1932

Abstract

Social epidemiology seeks to describe and quantify the causal effects of social institutions, interactions, and structures on human health. To accomplish this task, we define exposures as treatments and posit populations exposed or unexposed to these well-defined regimens. This inferential structure allows us to unambiguously estimate and interpret quantitative causal parameters and to investigate how these may be affected by biases such as confounding. This paradigm has been challenged recently by some critics who favor broadening the exposures that may be studied beyond treatments to also consider states. Defining the exposure protocol of an observational study is a continuum of specificity, and one may choose to loosen this definition, incurring the cost of causal parameters that become commensurately more vague. The advantages and disadvantages of broader versus narrower definitions of exposure are matters of continuing debate in social epidemiology as in other branches of epidemiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-040218-043735
2019-04-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/40/1/annurev-publhealth-040218-043735.html?itemId=/content/journals/10.1146/annurev-publhealth-040218-043735&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Angrist JD, Pischke J-S 2008. Mostly Harmless Econometrics: An Empiricist's Companion Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  2. 2. 
    Balsa AI, McGuire TG 2003. Prejudice, clinical uncertainty and stereotyping as sources of health disparities. J. Health Econ. 22:189–116
    [Google Scholar]
  3. 3. 
    Bollen K, Pearl J 2013. Eight myths about causality and structural models. Handbook of Causal Analysis for Social Research SL Morgan 301–28 Dordrecht, Neth.: Springer
    [Google Scholar]
  4. 4. 
    Botto LD, Lisi A, Robert-Gnansia E, Erickson JD, Vollset SE et al. 2005. International retrospective cohort study of neural tube defects in relation to folic acid recommendations: Are the recommendations working?. BMJ 330:7491571
    [Google Scholar]
  5. 5. 
    Cesarini D, Lindqvist E, Östling R, Wallace B 2016. Wealth, health, and child development: evidence from administrative data on Swedish lottery players. Q. J. Econ. 131:2687–738
    [Google Scholar]
  6. 6. 
    Cole SR, Frangakis CE 2009. The consistency statement in causal inference: a definition or an assumption?. Epidemiology 20:13–5
    [Google Scholar]
  7. 7. 
    Craig P, Katikireddi SV, Leyland A, Popham F 2017. Natural experiments: an overview of methods, approaches, and contributions to public health intervention research. Annu. Rev. Public Health 38:39–56
    [Google Scholar]
  8. 8. 
    Deaton A, Cartwright N 2018. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 210:2–21
    [Google Scholar]
  9. 9. 
    Druesne‐Pecollo N, Latino‐Martel P, Norat T, Barrandon E, Bertrais S et al. 2010. Beta‐carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials. Int. J. Cancer 127:1172–84
    [Google Scholar]
  10. 10. 
    Galea S 2013. An argument for a consequentialist epidemiology. Am. J. Epidemiol. 178:81185–91
    [Google Scholar]
  11. 11. 
    Galea S 2017. Making epidemiology matter. Int. J. Epidemiol. 46:41083–85
    [Google Scholar]
  12. 12. 
    Galea S, Tracy M, Hoggatt KJ, Dimaggio C, Karpati A 2011. Estimated deaths attributable to social factors in the United States. Am. J. Public Health 101:81456–65
    [Google Scholar]
  13. 13. 
    García-Albéniz X, Hsu J, Hernán MA 2017. The value of explicitly emulating a target trial when using real world evidence: an application to colorectal cancer screening. Eur. J. Epidemiol. 32:6495–500
    [Google Scholar]
  14. 14. 
    Glass TA, Goodman SN, Hernán MA, Samet JM 2013. Causal inference in public health. Annu. Rev. Public Health 34:61–75
    [Google Scholar]
  15. 15. 
    Glymour C 1986. Statistics and causal inference—Comment: statistics and metaphysics. J. Am. Stat. Assoc. 81:396964–66
    [Google Scholar]
  16. 16. 
    Glymour MM, Spiegelman D 2017. Evaluating public health interventions: 5. Causal inference in public health research—do sex, race, and biological factors cause health outcomes?. Am. J. Public Health 107:181–85
    [Google Scholar]
  17. 17. 
