Investigating a single environmental exposure in isolation does not reflect the actual human exposure circumstance nor does it capture the multifactorial etiology of health and disease. The exposome, defined as the totality of environmental exposures from conception onward, may advance our understanding of environmental contributors to disease by more fully assessing the multitude of human exposures across the life course. Implementation into studies of human health has been limited, in part owing to theoretical and practical challenges including a lack of infrastructure to support comprehensive exposure assessment, difficulty in differentiating physiologic variation from environmentally induced changes, and the need for study designs and analytic methods that accommodate specific aspects of the exposome, such as high-dimensional exposure data and multiple windows of susceptibility. Recommendations for greater data sharing and coordination, methods development, and acknowledgment and minimization of multiple types of measurement error are offered to encourage researchers to embark on exposome research to promote the environmental health and well-being of all populations.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agier L, Portengen L, Chadeau-Hyam M, Basagana X, Giorgis-Allemand L. 1.  et al. 2016. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ. Health Perspect. 124:1848–56 [Google Scholar]
  2. Andra SS, Austin C, Arora M. 2.  2016. The tooth exposome in children's health research. Curr. Opin. Pediatr. 28:221–27 [Google Scholar]
  3. Braun JM, Gennings C, Hauser R, Webster TF. 3.  2016. What can epidemiological studies tell us about the impact of chemical mixtures on human health?. Environ. Health Perspect. 124:A6–9 [Google Scholar]
  4. Buck Louis GM, Barr DB, Kannan K, Chen Z, Kim S, Sundaram R. 4.  2016. Paternal exposures to environmental chemicals and time-to-pregnancy: overview of results from the LIFE study. Andrology 4:639–47 [Google Scholar]
  5. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney AM, Lynch CD. 5.  et al. 2013. Persistent environmental pollutants and couple fecundity: the LIFE study. Environ. Health Perspect. 121:231–36 [Google Scholar]
  6. Buck Louis GM, Yeung E, Sundaram R, Laughon SK, Zhang CL. 6.  2013. The exposome - exciting opportunities for discoveries in reproductive and perinatal epidemiology. Paediatr. Perinat. Epidemiol. 27:229–36 [Google Scholar]
  7. Burns CJ, Wright JM, Pierson JB, Bateson TF, Burstyn I. 7.  et al. 2014. Evaluating uncertainty to strengthen epidemiologic data for use in human health risk assessments. Environ. Health Perspect. 122:1160–65 [Google Scholar]
  8. Cohen Hubal EA, de Wet T, Du Toit L, Firestone MP, Ruchirawat M. 8.  et al. 2014. Identifying important life stages for monitoring and assessing risks from exposures to environmental contaminants: results of a World Health Organization review. Regul. Toxicol. Pharmacol. 69:113–24 [Google Scholar]
  9. Cui Y, Balshaw DM, Kwok RK, Thompson CL, Collman GW, Birnbaum LS. 9.  2016. The exposome: embracing the complexity for discovery in environmental health. Environ. Health Perspect. 124:A137–40 [Google Scholar]
  10. DeBord DG, Carreon T, Lentz TJ, Middendorf PJ, Hoover MD, Schulte PA. 10.  2016. Use of the “exposome” in the practice of epidemiology: a primer on -omic technologies. Am. J. Epidemiol. 184:302–14 [Google Scholar]
  11. Dennis KK, Auerbach SS, Balshaw DM, Cui Y, Fallin MD. 11.  et al. 2016. The importance of the biological impact of exposure to the concept of the exposome. Environ. Health Perspect. 124:1504–10 [Google Scholar]
