1932

Abstract

Extreme weather events are expected to increase due to climate change, which could pose an additional burden of morbidity and mortality. In recent decades, drought severity has increased in several regions around the world, affecting health by increasing the risk of water-, food-, and vector-borne diseases, malnutrition, cardiovascular and respiratory illness, mental health disorders, and mortality. Drought frequency and severity are expected to worsen across large regions as a result of a decrease in precipitation and an increase in temperature and atmospheric evaporative demand, posing a pressing challenge for public health. Variation in impacts among countries and communities is due to multiple factors, such as aging, socioeconomic status, access to health care, and gender, affecting population resilience. Integrative proactive action plans focused on risk management are required, and resources should be transferred to developing countries to reduce their vulnerability and risk.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-071421-051636
2023-04-03
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/44/1/annurev-publhealth-071421-051636.html?itemId=/content/journals/10.1146/annurev-publhealth-071421-051636&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abadi AM, Gwon Y, Gribble MO, Berman JD, Bilotta R et al. 2022. Drought and all-cause mortality in Nebraska from 1980 to 2014: time-series analyses by age, sex, race, urbanicity and drought severity. Sci. Total Environ. 840:156660
    [Google Scholar]
  2. 2.
    Abatzoglou JT, Williams AP. 2016. Impact of anthropogenic climate change on wildfire across western US forests. PNAS 113:4211770–75
    [Google Scholar]
  3. 3.
    Alaimo K, Chilton M, Jones SJ 2020. Food insecurity, hunger, and malnutrition. Present Knowledge in Nutrition BP Marriott, DF Birt, VA Stallings, AA Yates 311–26. Cambridge, MA: Academic, 11th ed..
    [Google Scholar]
  4. 4.
    Alam I, Otani S, Majbauddin A, Qing Q, Ishizu SF et al. 2021. The effects of drought severity and its aftereffects on mortality in Bangladesh. Yonago Acta Med. 64:292–302
    [Google Scholar]
  5. 5.
    Algur KD, Patel SK, Chauhan S. 2021. The impact of drought on the health and livelihoods of women and children in India: a systematic review. Child. Youth Serv. Rev. 122:105909
    [Google Scholar]
  6. 6.
    Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:81–55
    [Google Scholar]
  7. 7.
    Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259:4660–84
    [Google Scholar]
  8. 8.
    Alpino TA, de Sena ARM, de Freitas CM. 2016. Disasters related to droughts and public health—a review of the scientific literature. Ciênc. Saúde Colet. 21:809–20
    [Google Scholar]
  9. 9.
    Anenberg SC, Haines S, Wang E, Nassikas N, Kinney PL. 2020. Synergistic health effects of air pollution, temperature, and pollen exposure: a systematic review of epidemiological evidence. Environ. Health 19:130
    [Google Scholar]
  10. 10.
    Asmall T, Abrams A, Röösli M, Cissé G, Carden K, Dalvie MA. 2021. The adverse health effects associated with drought in Africa. Sci. Total Environ. 793:148500
    [Google Scholar]
  11. 11.
    Bell JE, Brown CL, Conlon K, Herring S, Kunkel KE et al. 2018. Changes in extreme events and the potential impacts on human health. J. Air Waste Manag. 68:265–87
    [Google Scholar]
  12. 12.
    Bellizzi S, Lane C, Elhakim M, Nabeth P. 2020. Health consequences of drought in the WHO Eastern Mediterranean Region: hotspot areas and needed actions. Environ. Health 19:114
    [Google Scholar]
  13. 13.
    Berg A, Sheffield J. 2018. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4:2180–91
    [Google Scholar]
  14. 14.
    Berman JD, Ebisu K, Peng RD, Dominici F, Bell ML. 2017. Drought and the risk of hospital admissions and mortality in older adults in western USA from 2000 to 2013: a retrospective study. Lancet Planet. Health 1:e17–25
    [Google Scholar]
  15. 15.
    Berry HL, Waite TD, Dear KBG, Capon AG, Murray V. 2018. The case for systems thinking about climate change and mental health. Nat. Clim. Change 8:282–90
    [Google Scholar]
  16. 16.
    Breshears DD, Adams HD, Eamus D, McDowell NG, Law DJ et al. 2013. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4:266
    [Google Scholar]
  17. 17.