    Greenland S 1990. Randomization, statistics, and causal inference. Epidemiology 1:6421–29
    [Google Scholar]
  18. 18. 
    Greenland S 2000. An introduction to instrumental variables for epidemiologists. Int. J. Epidemiol. 29:4722–29
    [Google Scholar]
  19. 19. 
    Greenland S 2005. Epidemiologic measures and policy formulation: lessons from potential outcomes. Emerg. Themes Epidemiol. 2:5
    [Google Scholar]
  20. 20. 
    Greenland S 2017. For and against methodologies: some perspectives on recent causal and statistical inference debates. Eur. J. Epidemiol. 32:13–20
    [Google Scholar]
  21. 21. 
    Greenland S, Robins JM 1986. Identifiability, exchangeability, and epidemiological confounding. Int. J. Epidemiol. 15:3413–19
    [Google Scholar]
  22. 22. 
    Gunasekara FI, Richardson K, Carter K, Blakely T 2014. Fixed effects analysis of repeated measures data. Int. J. Epidemiol. 43:1264–69
    [Google Scholar]
  23. 23. 
    Handley MA, Lyles CR, McCulloch C, Cattamanchi A 2018. Selecting and improving quasi-experimental designs in effectiveness and implementation research. Annu. Rev. Public Health 39:5–25
    [Google Scholar]
  24. 24. 
    Harper S, Strumpf EC 2012. Social epidemiology: questionable answers and answerable questions. Epidemiology 23:6795–98
    [Google Scholar]
  25. 25. 
    Harper S, Strumpf EC, Kaufman JS 2012. Do medical marijuana laws increase marijuana use? Replication study and extension. Ann. Epidemiol. 22:3207–12
    [Google Scholar]
  26. 26. 
    Heckman JJ 1998. Detecting discrimination. J. Econ. Perspect. 12:2101–16
    [Google Scholar]
  27. 27. 
    Hernán MA 2004. A definition of causal effect for epidemiological research. J. Epidemiol. Community Health 58:4265–71
    [Google Scholar]
  28. 28. 
    Hernán MA 2016. Does water kill? A call for less casual causal inferences. Ann. Epidemiol. 26:10674–80
    [Google Scholar]
  29. 29. 
    Hernán MA 2018. The C-word: Scientific euphemisms do not improve causal inference from observational data. Am. J. Public Health 108:5616–19
    [Google Scholar]
  30. 30. 
    Hernán MA, Alonso A, Logan R, Grodstein F, Michels KB et al. 2008. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology 19:6766–79
    [Google Scholar]
  31. 31. 
    Hernán MA, Robins JM 2006. Instruments for causal inference: an epidemiologist's dream?. Epidemiology 17:4360–72 Erratum Epidemiology 25:1164
    [Google Scholar]
  32. 32. 
    Hernán MA, Robins JM 2016. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 183:8758–64
    [Google Scholar]
  33. 33. 
    Hernán MA, Robins JM 2018. Causal Inference Boca Raton, FL: CRC In press
    [Google Scholar]
  34. 34. 
    Hernán MA, Taubman SL 2008. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int. J. Obes. 32:Suppl. 3S8–14
    [Google Scholar]
  35. 35. 
    Holland PW 1986. Statistics and causal inference. J. Am. Statist. Assoc. 81:396945–60
    [Google Scholar]
  36. 36. 
    Howe CJ, Dulin-Keita A, Cole SR, Hogan JW, Lau B et al. 2018. Evaluating the population impact on racial/ethnic disparities in HIV in adulthood of intervening on specific targets: a conceptual and methodological framework. Am. J. Epidemiol. 187:2316–25
    [Google Scholar]
  37. 37. 
    Howe CJ, Robinson WR 2018. Survival-related selection bias in studies of racial health disparities: the importance of the target population and study design. Epidemiology 29:4521–24
    [Google Scholar]
  38. 38. 