  12. Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA. 12.  et al. 2016. Biomonitoring in the era of the exposome. Environ. Health Perspect. https://doi.org/10.1289/EHP474 [Google Scholar]
  13. Ellis JK, Athersuch TJ, Thomas LD, Teichert F, Perez-Trujillo M. 13.  et al. 2012. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med 10:61 [Google Scholar]
  14. Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JPA. 14.  et al. 2011. STrengthening the Reporting of OBservational studies in Epidemiology-Molecular Epidemiology (STROBE-ME): an extension of the STROBE statement. PLOS Med 8:e1001117 [Google Scholar]
  15. Gennings C, Stingone J, Pajak A, Teitelbaum S. 15.  2016. Statistical considerations for combining data across studies. Abstr. 2016 Conf. Int. Soc. Environ. Epidemiol. (ISEE) Abstr. 3146 Research Triangle Park, NC: Environ. Health Perspect http://dx.doi.org/10.1289/ehp.isee2016 [Google Scholar]
  16. Guida F, Campanella G, Sandanger T, Lund E, Vermeulen R. 16.  et al. 2014. Identification of short-term, long-term and lifelong DNA methylation markers of exposure to tobacco smoke: evidence from EPIC and NOWAC studies. Occup. Environ. Med. 71:Suppl. 1A29–30 [Google Scholar]
  17. Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P. 17.  et al. 2015. Developmental origins of health and disease: integrating environmental influences. Endocrinology 156:3416–21 [Google Scholar]
  18. Ioannidis JPA, Thomas G, Daly MJ. 18.  2009. Validating, augmenting and refining genome-wide association signals. Nat. Rev. Genet. 10:318–29 [Google Scholar]
  19. Juarez PD, Matthews-Juarez P, Hood DB, Im W, Levine RS. 19.  et al. 2014. The public health exposome: a population-based, exposure science approach to health disparities research. Int. J. Environ. Res. Public Health 11:12866–95 [Google Scholar]
  20. Jurek AM, Greenland S, Maldonado G. 20.  2008. How far from non-differential does exposure or disease misclassification have to be to bias measures of association away from the null?. Int. J. Epidemiol. 37:382–85 [Google Scholar]
  21. Kagawa J. 21.  2002. Health effects of diesel exhaust emissions—a mixture of air pollutants of worldwide concern. Toxicology 181–182:349–53 [Google Scholar]
  22. Karjalainen T. 22.  2014. Bridging the Science-Policy Gap: EU-Funded Research for Better Environmental Health Luxembourg: Eur. Comm. (EU) Bookshop http://bookshop.europa.eu/en/bridging-the-science-policy-gap-pbKI0114345/ [Google Scholar]
  23. Kawamoto T, Nitta H, Murata K, Toda E, Tsukamoto N. 23.  et al. 2014. Rationale and study design of the Japan Environment and Children's Study (JECS). BMC Public Health 14:25 [Google Scholar]
  24. Lewis RM, Demmelmair H, Gaillard R, Godfrey KM, Hauguel-de Mouzon S. 24.  et al. 2013. The placental exposome: placental determinants of fetal adiposity and postnatal body composition. Ann. Nutr. Metab. 63:208–15 [Google Scholar]
  25. Lioy PJ, Rappaport SM. 25.  2011. Exposure science and the exposome: an opportunity for coherence in the environmental health sciences. Environ. Health Perspect. 119:A466–67 [Google Scholar]
  26. Miller GW, Jones DP. 26.  2014. The nature of nurture: refining the definition of the exposome. Toxicol. Sci. 137:1–2 [Google Scholar]
  27. Mooney SJ, Westreich DJ, El-Sayed AM. 27.  2015. Commentary: epidemiology in the era of big data. Epidemiology 26:390–94 [Google Scholar]
  28. 28. NIH (Natl. Inst. Health). 2003. Final NIH statement on sharing research data NIH NOT-OD-03-032, Feb. 26. https://grants.nih.gov/grants/guide/notice-files/NOT-OD-03-032.html [Google Scholar]
  29. 29. NIH (Natl. Inst. Health). 2015. Intramural Research Program Human Data Sharing (HDS) policy NIH 3016, July 31. https://oma1.od.nih.gov/manualchapters/intramural/3016/ [Google Scholar]