    Browder G, Nuñez Sanchez A, Jongman B, Engle N, van Beek E et al. 2021. An EPIC response: innovative governance for flood and drought risk management Rep. World Bank Washington, DC: https://openknowledge.worldbank.org/handle/10986/35754
    [Google Scholar]
  18. 18.
    Brown L, Medlock J, Murray V. 2014. Impact of drought on vector-borne diseases—how does one manage the risk?. Public Health 128:29–37
    [Google Scholar]
  19. 19.
    Carpena F. 2019. How do droughts impact household food consumption and nutritional intake? A study of rural India. World Dev. 122:349–69
    [Google Scholar]
  20. 20.
    Caruso BS. 2001. Regional river flow, water quality, aquatic ecological impacts and recovery from drought. Hydrol. Sci. J. 46:5677–99
    [Google Scholar]
  21. 21.
    CDC (Cent. Dis. Control Prev.) 2018. Preparing for the health effects of drought: a resource guide for public health professionals Rep. CDC Atlanta: https://www.cdc.gov/nceh/hsb/cwh/docs/CDC_Drought_Resource_Guide-508.pdf
    [Google Scholar]
  22. 22.
    Chen K, Vicedo-Cabrera AM, Dubrow R. 2020. Projections of ambient temperature- and air pollution-related mortality burden under combined climate change and population aging scenarios: a review. Curr. Environ. Health Rep. 7:243–55
    [Google Scholar]
  23. 23.
    Chiang F, Mazdiyasni O, AghaKouchak A. 2021. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12:12754
    [Google Scholar]
  24. 24.
    Chretien J-P, Anyamba A, Bedno SA, Breiman RF, Sang R et al. 2007. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hyg. 76:3405–407
    [Google Scholar]
  25. 25.
    Coêlho AEL, Adair JG, Mocellin JSP. 2004. Psychological responses to drought in northeastern Brazil. Interam. J. Psychol. 38:95–103
    [Google Scholar]
  26. 26.
    Cook BI, Mankin JS, Marvel K, Williams AP, Smerdon JE, Anchukaitis KJ. 2020. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth's Futur. 8:6e2019EF001461
    [Google Scholar]
  27. 27.
    CRED (Cent. Res. Epidemiol. Disasters), UNDRR (U. N. Off. Disaster Risk Reduct.) 2020. Human cost of disasters: an overview of the last 20 years 20002019 Rep. CRED, Brussels, Belg./UNDRR Geneva: https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000–2019
    [Google Scholar]
  28. 28.
    Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540:104–8
    [Google Scholar]
  29. 29.
    Dai A. 2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3:152–58
    [Google Scholar]
  30. 30.
    Dai A. 2021. Hydroclimatic trends during 1950–2018 over global land. Clim. Dyn. 56:114027–49
    [Google Scholar]
  31. 31.
    Dai A, Zhao T. 2017. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Clim. Change 144:3519–33
    [Google Scholar]
  32. 32.
    Dai A, Zhao T, Chen J 2018. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Change Rep. 4:3301–12
    [Google Scholar]
  33. 33.
    Desai Z, Zhang Y. 2021. Climate change and women's health: a scoping review. GeoHealth 5:e2021GH000386
    [Google Scholar]
  34. 34.
    Douville H, Raghavan K, Renwick J, Allan RP, Arias PA et al. 2021. Water cycle changes. Climate Change 2021: The Physical Climate Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan et al.1055–210. Cambridge, UK: Cambridge Univ. Press https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter08.pdf
    [Google Scholar]
  35. 35.
    Duel H, Wolters H, Timboe I, ter Maat J, Matthews J. 2022. HELP guiding principles for drought risk management under a changing climate: catalysing actions for enhancing climate resilience HELP Rep., Deltares Delft, Neth: https://climate-adapt.eea.europa.eu/metadata/publications/https-www-deltares-nl-en-news-new-perspectives-on-droughts-in-a-time-of-climate-change
    [Google Scholar]
  36. 36.
    Ebi KL, Bowen K. 2016. Extreme events as sources of health vulnerability: drought as an example. Weather Clim. Extrem. 11:95–102
    [Google Scholar]
  37. 37.
    Ebi KL, Vanos J, Baldwin JW, Bell JE, Hondula DM et al. 2021. Extreme weather and climate change: population health and health system implications. Annu. Rev. Public Health 42:293–315
    [Google Scholar]
  38. 38.