    Hu Y, van Lenthe FJ, Hoffmann R, van Hedel K, Mackenbach JP 2017. Assessing the impact of natural policy experiments on socioeconomic inequalities in health: how to apply commonly used quantitative analytical methods?. BMC Med. Res. Methodol. 17:168
    [Google Scholar]
  39. 39. 
    Huitfeldt A 2016. Is caviar a risk factor for being a millionaire?. BMJ 355:i6536
    [Google Scholar]
  40. 40. 
    Infante-Rivard C, Cusson A 2018. Reflection on modern methods: selection bias—a review of recent developments. Int. J. Epidemiol. 47:51714–22
    [Google Scholar]
  41. 41. 
    Jackson JW 2017. Explaining intersectionality through description, counterfactual thinking, and mediation analysis. Soc. Psychiatry Psychiatr. Epidemiol. 52:7785–93
    [Google Scholar]
  42. 42. 
    Jackson JW 2018. On the interpretation of path-specific effects in health disparities research. Epidemiology 29:4517–20
    [Google Scholar]
  43. 43. 
    Kaufman JS 2008. Epidemiologic analysis of racial/ethnic disparities: some fundamental issues and a cautionary example. Soc. Sci. Med. 66:81659–69
    [Google Scholar]
  44. 44. 
    Kaufman JS, Cooper RS 1999. Seeking causal explanations in social epidemiology. Am. J. Epidemiol. 150:2113–20
    [Google Scholar]
  45. 45. 
    Kaufman JS, Cooper RS 2008. Race in epidemiology: new tools, old problems. Ann. Epidemiol. 18:2119–23
    [Google Scholar]
  46. 46. 
    Kaufman JS, Dolman L, Rushani D, Cooper RS 2015. The contribution of genomic research to explaining racial disparities in cardiovascular disease: a systematic review. Am. J. Epidemiol. 181:7464–72
    [Google Scholar]
  47. 47. 
    Kaufman JS, Harper S 2013. Health equity: utopian and scientific. Prev. Med. 57:6739–40
    [Google Scholar]
  48. 48. 
    Kaufman JS, Hernán MA 2012. Epidemiologic methods are useless: They can only give you answers. Epidemiology 23:6785–86
    [Google Scholar]
  49. 49. 
    Kaufman JS, Kaufman S, Poole C 2003. Causal inference from randomized trials in social epidemiology. Soc. Sci. Med. 57:122397–409
    [Google Scholar]
  50. 50. 
    Kaufman JS, Rushani D, Cooper RS 2018. Nature versus nurture in the explanations for racial/ethnic health disparities: parsing disparities in the era of genome-wide association studies. See Ref. 91 120–32
  51. 51. 
    Keyes KM, Galea S 2017. Commentary: The limits of risk factors revisited: Is it time for a causal architecture approach?. Epidemiology 28:11–5
    [Google Scholar]
  52. 52. 
    Krieger N 1994. Epidemiology and the web of causation: Has anyone seen the spider?. Soc. Sci. Med. 39:7887–903
    [Google Scholar]
  53. 53. 
    Krieger N 2014. On the causal interpretation of race. Epidemiology 25:6937
    [Google Scholar]
  54. 54. 
    Krieger N 2016. Living and dying at the crossroads: racism, embodiment, and why theory is essential for a public health of consequence. Am. J. Public Health 106:5832–33
    [Google Scholar]
  55. 55. 
    Krieger N, Davey Smith G 2016. The tale wagged by the DAG: broadening the scope of causal inference and explanation for epidemiology. Int. J. Epidemiol. 45:61787–808
    [Google Scholar]
  56. 56. 
    Labrecque JA, Swanson SA 2017. Target trial emulation: teaching epidemiology and beyond. Eur. J. Epidemiol. 32:6473–75
    [Google Scholar]
  57. 57. 
    Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S 2014. Good practices for quantitative bias analysis. Int. J. Epidemiol. 43:61969–85
    [Google Scholar]
  58. 58. 
    Loring M, Powell B 1988. Gender, race, and DSM-III: a study of the objectivity of psychiatric diagnostic behavior. J. Health Soc. Behav. 29:11–22
    [Google Scholar]
  59. 59. 
