50. 
    He Y, Wu W, Wu S, Zheng HM, Li P, et al. 2018.. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. . Microbiome 6::172
    [Google Scholar]
  51. 51. 
    He Y, Wu W, Zheng H-M, Li P, McDonald D, et al. 2018.. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. . Nat. Med. 24::153235
    [Google Scholar]
  52. 52. 
    Herd P, Goesling B, House JS. 2007.. Socioeconomic position and health: the differential effects of education versus income on the onset versus progression of health problems. . J. Health Soc. Behav. 48::22338
    [Google Scholar]
  53. 53. 
    Herd P, Palloni A, Rey F, Dowd JB. 2018.. Social and population health science approaches to understand the human microbiome. . Nat. Hum. Behav. 2::80815
    [Google Scholar]
  54. 54. 
    Hernán MA, Hernández-Díaz S, Robins JM. 2004.. A structural approach to selection bias. . Epidemiology 15::61525
    [Google Scholar]
  55. 55. 
    Hicken MT, Lee H, Morenoff J, House JS, Williams DR. 2014.. Racial/ethnic disparities in hypertension prevalence: reconsidering the role of chronic stress. . Am. J. Public Health 104::11723
    [Google Scholar]
  56. 56. 
    Hoel H, Hove-Skovsgaard M, Hov JR, Gaardbo JC, Holm K, et al. 2018.. Impact of HIV and type 2 diabetes on gut microbiota diversity, tryptophan catabolism and endothelial dysfunction. . Sci. Rep. 8::6725
    [Google Scholar]
  57. 57. 
    Houttu N, Mokkala K, Laitinen K. 2018.. Overweight and obesity status in pregnant women are related to intestinal microbiota and serum metabolic and inflammatory profiles. . Clin. Nutr. 37::195566
    [Google Scholar]
  58. 58. 
    Hsu C-N, Lu P-C, Lo M-H, Lin I-C, Chang-Chien G-P, et al. 2018.. Gut microbiota-dependent trimethylamine N-oxide pathway associated with cardiovascular risk in children with early-stage chronic kidney disease. . Int. J. Mol. Sci. 19::3699
    [Google Scholar]
  59. 59. 
    Hu HJ, Park SG, Jang HB, Choi MG, Park KH, et al. 2015.. Obesity alters the microbial community profile in Korean adolescents. . PLOS ONE 10::0134333
    [Google Scholar]
  60. 60. 
    Huang Y, Li SC, Hu J, Ruan HB, Guo HM, et al. 2018.. Gut microbiota profiling in Han Chinese with type 1 diabetes. . Diabetes Res. Clin. Pract. 141::25663
    [Google Scholar]
  61. 61. 
    Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. 2012.. Structure, function and diversity of the healthy human microbiome. . Nature 486::20714
    [Google Scholar]
  62. 62. 
    Inoue R, Ohue-Kitano R, Tsukahara T, Tanaka M, Masuda S, et al. 2017.. Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients. . J. Clin. Biochem. Nutr. 61::21721
    [Google Scholar]
  63. 63. 
    Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, et al. 2018.. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. . Nat. Commun. 9::2655
    [Google Scholar]
  64. 64. 
    Karvonen AM, Sordillo JE, Gold DR, Bacharier LB, O'Connor GT, et al. 2019.. Gut microbiota and overweight in 3-year old children. . Int. J. Obes. 43::71323
    [Google Scholar]
  65. 65. 
    Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, et al. 2015.. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. . BMC Gastroenterol. 15::100
    [Google Scholar]
  66. 66. 
    Kashtanova D, Tkacheva O, Doudinskaya E, Strazhesko I, Kotovskaya Y, et al. 2018.. Gut microbiota in patients with different metabolic statuses: Moscow study. . Microorganisms 6::98
    [Google Scholar]
  67. 67. 
    Kavanagh A, Bentley RJ, Turrell G, Shaw J, Dunstan D, Subramanian S. 2010.. Socioeconomic position, gender, health behaviours and biomarkers of cardiovascular disease and diabetes. . Soc. Sci. Med. 71::115060
    [Google Scholar]
  68. 68. 
    Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, et al. 2016.. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants. . Circ. Res. 119::95664
    [Google Scholar]
  69. 69. 
    Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, et al. 2018.. Best practices for analysing microbiomes. . Nat. Rev. Microbiol. 16::41022
    [Google Scholar]
  70. 70. 
    Koren O, Spor A, Felin J, Fåk F, Stombaugh J, et al. 2011.. Human oral, gut, and plaque microbiota in patients with atherosclerosis. . PNAS 108::459298
    [Google Scholar]
  71. 71. 
    Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, et al. 2015.. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. . Cell Host Microbe 17::26073
    [Google Scholar]
  72. 72. 