    EEA (Eur. Environ. Agency) 2020. Climate change poses increasingly severe risks for ecosystems, human health and economy in Europe. EEA News Nov. 23. https://www.eea.europa.eu/highlights/climate-change-poses-increasingly-severe
    [Google Scholar]
  39. 39.
    Elgar FJ, Sen A, Gariépy G, Pickett W, Davison C et al. 2021. Food insecurity, state fragility and youth mental health: a global perspective. SSM Popul. Health 14:100764
    [Google Scholar]
  40. 40.
    FAO (Food Agric. Organ. U. N.), IFAD (Int. Found Agric. Dev.), UNICEF (U. N. Int. Child. Emerg. Fund), WFP (World Food Progr.), WHO (World Health Organ.) 2021. The state of food security and nutrition in the world 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all Rep. FAO Rome: https://www.fao.org/documents/card/en/c/cb4474en
    [Google Scholar]
  41. 41.
    Fontes CG, Dawson TE, Jardine K, McDowell N, Gimenez BO et al. 2018. Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees. Philos. Trans. R. Soc. B 373:176020180209
    [Google Scholar]
  42. 42.
    Friedrich K, Grossman RL, Huntington J, Blanken PD, Lenters J et al. 2018. Reservoir evaporation in the western United States. Bull. Am. Meteorol. Soc. 99:1167–87
    [Google Scholar]
  43. 43.
    Funari E, Manganelli M, Sinisi L. 2012. Impact of climate change on waterborne diseases. Ann. Ist. Super Sanita 48:473–87
    [Google Scholar]
  44. 44.
    Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A et al. 2015. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–75
    [Google Scholar]
  45. 45.
    Gerber N, Mirzabaev A. 2017. Benefits of action and costs of inaction: drought mitigation and preparedness—a literature review Integr. Drought Manag. Progr. (IDMP) Work Pap. 1 World Meteorol. Organ. Geneva, Switz.:; Glob. Water Partnersh., Stockholm https://library.wmo.int/doc_num.php?explnum_id=3401
    [Google Scholar]
  46. 46.
    Gomez-Zavaglia A, Mejuto JC, Simal-Gandara J. 2020. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134:109256
    [Google Scholar]
  47. 47.
    Gourdji SM, Sibley AM, Lobell DB. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 8:024041
    [Google Scholar]
  48. 48.
    Green H, Bailey J, Schwarz L, Vanos J, Ebi K, Benmarhnia T. 2019. Impact of heat on mortality and morbidity in low and middle income countries: a review of the epidemiological evidence and considerations for future research. Environ. Res. 171:80–91
    [Google Scholar]
  49. 49.
    Green JK, Seneviratne SI, Berg AM, Findell KL, Hagemann S et al. 2019. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565:476–79
    [Google Scholar]
  50. 50.
    Grigoletto JC, Cabral AR, Bonfim CV, Rohlfs DB, Silva ELE et al. 2016. Management of health sector actions in drought situations. Cien. Saude Colet. 21:709–18
    [Google Scholar]
  51. 51.
    Grigorieva EA, Livenets AS. 2022. Risks to the health of Russian population from floods and droughts in 2010–2020: a scoping review. Climate 10:337
    [Google Scholar]
  52. 52.
    Gronlund CJ, Sullivan KP, Kefelegn Y, Cameron L, O'Neill MS. 2018. Climate change and temperature extremes: a review of heat- and cold-related morbidity and mortality concerns of municipalities. Maturitas 114:54–59
    [Google Scholar]
  53. 53.
    Haines A, Ebi K. 2019. The imperative for climate action to protect health. N. Engl. J. Med. 380:263–73
    [Google Scholar]
  54. 54.
    Hales S, Edwards SJ, Kovats RS 2003. Impacts on health of climate extremes. Climate Change and Human Health: Risks and Responses AJ McMichael, DH Campbell-Lendrum, CF Corvalán, KL Ebi, AK Githeko et al.79–102. Geneva: World Health Organ.
    [Google Scholar]
  55. 55.
    Hameed M, Ahmadalipour A, Moradkhani H. 2020. Drought and food security in the middle east: an analytical framework. Agric. For. Meteorol. 281:107816
    [Google Scholar]
  56. 56.