    Marcellesi A 2013. Is race a cause?. Philos. Sci. 80:5650–59
    [Google Scholar]
  60. 60. 
    McCullagh P 2002. What is a statistical model?. Ann. Statist. 5:1225–310
    [Google Scholar]
  61. 61. 
    Maldonado G 2016. The role of counterfactual theory in causal reasoning. Ann. Epidemiol. 26:10681–82
    [Google Scholar]
  62. 62. 
    Maldonado G, Greenland S 2002. Estimating causal effects. Int. J. Epidemiol. 31:2422–29
    [Google Scholar]
  63. 63. 
    Manski CF 2013. Public Policy in an Uncertain World: Analysis and Decisions Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  64. 64. 
    Mostofsky E, Coull BA, Mittleman MA 2018. Analysis of observational self-matched data to examine acute triggers of outcome events with abrupt onset. Epidemiology 29:6804–16
    [Google Scholar]
  65. 65. 
    Naimi AI, Kaufman JS 2015. Counterfactual theory in social epidemiology: reconciling analysis and action for the social determinants of health. Curr. Epidemiol. Rep. 2:152–60
    [Google Scholar]
  66. 66. 
    Naimi AI, Kaufman JS, MacLehose RF 2014. Mediation misgivings: ambiguous clinical and public health interpretations of natural direct and indirect effects. Int. J. Epidemiol. 43:51656–61
    [Google Scholar]
  67. 67. 
    Naimi AI, Schnitzer ME, Moodie EE, Bodnar LM 2016. Mediation analysis for health disparities research. Am. J. Epidemiol. 184:4315–24
    [Google Scholar]
  68. 68. 
    Nandi A, Harper S 2015. How consequential is social epidemiology? A review of recent evidence. Curr. Epidemiol. Rep. 2:161–70
    [Google Scholar]
  69. 69. 
    O'Campo P, Dunn JR, eds. 2012. Rethinking Social Epidemiology—Towards a Science of Change New York: Springer
    [Google Scholar]
  70. 70. 
    Oakes JM, Kaufman JS, eds. 2016. Methods in Social Epidemiology San Francisco: Wiley, 2nd ed..
    [Google Scholar]
  71. 71. 
    Pearl J 2009. Causality: Models, Reasoning, and Inference Cambridge, UK: Cambridge Univ. Press, 2nd ed..
    [Google Scholar]
  72. 72. 
    Pearl J 2018. Comments on: The tale wagged by the DAG. Int. J. Epidemiol. 47:31002–4
    [Google Scholar]
  73. 73. 
    Pearl J, Glymour M, Jewell NP 2016. Causal Inference in Statistics: A Primer Chichester, UK: Wiley
    [Google Scholar]
  74. 74. 
    Pearl J, Mackenzie D 2018. The Book of Why: The New Science of Cause and Effect New York: Basic Books
    [Google Scholar]
  75. 75. 
    Petersen ML 2011. Compound treatments, transportability, and the structural causal model: the power and simplicity of causal graphs. Epidemiology 22:3378–81
    [Google Scholar]
  76. 76. 
    Petitti DB 1991. Associations are not effects. Am. J. Epidemiol. 133:2101–2
    [Google Scholar]
  77. 77. 
    Phelan JC, Link BG, Tehranifar P 2010. Social conditions as fundamental causes of health inequalities: theory, evidence, and policy implications. J. Health Soc. Behav. 51:S28–40
    [Google Scholar]
  78. 78. 
    Ray JG, Meier C, Vermeulen MJ, Boss S, Wyatt PR, Cole DE 2002. Association of neural tube defects and folic acid food fortification in Canada. Lancet 360:93502047–48
    [Google Scholar]
  79. 79. 
    Rehkopf DH, Glymour MM, Osypuk TL 2016. The consistency assumption for causal inference in social epidemiology: when a rose is not a rose. Curr. Epidemiol. Rep. 3:163–71
    [Google Scholar]
  80. 80. 