    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 2015.. Sparse and compositionally robust inference of microbial ecological networks. . PLOS Comput. Biol. 11::e1004226
    [Google Scholar]
  73. 73. 
    Lambeth SM, Carson T, Lowe J, Ramaraj T, Leff JW, et al. 2015.. Composition, diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. . J. Diabetes Obes. 2::17
    [Google Scholar]
  74. 74. 
    Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, et al. 2010.. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. . PLOS ONE 5::e9085
    [Google Scholar]
  75. 75. 
    Le Roy CI, Beaumont M, Jackson MA, Steves CJ, Spector TD, Bell JT. 2018.. Heritable components of the human fecal microbiome are associated with visceral fat. . Gut Microbes 9::6167
    [Google Scholar]
  76. 76. 
    Legendre P, Legendre LFJ. 1998.. Numerical Ecology: Developments in Environmental Modelling. Amsterdam:: Elsevier
    [Google Scholar]
  77. 77. 
    Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, Castellano-Castillo D, Moreno-Indias I, et al. 2018.. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. . Diabetes Care 41::238595
    [Google Scholar]
  78. 78. 
    Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, et al. 2017.. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. . Gut 66::103138
    [Google Scholar]
  79. 79. 
    López-Contreras BE, Morán-Ramos S, Villarruel-Vázquez R, Macías-Kauffer L, Villamil-Ramírez H, et al. 2018.. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. . Pediatr. Obes. 13::38188
    [Google Scholar]
  80. 80. 
    Love MI, Huber W, Anders S. 2014.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. . Genome Biol. 15::550
    [Google Scholar]
  81. 81. 
    Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J. 2015.. Proportionality: a valid alternative to correlation for relative data. . PLOS Comput. Biol. 11::e1004075
    [Google Scholar]
  82. 82. 
    Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. 2011.. UniFrac: an effective distance metric for microbial community comparison. . ISME J. 5::16972
    [Google Scholar]
  83. 83. 
    Mai V, Prosperi M, Yaghjyan L. 2016.. Moving microbiota research toward establishing causal associations that represent viable targets for effective public health interventions. . Ann. Epidemiol. 26::30610
    [Google Scholar]
  84. 84. 
    Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. 2015.. Analysis of composition of microbiomes: a novel method for studying microbial composition. . Microb. Ecol. Health Dis. 26::27663
    [Google Scholar]
  85. 85. 
    McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, et al. 2018.. American Gut: an open platform for citizen science microbiome research. . mSystems 3::e0003118
    [Google Scholar]
  86. 86. 
    Méndez-Salazar EO, Ortiz-López MG, MDLÁ Granados-Silvestre, Palacios-González B, Menjivar M. 2018.. Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in Mexican undernourished and obese children. . Front. Microbiol. 9::2494
    [Google Scholar]
  87. 87. 
    Miller GE, Engen PA, Gillevet PM, Shaikh M, Sikaroodi M, et al. 2016.. Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. . PLOS ONE 11::e0148952
    [Google Scholar]
  88. 88. 
    Moayyeri A, Hammond CJ, Valdes AM, Spector TD. 2013.. Cohort profile: TwinsUK and Healthy Ageing Twin Study. . Int. J. Epidemiol. 42::7685
    [Google Scholar]
  89. 89. 
    Moreno-Indias I, Sánchez-Alcoholado L, García-Fuentes E, Cardona F, Queipo-Ortuño MI, Tinahones FJ. 2016.. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. . Am. J. Transl. Res. 8::567284
    [Google Scholar]
  90. 90. 
    Moreno-Navarrete JM, Serino M, Blasco-Baque V, Azalbert V, Barton R, et al. 2018.. Gut microbiota interacts with markers of adipose tissue browning, insulin action and plasma acetate in morbid obesity. . Mol. Nutr. Food Res. 62:(3):1700721
    [Google Scholar]
  91. 91. 
    Mörkl S, Lackner S, Müller W, Gorkiewicz G, Kashofer K, et al. 2017.. Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. . Int. J. Eat. Disord. 50::142131
    [Google Scholar]
  92. 92. 
    Murugesan S, Ulloa-Martínez M, Martínez-Rojano H, Galván-Rodríguez FM, Miranda-Brito C, et al. 2015.. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. . Eur. J. Clin. Microbiol. Infect. Dis. 34::133746
    [Google Scholar]
  93. 93. 
    Naderpoor N, Mousa A, Gomez-Arango LF, Barrett HL, Dekker Nitert M, de Courten B. 2019.. Faecal microbiota are related to insulin sensitivity and secretion in overweight or obese adults. . J. Clin. Med. 8::452
    [Google Scholar]
  94. 94. 