    Hanigan IC, Butler CD, Kokic PN, Hutchinson MF. 2012. Suicide and drought in New South Wales, Australia, 1970–2007. PNAS 109:3513950–55
    [Google Scholar]
  57. 57.
    Hausfather Z, Forster P. 2021. Analysis: Do COP26 promises keep global warming below 2C?. Carbon Brief Nov. 10. https://www.carbonbrief.org/analysis-do-cop26-promises-keep-global-warming-below-2c
    [Google Scholar]
  58. 58.
    IPCC (Intergov. Panel Clim. Change) 2021. 2021: summary for policymakers. See Ref. 74 3–32. https://www.ipcc.ch/report/ar6/wg1/
  59. 59.
    IPCC (Intergov. Panel Clim. Change) 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change HO Pörtner, DC Roberts, MMB Tignor, E Poloczanska, K Mintenbeck et al. Cambridge, UK: Cambridge Univ. Press https://www.ipcc.ch/report/ar6/wg2/
    [Google Scholar]
  60. 60.
    Jalalzadeh Fard B, Puvvula J, Bell JE 2022. Evaluating changes in health risk from drought over the contiguous United States. Int. J. Environ. Res. Public Health 19:4628
    [Google Scholar]
  61. 61.
    Kautz L-A, Martius O, Pfahl S, Pinto JG, Ramos AM et al. 2022. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—a review. Weather Clim. Dynam. 3:305–36
    [Google Scholar]
  62. 62.
    Le K, Nguyen M. 2022. Droughts and child health in Bangladesh. PLOS ONE 17:3e0265617
    [Google Scholar]
  63. 63.
    Libonati R, Geirinhas JL, Silva PS, Russo A, Rodrigues JA et al. 2022. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ. Res. Lett. 17:015005
    [Google Scholar]
  64. 64.
    Linares C, Martinez GS, Kendrovski V, Diaz J. 2020. A new integrative perspective on early warning systems for health in the context of climate change. Environ. Res. 187:109623
    [Google Scholar]
  65. 65.
    Lindroth A, Holst J, Linderson M-L, Aurela M, Biermann T et al. 2020. Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018. Philos. Trans. R. Soc. B 375:181020190516
    [Google Scholar]
  66. 66.
    Lloyd-Hughes B. 2014. The impracticality of a universal drought definition. Theor. Appl. Climatol. 117:3–4607–11
    [Google Scholar]
  67. 67.
    Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333:6042616–20
    [Google Scholar]
  68. 68.
    Lombard MA, Daniel J, Jeddy Z, Hay LE, Ayotte JD. 2021. Assessing the impact of drought on arsenic exposure from private domestic wells in the conterminous United States. Environ. Sci. Technol. 55:1822–31
    [Google Scholar]
  69. 69.
    Lowe R, Gasparrini A, Meerbeeck CJV, Lippi CA, Mahon R et al. 2018. Nonlinear and delayed impacts of climate on dengue risk in Barbados: a modelling study. PLOS Med. 15:e1002613
    [Google Scholar]
  70. 70.
    Lowe R, Lee SA, O'Reilly KM, Brady OJ, Bastos L et al. 2021. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5:e209–19
    [Google Scholar]
  71. 71.
    Lynch KM, Lyles RH, Waller LA, Abadi AM, Bell JE, Gribble MO. 2020. Drought severity and all-cause mortality rates among adults in the United States: 1968–2014. Environ. Health 19:52
    [Google Scholar]
  72. 72.
    Machado-Silva F, Libonati R, Melo de Lima TF, Bittencourt Peixoto R, de Almeida França JR et al. 2020. Drought and fires influence the respiratory diseases hospitalizations in the Amazon. Ecol. Indic. 109:105817
    [Google Scholar]
  73. 73.
    Martin ER. 2018. Future projections of global pluvial and drought event characteristics. Geophys. Res. Lett. 45:11913–20
    [Google Scholar]
  74. 74.
    Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C et al., eds. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  75. 75.
    Mishra A, Alnahit A, Campbell B. 2021. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: a review and analysis. J. Hydrol. 596:125707
    [Google Scholar]
  76. 76.
    Mishra A, Bruno E, Zilberman D. 2021. Compound natural and human disasters: managing drought and COVID-19 to sustain global agriculture and food sectors. Sci. Total Environ. 754:142210
    [Google Scholar]
  77. 77.
