1932

Abstract

Over the past decade, precision medicine (PM) approaches have received significant investment to create new therapies, learn more about disease processes, and potentially prevent diseases before they arise. However, in many ways, PM investments may come at the expense of existing public health measures that could have a greater impact on population health. As we tackle burgeoning public health concerns, such as obesity, and chronic diseases, such as cancer, it is not clear whether PM is aligned with public health or in conflict with its goals. We summarize the areas of promise demonstrated by PM, discuss the limitations of each of these areas from a population health perspective, and discuss how we can approach PM in a manner that is congruent with the core aims of public health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-040617-014158
2018-04-01
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/39/1/annurev-publhealth-040617-014158.html?itemId=/content/journals/10.1146/annurev-publhealth-040617-014158&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams J, Conley B, Mooney M, Zwiebel J, Chen A. 1.  et al. 2014. National Cancer Institute's precision medicine initiatives for the new National Clinical Trials Network. Am Soc. Clin. Oncol. Educ. Book 2014:71–76 [Google Scholar]
  2. Ackerman JP, Bartos DC, Kapplinger JD, Tester DJ, Delisle BP, Ackerman MJ. 2.  2016. The promise and peril of precision medicine: Phenotyping still matters most. Mayo Clin. Proc. 91:1606–16 [Google Scholar]
  3. Ahn AC, Tewari M, Poon C-S, Phillips RS. 3.  2006. The limits of reductionism in medicine: Could systems biology offer an alternative?. PLOS Med 3:e208 [Google Scholar]
  4. 4. Am. Coll. Obstet. Gynecol. 2003. ACOG practice bulletin. Cervical Cytology screening. Int. J. Gynaecol. Obstet. 83:237–47 [Google Scholar]
  5. 5. Am. Soc. Clin. Oncol. 2007. American Society of Clinical Oncology update of recommendations for the use of tumor markers in breast cancer. J. Oncol. Pract. 3:336–39 [Google Scholar]
  6. Antoniou A, Pharoah PDP, Narod S, Risch HA, Eyfjord JE. 6.  et al. 2003. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72:1117–30 [Google Scholar]
  7. Armstrong K, Micco E, Carney A, Stopfer J, Putt M. 7.  2005. Racial differences in the use of BRCA1/2 testing among women with a family history of breast or ovarian cancer. JAMA 293:1729–36 [Google Scholar]
  8. Bartlett JMS, Bloom KJ, Piper T, Lawton TJ, Van De Velde CJH. 8.  et al. 2012. Mammostrat as an immunohistochemical multigene assay for prediction of early relapse risk in the Tamoxifen Versus Exemestane Adjuvant Multicenter Trial pathology study. J. Clin. Oncol. 30:4477–84 [Google Scholar]
  9. Bayer R, Galea S. 9.  2015. Public health in the precision-medicine era. N. Engl. J. Med. 373:499–501 [Google Scholar]
  10. Belsky DW, Sears MR, Hancox RJ, Harrington H, Houts R. 10.  et al. 2013. Polygenic risk and the development and course of asthma: evidence from a 4-decade longitudinal study. Lancet Respir. Med. 1:453–61 [Google Scholar]
  11. Biankin AV, Piantadosi S, Hollingsworth SJ. 11.  2015. Patient-centric trials for therapeutic development in precision oncology. Nature 526:361–70 [Google Scholar]
  12. Biller-Andorno N, Jüni P. 12.  2014. Abolishing mammography screening programs? A view from the Swiss Medical Board. N. Engl. J. Med. 370:1965–67 [Google Scholar]
  13. Bonham VL, Callier SL, Royal CD. 13.  2016. Will precision medicine move us beyond race?. N. Engl. J. Med. 374:2003–5 [Google Scholar]
  14. Brownstein JS, Freifeld CC, Chan EH, Keller M, Sonricker AL. 14.  et al. 2010. Information technology and global surveillance of cases of 2009 H1N1 influenza. N. Engl. J. Med. 362:1731–35 [Google Scholar]
  15. Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G. 15.  et al. 2011. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378:2081–87 [Google Scholar]
  16. Buus R, Sestak I, Kronenwett R, Denkert C, Dubsky P. 16.  et al. 2016. Comparison of EndoPredict and EPclin with oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J. Natl. Cancer Inst. 108:djw149 [Google Scholar]
  17. Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G. 17.  et al. 2016. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 375:717–29 [Google Scholar]
  18. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E. 18.  et al. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–72 [Google Scholar]