    Ogden CL, Carroll MD, Fakhouri TH, Hales CM, Fryar CD, et al. 2018.. Prevalence of obesity among youths by household income and education level of head of household—United States 2011–2014. . MMWR 67::18689
    [Google Scholar]
  95. 95. 
    Ogden CL, Fakhouri TH, Carroll MD, Hales CM, Fryar CD, et al. 2017.. Prevalence of obesity among adults, by household income and education—United States, 2011–2014. . MMWR 66::136973
    [Google Scholar]
  96. 96. 
    Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, et al. 2017.. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. . Genome Biol. 18::70
    [Google Scholar]
  97. 97. 
    Ottosson F, Brunkwall L, Ericson U, Nilsson PM, Almgren P, et al. 2018.. Connection between BMI-related plasma metabolite profile and gut microbiota. . J. Clin. Endocrinol. Metab. 103::1491501
    [Google Scholar]
  98. 98. 
    Paulson JN, Stine OC, Bravo HC, Pop M. 2013.. Differential abundance analysis for microbial marker-gene surveys. . Nat. Methods 10::12002
    [Google Scholar]
  99. 99. 
    Pearl J. 1995.. Causal diagrams for empirical research. . Biometrika 82::669710
    [Google Scholar]
  100. 100. 
    Pearson K. 1897.. On a form of spurious correlation which may arise when indices are used in the measurement of organs. . Proc. R. Soc. Lond. 60::48998
    [Google Scholar]
  101. 101. 
    Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, et al. 2018.. A taxonomic signature of obesity in a large study of American adults. . Sci. Rep. 8::9749
    [Google Scholar]
  102. 102. 
    Pushpanathan P, Srikanth P, Seshadri K, Selvarajan S, Pitani R, et al. 2016.. Gut microbiota in type 2 diabetes individuals and correlation with monocyte chemoattractant protein1 and interferon gamma from patients attending a tertiary care centre in Chennai, India. . Indian J. Endocrinol. Metab. 20::52330
    [Google Scholar]
  103. 103. 
    Qi C-J, Zhang Q, Yu M, Xu J-P, Zheng J, et al. 2016.. Imbalance of fecal microbiota at newly diagnosed type 1 diabetes in Chinese children. . Chinese Med. J. 129::1298304
    [Google Scholar]
  104. 104. 
    Rampelli S, Guenther K, Turroni S, Wolters M, Veidebaum T, et al. 2018.. Pre-obese children's dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. . Commun. Biol. 1::222
    [Google Scholar]
  105. 105. 
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, et al. 2013.. Gut microbiota from twins discordant for obesity modulate metabolism in mice. . Science 341::1241214
    [Google Scholar]
  106. 106. 
    Riva A, Borgo F, Lassandro C, Verduci E, Morace G, et al. 2017.. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. . Environ. Microbiol. 19::95105
    [Google Scholar]
  107. 107. 
    Robins JM, Hernán MA, Brumback B. 2000.. Marginal structural models and causal inference in epidemiology. . Epidemiology 11::55060
    [Google Scholar]
  108. 108. 
    Robinson CK, Brotman RM, Ravel J. 2016.. Intricacies of assessing the human microbiome in epidemiologic studies. . Ann. Epidemiol. 26::31121
    [Google Scholar]
  109. 109. 
    Rose G. 1985.. Sick individuals and sick populations. . Int. J. Epidemiol. 14::3238
    [Google Scholar]
  110. 110. 
    Rothman KJ, Gallacher JE, Hatch EE. 2013.. Why representativeness should be avoided. . Int. J. Epidemiol. 42::101214
    [Google Scholar]
  111. 111. 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, et al. 2018.. Environment dominates over host genetics in shaping human gut microbiota. . Nature 555::21015
    [Google Scholar]
  112. 112. 
    Salamon D, Sroka-Oleksiak A, Kapusta P, Szopa M, Mrozińska S, et al. 2018.. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment. . Pol. Arch. Intern. Med. 128::33643
    [Google Scholar]
  113. 113. 
    Sanchez-Alcoholado L, Castellano-Castillo D, Jordán-Martínez L, Moreno-Indias I, Cardila-Cruz P, et al. 2017.. Role of gut microbiota on cardio-metabolic parameters and immunity in coronary artery disease patients with and without type-2 diabetes mellitus. . Front. Microbiol. 8::1936
    [Google Scholar]
  114. 114. 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, et al. 2011.. Metagenomic biomarker discovery and explanation. . Genome Biol. 12::R60
    [Google Scholar]
  115. 115. 
    Shreiner AB, Kao JY, Young VB. 2015.. The gut microbiome in health and in disease. . Curr. Opin. Gastroenterol. 31::6975
    [Google Scholar]
  116. 116. 
    Silverman JD, Washburne AD, Mukherjee S, David LA. 2017.. A phylogenetic transform enhances analysis of compositional microbiota data. . eLife 6::e21887
    [Google Scholar]
  117. 117. 
    Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, et al. 2017.. Influence of diet on the gut microbiome and implications for human health. . J. Transl. Med. 15::73
    [Google Scholar]
  118. 118. 
    Stanislawski MA, Dabelea D, Wagner BD, Iszatt N, Dahl C, et al. 2018.. Gut microbiota in the first 2 years of life and the association with body mass index at age 12 in a Norwegian birth cohort. . mBio 9::e0174118
    [Google Scholar]
  119. 119. 
    Stanislawski MA, Dabelea D, Wagner BD, Sontag MK, Lozupone CA, Eggesbø M. 2017.. Pre-pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. . Microbiome 5::113
    [Google Scholar]
  120. 120. 
    Sun S, Lulla A, Sioda M, Winglee K, Wu MC, et al. 2019.. Gut microbiota composition and blood pressure. . Hypertension 73::9981006
    [Google Scholar]
  121. 121. 
    Thomas H. 2019.. Mendelian randomization reveals causal effects of the gut microbiota. . Nat. Rev. Gastroenterol. Hepatol. 16::19899
    [Google Scholar]
  122. 122. 
    Tun HM, Bridgman SL, Chari R, Field CJ, Guttman DS, et al. 2018.. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. . JAMA Pediatr. 172::36877
    [Google Scholar]
  123. 123. 
    Tun MH, Tun HM, Mahoney JJ, Konya TB, Guttman DS, et al. 2018.. Postnatal exposure to household disinfectants, infant gut microbiota and subsequent risk of overweight in children. . CMAJ 190::E1097107
    [Google Scholar]
  124. 124. 
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. 2009.. A core gut microbiome in obese and lean twins. . Nature 486::22227
    [Google Scholar]
  125. 125. 
    van den Berg G, van Eijsden M, Vrijkotte TG, Gemke RJ. 2012.. Socioeconomic inequalities in lipid and glucose metabolism in early childhood in a population-based cohort: the ABCD-Study. . BMC Public Health 12::591
    [Google Scholar]
  126. 126. 
    Villanueva-Millán MJ, Pérez-Matute P, Recio-Fernández E, Rosales J-ML, Oteo J-A. 2019.. Characterization of gut microbiota composition in HIV-infected patients with metabolic syndrome. . J. Physiol. Biochem. 75::299309
    [Google Scholar]
  127. 127. 
    Volaco A, Cavalcanti AM, Roberto Filho P, Précoma DB. 2018.. Socioeconomic status: the missing link between obesity and diabetes mellitus?. Curr. Diabetes Rev. 14::32126
    [Google Scholar]
  128. 128. 
    Walters WA, Xu Z, Knight R. 2014.. Meta-analyses of human gut microbes associated with obesity and IBD. . FEBS Lett. 588::422333
    [Google Scholar]
  129. 129. 
    Wang J, Kurilshikov A, Radjabzadeh D, Turpin W, Croitoru K, et al. 2018.. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. . Microbiome 6::101
    [Google Scholar]
  130. 130. 
    Winkleby MA, Jatulis DE, Frank E, Fortmann SP. 1992.. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. . Am. J. Public Health 82::81620
    [Google Scholar]
  131. 131. 
    Yamashita M, Okubo H, Kobuke K, Ohno H, Oki K, et al. 2019.. Alteration of gut microbiota by a Westernized lifestyle and its correlation with insulin resistance in non‐diabetic Japanese men. . J. Diabetes Investig. 10::146370
    [Google Scholar]
  132. 132. 
    Yang Q, Lin SL, Kwok MK, Leung GM, Schooling CM. 2018.. The roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a Mendelian randomization study. . Am. J. Epidemiol. 187::191622
    [Google Scholar]
  133. 133. 
    Yun Y, Kim HN, Kim SE, Heo SG, Chang Y, et al. 2017.. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. . BMC Microbiol. 17::151
    [Google Scholar]
  134. 134. 
    Zacarías MF, Collado MC, Gómez-Gallego C, Flinck H, Aittoniemi J, et al. 2018.. Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. . PLOS ONE 13::e200305
    [Google Scholar]
  135. 135. 
    Zhang X, Shen D, Fang Z, Jie Z, Qiu X, et al. 2013.. Human gut microbiota changes reveal the progression of glucose intolerance. . PLOS ONE 8::e71108
    [Google Scholar]
  136. 136. 
    Zupancic ML, Cantarel BL, Liu Z, Drabek EF, Ryan KA, et al. 2012.. Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome. . PLOS ONE 7::e43052
    [Google Scholar]
/content/journals/10.1146/annurev-publhealth-040119-094423
Loading
/content/journals/10.1146/annurev-publhealth-040119-094423
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error