    Molloy SL, Mihaltcheva S 2013. 1.01—Extreme weather events. Climate Vulnerability: Understanding and Addressing Threats to Essential Resources RA Pielke 3–16. Oxford, UK: Academic
    [Google Scholar]
  78. 78.
    Mosley LM. 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Sci. Rev. 140:203–14
    [Google Scholar]
  79. 79.
    Mukherjee S, Mishra A, Trenberth KE. 2018. Climate change and drought: a perspective on drought indices. Curr. Clim. Change Rep. 4:2145–63
    [Google Scholar]
  80. 80.
    Narcizo LC, Libonati R, Santos FLM, Trigo R., Geirinhas JL. 2019. Compound effects of drought and heat waves on fire incidence over the Amazon. BioBrasil 7:1069
    [Google Scholar]
  81. 81.
    Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA et al. 2018. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 45:73285–96
    [Google Scholar]
  82. 82.
    O'Dwyer J, Chique C, Weatherill J, Hynds P. 2021. Impact of the 2018 European drought on microbial groundwater quality in private domestic wells: a case study from a temperate maritime climate. J. Hydrol. 601:126669
    [Google Scholar]
  83. 83.
    Orimoloye IR, Belle JA, Orimoloye YM, Olusola AO, Ololade OO. 2022. Drought: a common environmental disaster. Atmosphere 13:111
    [Google Scholar]
  84. 84.
    Orlowsky B, Seneviratne SI. 2013. Elusive drought: uncertainty in observed trends and short-and long-term CMIP5 projections. Hydrol. Earth. Syst. Sci. 17:51765–81
    [Google Scholar]
  85. 85.
    Ortiz C, Linares C, Carmona R, Díaz J. 2017. Evaluation of short-term mortality attributable to particulate matter pollution in Spain. Environ. Pollut. 224:541–51
    [Google Scholar]
  86. 86.
    Otero N, Jurado OE, Butler T, Rust HW. 2022. The impact of atmospheric blocking on the compounding effect of ozone pollution and temperature: a copula-based approach. Atmos. Chem. Phys. 22:1905–19
    [Google Scholar]
  87. 87.
    Pacheco SE, Guidos-Fogelbach G, Annesi-Maesano I, Pawankar R, D'Amato G et al. 2021. Climate change and global issues in allergy and immunology. J. Allergy. Clin. Immunol. 148:1366–77
    [Google Scholar]
  88. 88.
    Parks RM, Benavides J, Anderson GB, Nethery RC, Navas-Acien A et al. 2022. Association of tropical cyclones with county-level mortality in the US. JAMA 327:946–55
    [Google Scholar]
  89. 89.
    Paull SH, Horton DE, Ashfaq M, Rastogi D, Kramer LD et al. 2017. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B 284:20162078
    [Google Scholar]
  90. 90.
    Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM. 2017. Precipitation variability increases in a warmer climate. Sci. Rep. 7:17966
    [Google Scholar]
  91. 91.
    Peters W, Bastos A, Ciais P, Vermeulen A. 2020. A historical, geographical and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B 375:181020190505
    [Google Scholar]
  92. 92.
    Peterson TC, Karl TR, Kossin JP, Kunkel KE, Lawrimore JH et al. 2014. Changes in weather and climate extremes: state of knowledge relevant to air and water quality in the United States. J. Air Waste Manag. Assoc. 64:184–97
    [Google Scholar]
  93. 93.
    Phung D, Nguyen-Huy T, Tran NN, Tran DN, Doan VQ et al. 2021. Hydropower dams, river drought and health effects: a detection and attribution study in the lower Mekong Delta Region. Clim. Risk Manag. 32:100280
    [Google Scholar]
  94. 94.
    Pidcock R, Yeo S. 2017. Explainer: Dealing with the “loss and damage” caused by climate change. Carbon Brief May 9. https://www.carbonbrief.org/explainer-dealing-with-the-loss-and-damage-caused-by-climate-change/
    [Google Scholar]
  95. 95.
    Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW et al. 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. PNAS 111:3262–67
    [Google Scholar]
  96. 96.
    Ridder NN, Ukkola AM, Pitman AJ, Perkins-Kirkpatrick SE. 2022. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci 5:3
    [Google Scholar]
  97. 97.
    Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N et al. 2021. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 398:1619–62
    [Google Scholar]
  98. 98.