  19. Chatterjee A. 19.  2014. The next generation of HPV vaccines: nonavalent vaccine V503 on the horizon. Expert Rev. Vaccines 13:1279–90 [Google Scholar]
  20. Chen S, Parmigiani G. 20.  2007. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol. 25:1329–33 [Google Scholar]
  21. Collins FS, Varmus H. 21.  2015. A new initiative on precision medicine. N. Engl. J. Med. 372:793–95 [Google Scholar]
  22. Coote JH, Joyner MJ. 22.  2015. Is precision medicine the route to a healthy world?. Lancet 385:1617 [Google Scholar]
  23. Domchek SM, Friebel TM, Singer CF, Evans G, Lynch HT. 23.  et al. 2010. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304:967–75 [Google Scholar]
  24. Ege MJ, von Mutis E. 24.  2013. Can genes forecast asthma risk?. Lancet Respir. Med. 1:425–26 [Google Scholar]
  25. Espay AJ, Brundin P, Lang AE. 25.  2017. Precision medicine for disease modification in Parkinson disease. Nat. Rev. Neurol. 13:119–26 [Google Scholar]
  26. Federoff HJ, Gostin LO. 26.  2009. Evolving from reductionism to holism: Is there a future for systems medicine?. JAMA 302:994–96 [Google Scholar]
  27. Goldberg JI, Borgen PI. 27.  2006. Breast cancer susceptibility testing: past, present and future. Expert Rev. Anticancer Therapy 6:1205–14 [Google Scholar]
  28. Gray AM. 28.  1982. Inequalities in health. The Black Report: a summary and comment. Int. J. Health Serv. 12:349–80 [Google Scholar]
  29. Hayden EC. 29.  2014. Technology: the $1,000 genome. Nature 507:294–95 [Google Scholar]
  30. Hayden EC. 30.  2016. Cancer moonshots raise concerns. Nature 532:432–33 [Google Scholar]
  31. Heald B, Edelman E, Eng C. 31.  2012. Prospective comparison of family medical history with personal genome screening for risk assessment of common cancers. Eur. J. Hum. Genet. 20:547–51 [Google Scholar]
  32. Hobbs HH, Brown MS, Goldstein JL. 32.  1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1:445–66 [Google Scholar]
  33. Hochhaus A, O'Brien SG, Guilhot F, Druker BJ, Branford S. 33.  et al. 2009. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23:1054–61 [Google Scholar]
  34. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D. 34.  et al. 2014. SEER cancer statistics review, 1975–2011 April Natl. Cancer Inst. Bethesda, MD: https://seer.cancer.gov/archive/csr/1975_2011/ [Google Scholar]
  35. Hudis CA, Dickler M. 35.  2016. Increasing precision in adjuvant therapy for breast cancer. N. Engl. J. Med. 375:790–91 [Google Scholar]
  36. 36. Inst. Med. 1988. The Future of Public Health Washington, DC: Natl. Acad. Press [Google Scholar]
  37. 37. Inst. Med., Natl. Res. Counc. 2013. U.S. Health in International Perspective: Shorter Lives, Poorer Health SH Woolf, L Aron Washington, DC: Natl. Acad. Press [Google Scholar]
  38. Jameson JL, Longo DL. 38.  2015. Precision medicine—personalized, problematic, and promising. N. Engl. J. Med. 372:2229–34 [Google Scholar]
  39. Janssens AC, Gwinn M, Bradley LA, Oostra BA, van Duijn CM, Khoury MJ. 39.  2008. A critical appraisal of the scientific basis of commercial genomic profiles used to assess health risks and personalize health interventions. Am. J. Hum. Genet. 82:593–99 [Google Scholar]
  40. Jin Y, Mazza C, Christie JR, Giliani S, Fiorini M. 40.  et al. 2004. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood 104:4010–19 [Google Scholar]
  41. Johnson P, Federico M, Kirkwood A, Fosså A, Berkahn L. 41.  et al. 2016. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin's lymphoma. N. Engl. J. Med. 374:2419–29 [Google Scholar]
  42. Joyner MJ, Paneth N. 42.  2015. Seven questions for personalized medicine. JAMA 314:999–1000 [Google Scholar]
  43. Keyes KM, Davey Smith G, Koenen KC, Galea S. 43.  2015. The mathematical limits of genetic prediction for complex chronic disease. J. Epidemiol. Community Health 69:574–79 [Google Scholar]
  44. Khoury MJ, Galea S. 44.  2016. Will precision medicine improve population health?. JAMA 316:1357–58 [Google Scholar]
  45. King M-C, Wieand S, Hale K, Lee M, Walsh T. 45.  et al. 2001. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA 286:2251–56 [Google Scholar]
  46. Kostakoglu L, Evens AM. 46.  2014. FDG-PET imaging for Hodgkin lymphoma: current use and future applications. Clin. Adv. Hematol. Oncol. 12:20–35 [Google Scholar]
  47. Le Tourneau C, Delord J-P, Gonçalves A, Gavoille C, Dubot C. 47.  et al. 2015. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16:1324–34 [Google Scholar]