    Robins JM, Wasserman L 1999. On the impossibility of inferring causation from association without background knowledge. Computation, Causation, and Discovery C Glymour, GF Cooper 305–21 Cambridge, MA: MIT Press
    [Google Scholar]
  81. 81. 
    Rothman KJ, Greenland S, Lash TL, eds. 2008. Modern Epidemiology Philadelphia, PA: Lippincott Williams & Wilkins, 3rd ed..
    [Google Scholar]
  82. 82. 
    Rubin DB 2008. For objective causal inference, design trumps analysis. Ann. Appl. Stat. 2:808–40
    [Google Scholar]
  83. 83. 
    Sackett DL, Rosenberg WM 1995. The need for evidence-based medicine. J. R. Soc. Med. 88:11620–24
    [Google Scholar]
  84. 84. 
    Schisterman EF, Cole SR, Platt RW 2009. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20:4488–95
    [Google Scholar]
  85. 85. 
    Schwartz S, Gatto NM, Campbell UB 2012. Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA). Epidemiol. Perspect. Innov. 9:3
    [Google Scholar]
  86. 86. 
    Schwartz S, Gatto NM, Campbell UB 2016. Causal identification: a charge of epidemiology in danger of marginalization. Ann. Epidemiol. 26:10669–73
    [Google Scholar]
  87. 87. 
    Schwartz S, Prins SJ, Campbell UB, Gatto NM 2016. Is the “well-defined intervention assumption” politically conservative?. Soc. Sci. Med. 166:254–57
    [Google Scholar]
  88. 88. 
    Smaldino PE, McElreath R 2016. The natural selection of bad science. R. Soc. Open Sci. 3:9160384
    [Google Scholar]
  89. 89. 
    Smith LM, Lévesque LE, Kaufman JS, Strumpf EC 2017. Strategies for evaluating the assumptions of the regression discontinuity design: a case study using a human papillomavirus vaccination programme. Int. J. Epidemiol. 46:3939–49
    [Google Scholar]
  90. 90. 
    Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC et al. 1980. Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1:339–40
    [Google Scholar]
  91. 91. 
    Suzuki K, von Vacano D, eds. 2018. Reconsidering Race: Social Science Perspectives on Racial Categories in the Age of Genomics London: Oxford Univ. Press
    [Google Scholar]
  92. 92. 
    Todd KH, Deaton C, D'Adamo AP, Goe L 2000. Ethnicity and analgesic practice. Ann. Emerg. Med. 35:111–16
    [Google Scholar]
  93. 93. 
    Vandenbroucke JP, Broadbent A, Pearce N 2016. Causality and causal inference in epidemiology: the need for a pluralistic approach. Int. J. Epidemiol. 45:61776–86
    [Google Scholar]
  94. 94. 
    VanderWeele TJ 2015. Explanation in Causal Inference: Methods for Mediation and Interaction New York: Oxford Univ. Press
    [Google Scholar]
  95. 95. 
    VanderWeele TJ 2018. On well-defined hypothetical interventions in the potential outcomes framework. Epidemiology 29:4e24–25
    [Google Scholar]
  96. 96. 
    VanderWeele TJ, Hernán MA 2012. Causal effects and natural laws: towards a conceptualization of causal counterfactuals for non-manipulable exposures, with application to the effects of race and sex. Causality C Berzuini, P Dawid, L Bernardinelli 101–13 New York: Wiley
    [Google Scholar]
  97. 97. 
    VanderWeele TJ, Robinson WR 2014. On the causal interpretation of race in regressions adjusting for confounding and mediating variables. Epidemiology 25:4473–84
    [Google Scholar]
  98. 98. 
    VanderWeele TJ, Shpitser I 2013. On the definition of a confounder. Ann. Stat. 41:1196–220
    [Google Scholar]
  99. 99. 
    Wing C, Simon K, Bello-Gomez RA 2018. Designing difference in difference studies: best practices for public health policy research. Annu. Rev. Public Health 39:453–69
    [Google Scholar]
/content/journals/10.1146/annurev-publhealth-040218-043735
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error