    Rylander C, Odland , Sandanger TM. 2013. Climate change and the potential effects on maternal and pregnancy outcomes: an assessment of the most vulnerable—the mother, fetus, and newborn child. Glob. Health Action 6:19538
    [Google Scholar]
  99. 99.
    Sakhamuri S, Cummings S. 2019. Increasing trans-Atlantic intrusion of Sahara dust: cause of concern?. Lancet Planet. Health 3:6E242–43
    [Google Scholar]
  100. 100.
    Salvador C 2023. Challenges from patterns of behaviours and drought: environmental and human health risks. Environmental Behavior: Concepts, Determinants, Impacts, and Research Methods A Virgolino, O Santos, RR Santos, chapter 17 Amsterdam: Elsevier. In press
    [Google Scholar]
  101. 101.
    Salvador C, Nieto R, Linares C, Díaz J, Alves CA, Gimeno L. 2021. Drought effects on specific-cause mortality in Lisbon from 1983 to 2016: risks assessment by gender and age groups. Sci. Total Environ. 751:142332
    [Google Scholar]
  102. 102.
    Salvador C, Nieto R, Linares C, Diaz J, Gimeno L. 2019. Effects on daily mortality of droughts in Galicia (NW Spain) from 1983 to 2013. Sci. Total Environ. 662:121–33
    [Google Scholar]
  103. 103.
    Salvador C, Nieto R, Linares C, Díaz J, Gimeno L. 2020. Effects of droughts on health: diagnosis, repercussion, and adaptation in vulnerable regions under climate change. Challenges for future research. Sci. Total Environ. 703:134912
    [Google Scholar]
  104. 104.
    Salvador C, Nieto R, Linares C, Díaz J, Gimeno L. 2020. Short-term effects of drought on daily mortality in Spain from 2000 to 2009. Environ. Res. 183:109200
    [Google Scholar]
  105. 105.
    Salvador C, Vicedo-Cabrera AM, Libonati R, Russo A, Garcia BN et al. 2022. Effects of drought on mortality in macro urban areas of Brazil between 2000 to 2019. GeoHealth 6:3e2021GH000534
    [Google Scholar]
  106. 106.
    Sena A, Freitas C, Souza PF, Carneiro F, Alpino T et al. 2018. Drought in the semiarid region of Brazil: exposure, vulnerabilities and health impacts from the perspectives of local actors. PLOS Curr. Disasters 10: https://doi.org/10.1371/currents.dis.c226851ebd64290e619a4d1ed79c8639
    [Google Scholar]
  107. 107.
    Seneviratne S, Zhang X, Adnan M, Badi W, Dereczynski C et al. 2021. Weather and climate extreme events in a changing climate. See Ref. 74 1513–766. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter11.pdf
    [Google Scholar]
  108. 108.
    Smith LT, Aragão LEOC, Sabel CE, Nakaya T. 2014. Drought impacts on children's respiratory health in the Brazilian Amazon. Sci. Rep. 4:3726
    [Google Scholar]
  109. 109.
    Song X, Song Y, Chen Y. 2020. Secular trend of global drought since 1950. Environ. Res. Lett. 15:9094073
    [Google Scholar]
  110. 110.
    Spinoni J, Barbosa P, Bucchignani E, Cassano J, Cavazos T et al. 2020. Future global meteorological drought hot spots: a study based on CORDEX data. J. Clim. 33:93635–61
    [Google Scholar]
  111. 111.
    Spinoni J, Barbosa P, De Jager A, McCormick N, Naumann G et al. 2019. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 22:100593
    [Google Scholar]
  112. 112.
    Stanke C, Kerac M, Prudhomme C, Medlock J, Murray V. 2013. Health effects of drought: a systematic review of the evidence. PLOS Curr. Disasters 5: https://doi.org/10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004
    [Google Scholar]
  113. 113.
    Subak S. 2003. Effects of climate on variability in Lyme disease incidence in the northeastern United States. Am. J. Epidemiol. 157:531–38
    [Google Scholar]
  114. 114.
    Swain DL, Langenbrunner B, Neelin JD, Hall A. 2018. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8:5427–33
    [Google Scholar]
  115. 115.
    Teuling AJ, Van Loon AF, Seneviratne SI, Lehner I, Aubinet M et al. 2013. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40:102071–75
    [Google Scholar]
  116. 116.