  48. Lerman C, Schnoll RA, Hawk LW Jr., Cinciripini P, George TP. 48.  et al. 2015. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: a randomised, double-blind placebo-controlled trial. Lancet Respir. Med. 3:131–38 [Google Scholar]
  49. Lièvre A, Bachet J-B, Le Corre D, Boige V, Landi B. 49.  et al. 2006. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66:3992–95 [Google Scholar]
  50. Lindsley RC, Saber W, Mar BG, Redd R, Wang T. 50.  et al. 2017. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N. Engl. J. Med. 376:536–47 [Google Scholar]
  51. Lyman GH, Moses HL. 51.  2016. Biomarker tests for molecularly targeted therapies—the key to unlocking precision medicine. N. Engl. J. Med. 375:4–6 [Google Scholar]
  52. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA. 52.  et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:2129–39 [Google Scholar]
  53. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S. 53.  et al. 2010. Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362:2380–88 [Google Scholar]
  54. Marcus PM, Pashayan N, Church TR, Doria-Rose VP, Gould MK. 54.  et al. 2016. Population-based precision cancer screening: a symposium on evidence, epidemiology, and next steps. Cancer Epidemiol. Biomarkers Prev. 25:1449–55 [Google Scholar]
  55. Marrone M, Stewart A, Dotson WD. 55.  2015. Clinical utility of gene-expression profiling in women with early breast cancer: an overview of systematic reviews. Genet. Med. 17:519–32 [Google Scholar]
  56. Marteau TM, Lerman C. 56.  2001. Genetic risk and behavioural change. BMJ 332:1056–59 [Google Scholar]
  57. Marteau TM, Senior V, Humphries SE, Bobrow M, Cranston T. 57.  et al. 2004. Psychological impact of genetic testing for familial hypercholesterolemia within a previously aware population: a randomised controlled trial. Am. J. Med. Genet. A 128:285–93 [Google Scholar]
  58. Marteau TM, Weinman J. 58.  2006. Self-regulation and the behavioural response to DNA risk information: a theoretical analysis and framework for future research. Soc. Sci. Med. 62:1360–68 [Google Scholar]
  59. Mavaddat N, Pharoah PDP, Michailidou K, Tyrer J, Brook MN. 59.  et al. 2015. Prediction of breast cancer risk based on profiling with common genetic variants. J. Natl. Cancer Inst. 107:djv036 [Google Scholar]
  60. Meijers-Heijboer H, van Geel B, van Putten WLJ, Henzen-Logmans SC, Seynaeve C. 60.  et al. 2001. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 345:159–64 [Google Scholar]
  61. Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J. 61.  et al. 2015. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat. Genet. 47:373–80 [Google Scholar]
  62. Nassan M, Nicholson WT, Elliott MA, Rohrer Vitek CR, Black JL, Frye MA. 62.  2016. Pharmacokinetic pharmacogenetic prescribing guidelines for antidepressants: a template for psychiatric precision medicine. Mayo Clin. Proc. 91:897–907 [Google Scholar]
  63. Nathwani AC, Reiss UM, Tuddenham EGD, Rosales C, Chowdary P. 63.  et al. 2014. Long-term safety and efficacy of factor IX gene therapy in hemophilia. N. Engl. J. Med. 371:1994–2004 [Google Scholar]
  64. 64. Natl. Acad. Sci. Eng. Med. 2015. The Growing Gap in Life Expectancy by Income: Implications for Federal Programs and Policy Responses Washington, DC: Natl. Acad. Press [Google Scholar]
  65. 65. Natl. Res. Counc. 2011. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease Washington, DC: Natl. Acad. Press [Google Scholar]
  66. Need AC, Goldstein DB. 66.  2009. Next generation disparities in human genomics: concerns and remedies. Trends Genet 25:489–94 [Google Scholar]
  67. Nherera L, Marks D, Minhas R, Thorogood M, Humphries SE. 67.  2011. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolaemia using alternative diagnostic and identification strategies. Heart 97:1175–81 [Google Scholar]
  68. Osler W. 68.  1902. Aequanimitas: With Other Addresses to Medical Students, Nurses and Practitioners of Medicine—Chauvinism in Medicine London: HK Lewis [Google Scholar]
  69. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H. 69.  et al. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–500 [Google Scholar]
  70. Parkinson DR, Johnson BE, Sledge GW. 70.  2012. Making personalized cancer medicine a reality: challenges and opportunities in the development of biomarkers and companion diagnostics. Clin. Cancer Res. 18:619–24 [Google Scholar]