  30. Patel CJ, Bhattacharya J, Butte AJ. 30.  2010. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLOS ONE 5:e10746 [Google Scholar]
  31. Patel CJ, Manrai AK, Corona E, Kohane IS. 31.  2016. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyw043 [Google Scholar]
  32. Patel CJ, Yang T, Hu Z, Wen Q, Sung J. 32.  et al. 2014. Investigation of maternal environmental exposures in association with self-reported preterm birth. Reprod. Toxicol. 45:1–7 [Google Scholar]
  33. Peters A, Hoek G, Katsouyanni K. 33.  2012. Understanding the link between environmental exposures and health: Does the exposome promise too much?. J. Epidemiol. Community Health 66:103–5 [Google Scholar]
  34. Pool R, Rusch E. 34.  Roundtable Environ. Health Sci 2016. Principles and Obstacles for Sharing Data from Environmental Health Research: Workshop Summary. Washington, DC: Natl. Acad. Press [Google Scholar]
  35. Proctor RN. 35.  2012. The history of the discovery of the cigarette–lung cancer link: evidentiary traditions, corporate denial, global toll. Tob. Control 21:87–91 [Google Scholar]
  36. Rappaport SM. 36.  2011. Implications of the exposome for exposure science. J. Expo. Sci. Environ. Epidemiol. 21:5–9 [Google Scholar]
  37. Rappaport SM, Smith MT. 37.  2010. Environment and disease risks. Science 330:460–61 [Google Scholar]
  38. Robinson O, Vrijheid M. 38.  2015. The pregnancy exposome. Curr. Environ. Health Rep. 2:204–13 [Google Scholar]
  39. Rogler G, Vavricka S. 39.  2015. Exposome in IBD: recent insights in environmental factors that influence the onset and course of IBD. Inflamm. Bowel Dis. 21:400–8 [Google Scholar]
  40. Siroux V, Agier L, Slama R. 40.  2016. The exposome concept: a challenge and a potential driver for environmental health research. Eur. Respir. Rev. 25:124–29 [Google Scholar]
  41. Smith MT, de la Rosa R, Daniels SI. 41.  2015. Using exposomics to assess cumulative risks and promote health. Environ. Mol. Mutagen. 56:715–23 [Google Scholar]
  42. Steer CD, Bolton P, Golding J. 42.  2015. Preconception and prenatal environmental factors associated with communication impairments in 9 year old children using an exposome-wide approach. PLOS ONE 10:e0118701 [Google Scholar]
  43. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD. 43.  et al. 2000. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–12 [Google Scholar]
  44. Turner MC, Nieuwenhuijsen M, Anderson K, Balshaw DM, Cui Y. 44.  et al. Assessing the exposome with external measures: commentary on the state of the science and research recommendations. Annu. Rev. Public Health 38:215–39 [Google Scholar]
  45. Vineis P. 45.  2015. Exposomics: Mathematics meets biology. Mutagenesis 30:719–22 [Google Scholar]
  46. Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z. 46.  et al. 2016. The exposome in practice: design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health http://dx.doi.org/10.1016/j.ijheh.2016.08.001 [Google Scholar]
  47. Vrijheid M. 47.  2014. The exposome: a new paradigm to study the impact of environment on health. Thorax 69:876–78 [Google Scholar]
  48. Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M. 48.  et al. 2014. The human early-life exposome (HELIX): project rationale and design. Environ. Health Perspect. 122:535–44 [Google Scholar]
  49. Wild CP. 49.  2005. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14:1847–50 [Google Scholar]
  50. Wild CP. 50.  2012. The exposome: from concept to utility. Int. J. Epidemiol. 41:24–32 [Google Scholar]
  51. Zidek JV, Wong H, Le ND, Burnett R. 51.  1996. Causality, measurement error and multicollinearity in epidemiology. Environmetrics 7:441–51 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error