    Tomas-Burguera M, Vicente-Serrano SM, Peña-Angulo D, Domínguez-Castro F, Noguera I, El Kenawy A. 2020. Global characterization of the varying responses of the standardized precipitation evapotranspiration index to atmospheric evaporative demand. J. Geophys. Res. Atmos. 125:17e2020JD033017
    [Google Scholar]
  117. 117.
    Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J et al. 2014. Global warming and changes in drought. Nat. Clim. Change 4:17–22
    [Google Scholar]
  118. 118.
    Turner S, Barker LJ, Hannaford J, Muchan K, Parry S, Sefton C. 2021. The 2018/2019 drought in the UK: a hydrological appraisal. Weather 76:8248–53
    [Google Scholar]
  119. 119.
    UNDRR (U. N. Off. Disaster Risk Reduct.) 2021. Special report on drought 2021 Glob. Assess. Rep. Disaster Risk Reduct., UNDRR Geneva: https://www.undrr.org/publication/gar-special-report-drought-2021
    [Google Scholar]
  120. 120.
    UNEP (U. N. Environ. Progr.) 2021. Adaptation gap report 2020 Rep. UNEP Nairobi: https://www.unep.org/resources/adaptation-gap-report-2020
    [Google Scholar]
  121. 121.
    UNEP (U. N. Environ. Progr.) 2021. The heat is on: a world of climate promises not yet delivered Emiss. Gap Rep., UNEP Nairobi: https://www.unep.org/resources/emissions-gap-report-2021
    [Google Scholar]
  122. 122.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2015. Adoption of the Paris Agreement, 21st Conference of the Parties FCCC/CP/2015/L.9/Rev1 U. N. Paris: https://unfccc.int/sites/default/files/english_paris_agreement.pdf
    [Google Scholar]
  123. 123.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2021. First report on the determination of the needs of developing country Parties related to implementing the Convention and the Paris Agreement Tech. Rep., UNFCCC Bonn, Ger.: https://unfccc.int/topics/climate-finance/workstreams/determination-of-the-needs-of-developing-country-parties/first-report-on-the-determination-of-the-needs-of-developing-country-parties-related-to-implementing
    [Google Scholar]
  124. 124.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2021. Glasgow climate pact Decis. CMA.3 UNFCCC Bonn, Ger.: https://unfccc.int/sites/default/files/resource/cma3_auv_2_cover%20decision.pdf
    [Google Scholar]
  125. 125.
    UNICEF (U. N. Child. Fund), WHO (World Health Organ.) 2019. Progress on drinking water, sanitation and hygiene 20002017 Rep. UNICEF, WHO New York: https://www.unicef.org/reports/progress-on-drinking-water-sanitation-and-hygiene-2019
    [Google Scholar]
  126. 126.
    van Daalen KR, Romanello M, Rocklöv J, Semenza JC, Tonne C et al. 2022. The 2022 Europe report of the Lancet Countdown on health and climate change: towards a climate resilient future. Lancet Public Health 7:E942–65
    [Google Scholar]
  127. 127.
    Vicedo-Cabrera AM, Iñíguez C, Barona C, Ballester F. 2014. Exposure to elevated temperatures and risk of preterm birth in Valencia, Spain. Environ. Res. 134:210–17
    [Google Scholar]
  128. 128.
    Vicedo-Cabrera AM, Sera F, Liu C, Armstrong B, Milojevic A et al. 2020. Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. BMJ 368:m108
    [Google Scholar]
  129. 129.
    Vicente-Serrano SM, Lopez-Moreno J-I, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A et al. 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9:4044001
    [Google Scholar]
  130. 130.
    Vicente-Serrano SM, McVicar TR, Miralles DG, Yang Y, Tomas-Burguera M. 2020. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Clim. Change 11:e632
    [Google Scholar]
  131. 131.
    Vicente-Serrano SM, Quiring S, Peña-Gallardo M, Yuan S, Domínguez-Castro F. 2020. A review of environmental droughts: increased risk under global warming?. Earth-Sci. Rev. 201:102953
    [Google Scholar]
  132. 132.
    Vicente-Serrano SM, Zabalza-Martínez J, Borràs G, López-Moreno JI, Pla E et al. 2017. Effect of reservoirs on streamflow and river regimes in a heavily regulated river basin of Northeast Spain. Catena 149:727–41
    [Google Scholar]
  133. 133.