  71. Peters N, Rose A, Armstrong K. 71.  2004. The association between race and attitudes about predictive genetic testing. Cancer Epidemiol. Biomark. Prev. 13:361–65 [Google Scholar]
  72. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. 72.  2016. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health 4:e609–16 [Google Scholar]
  73. Popejoy AB, Fullerton SM. 73.  2016. Genomics is failing on diversity. Nature 538:161–64 [Google Scholar]
  74. Prasad V, Fojo T, Brada M. 74.  2016. Precision oncology: origins, optimism, and potential. Lancet Oncol 17:e81–86 [Google Scholar]
  75. 75. Precis. Med. Initiat. (PMI) Work Group. 2015. The Precision Medicine Initiative Cohort Program—Building a Research Foundation for 21st Century Medicine Bethesda, MD: Natl. Inst. Health https://acd.od.nih.gov/documents/reports/DRAFT-PMI-WG-Report-9-11-2015-508.pdf [Google Scholar]
  76. Raue F, Frank-Raue K, Grauer A. 76.  1994. Multiple endocrine neoplasia type 2. Clinical features and screening. Endocrinol. Metab. Clin. North Am. 23:137–56 [Google Scholar]
  77. Redig AJ, Jänne PA. 77.  2015. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J. Clin. Oncol. 33:975–77 [Google Scholar]
  78. Rose G. 78.  2001. Sick individuals and sick populations. Int. J. Epidemiol. 30:427–32 [Google Scholar]
  79. Ross CA, Tabrizi SJ. 79.  2011. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98 [Google Scholar]
  80. Rubin R. 80.  2015. Precision medicine: the future or simply politics?. JAMA 313:1089–91 [Google Scholar]
  81. Senior V, Marteau TM, Peters TJ. 81.  1999. Will genetic testing for predisposition for disease result in fatalism? A quantitative study of parents responses to neonatal screening for familial hypercholesterolaemia. Soc. Sci. Med. 48:1857–60 [Google Scholar]
  82. Shah NS, Auld SC, Brust JC, Mathema B, Ismail N. 82.  et al. 2017. Transmission of extensively drug-resistant tuberculosis in South Africa. N. Engl. J. Med. 376:243–53 [Google Scholar]
  83. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V. 83.  et al. 2005. Erlotinib in previously treated non–small-cell lung cancer. N. Engl. J. Med. 353:123–32 [Google Scholar]
  84. Sholl LM, Yeap BY, Iafrate AJ, Holmes-Tisch AJ, Chou YP. 84.  et al. 2009. Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Res 69:8341–48 [Google Scholar]
  85. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S. 85.  et al. 2004. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2–positive breast cancer. J. Natl. Cancer Inst. 96:926–35 [Google Scholar]
  86. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet M. 86.  et al. 2009. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 360:363–75 [Google Scholar]
  87. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M. 87.  et al. 2011. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 365:1273–83 [Google Scholar]
  88. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y. 88.  et al. 2007. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–66 [Google Scholar]
  89. Suther S, Kiros G-E. 89.  2009. Barriers to the use of genetic testing: a study of racial and ethnic disparities. Genet. Med. 11:655–62 [Google Scholar]
  90. Topol EJ. 90.  2014. Individualized medicine from prewomb to tomb. Cell 157:241–53 [Google Scholar]
  91. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW. 91.  et al. 2010. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–44 [Google Scholar]
  92. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X. 92.  et al. 2015. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. . N. Engl. J. Med. 373:220–31 [Google Scholar]
  93. Wang Q, Curran ME, Splawski I, Burn T, Millholland J. 93.  et al. 1996. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12:17–23 [Google Scholar]
  94. Welch HG, Prorok PC, O'Malley AJ, Kramer BS. 94.  2016. Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N. Engl. J. Med. 375:1438–47 [Google Scholar]
  95. 95. White House. 2016. The Precision Medicine Initiative March 12 Archived Obama White House Washington, DC: https://obamawhitehouse.archives.gov/node/333101 [Google Scholar]
  96. Zhou C, Wu YL, Chen G, Feng J, Liu XQ. 96.  et al. 2011. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12:735–42 [Google Scholar]
/content/journals/10.1146/annurev-publhealth-040617-014158
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error