    Vins H, Bell J, Saha S, Hess JJ. 2015. The mental health outcomes of drought: a systematic review and causal process diagram. Int. J. Environ. Res. Public Health 12:13251–75
    [Google Scholar]
  134. 134.
    Wall N, Hayes M 2016. Drought and health in the context of public engagement. Extreme Weather, Health, and Communities SL Steinberg, WA Sprigg 219–44. Cham, Switz: Springer Int.
    [Google Scholar]
  135. 135.
    Wanders N, Wada Y. 2015. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 526:208–20
    [Google Scholar]
  136. 136.
    Wang B, Wang S, Li L, Xu S, Li C et al. 2021. The association between drought and outpatient visits for respiratory diseases in four northwest cities of China. Clim. Change 167:22
    [Google Scholar]
  137. 137.
    Wang P, Asare E, Pitzer VE, Dubrow R, Chen K 2022. Associations between long-term drought and diarrhea among children under five in low- and middle-income countries. Nat. Commun. 13:3661
    [Google Scholar]
  138. 138.
    Wang T, Tu X, Singh VP, Chen X, Lin K 2021. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol. 596:126091
    [Google Scholar]
  139. 139.
    Wang Y, Xie Y, Dong W, Ming Y, Wang J, Shen L. 2017. Adverse effects of increasing drought on air quality via natural processes. Atmos. Chem. Phys. 17:12827–43
    [Google Scholar]
  140. 140.
    WHO (World Health Organ.) 2014. Gender, climate change and health Glob. Rep., WHO Geneva: https://www.who.int/publications/i/item/9789241508186
    [Google Scholar]
  141. 141.
    Wilhite DA. 1993. Planning for drought: a methodology. Drought Assessment, Management, and Planning: Theory and Case Studies87–108. Boston: Springer US
    [Google Scholar]
  142. 142.
    Wilhite DA. 1996. A methodology for drought preparedness. Nat. Hazards 13:3229–52
    [Google Scholar]
  143. 143.
    Wilhite DA. 2002. Combating drought through preparedness. Nat. Resour. Forum 26:4275–85
    [Google Scholar]
  144. 144.
    Wilhite DA, Pulwarty RS. 2017. Drought as hazard: understanding the natural and social context. Drought and Water Crises: Integrating Science, Management, and Policy3–22. Boca Raton, FL: CRC Press
    [Google Scholar]
  145. 145.
    WMO (World Meteorol. Organ.) 2021. Climate change indicators and impacts worsened in 2020 Press Release 19042021, April 19. https://public.wmo.int/en/media/press-release/climate-change-indicators-and-impacts-worsened-202
    [Google Scholar]
  146. 146.
    WMO (World Meteorol. Organ.) 2021. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (19702019) WMO 1267 Geneva: WMO https://library.wmo.int/index.php?lvl=notice_display&id=21930#.Ym-5eehBy5c
    [Google Scholar]
  147. 147.
    Xu C, McDowell NG, Fisher RA, Wei L, Sevanto S et al. 2019. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9:948–53
    [Google Scholar]
  148. 148.
    Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM et al. 2020. Wildfires, global climate change, and human health. N. Engl. J. Med. 383:2173–81
    [Google Scholar]
  149. 149.
    Yusa A, Berry P, Cheng J, Ogden N, Bonsal B et al. 2015. Climate change, drought and human health in Canada. Int. J. Environ. Res. Public Health 12:8359–412
    [Google Scholar]
  150. 150.
    Zeng J, Li J, Lu X, Wei Z, Shangguan W et al. 2022. Assessment of global meteorological, hydrological and agricultural drought under future warming based on CMIP6. Atmos. Ocean. Sci. Lett. 15:100143
    [Google Scholar]
  151. 151.
    Zhang W, Li Y, Li Z, Wei X, Ren T et al. 2020. Impacts of climate change, population growth, and urbanization on future population exposure to long-term temperature change during the warm season in China. Environ. Sci. Pollut. Res. Int. 27:8481–91
    [Google Scholar]
  152. 152.
    Zhao T, Dai A. 2017. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim. Change 144:3535–48
    [Google Scholar]
  153. 153.
    Zhao T, Dai A. 2022. CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. J. Clim. 35:897–921
    [Google Scholar]
/content/journals/10.1146/annurev-publhealth-071421-051636
Loading
/content/journals/10.1146/annurev-publhealth-071421-051636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error