1932

Abstract

The emerging concept of bioeconomy offers several opportunities to address societal challenges. The bioeconomy is mainly driven by advances in microbiology, which can be applied to various processes that use biological resources by shifting consumer preferences and by yielding new insights into resource constraints related to such issues as climate and land. Although expectations are high, less is known about the economic importance of the bioeconomy. This article reviews the methodological challenges of measuring the bioeconomy, the approaches used, and the outcomes reported. The results show that measuring the bioeconomy is still in its infancy and faces a number of methodological challenges. Bioeconomy cuts across sectors and therefore cannot be treated as a traditional sector in economics. Economics must catch up with bioeconomy realities. For a comprehensive economic assessment, information about bioeconomy resources, compounds, and product flows is required. We outline innovations in data storage and analytical methods that would realize bioeconomy opportunities and help guide policy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-100516-053701
2017-10-05
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/resource/9/1/annurev-resource-100516-053701.html?itemId=/content/journals/10.1146/annurev-resource-100516-053701&mimeType=html&fmt=ahah

Literature Cited

  1. Achilles W. 1993. Deutsche Agrargeschichte im Zeitalter der Reformen und der Industrialisierung Stuttgart, Ger.: Ulmer [Google Scholar]
  2. AIM (Agency Innov. Malays.). 2013. National biomass strategy 2020: new wealth creation for Malaysia's biomass industry. Version 2.0 Rep., Agency Innov. Malays. Selangor, Malays: https://biobs.jrc.ec.europa.eu/sites/default/files/generated/files/policy/Biomass%20Strategy%202013.pdf [Google Scholar]
  3. Albers O, Berklund AM, Graff GD. 2016. The rise and fall of innovation in biofuels. Nat. Biotechnol. 34:8814–21 [Google Scholar]
  4. Ambec S, Coheny MA, Elgiez S, Lanoie P. 2014. The Porter Hypothesis at 20: Can environmental regulation enhance innovation and competitiveness?. REEP 7:12–22 [Google Scholar]
  5. Arrow KJ, Cropper ML, Eads GC, Hahn RW, Lave LB. et al. 1996. Is there a role for benefit-cost analysis in environmental, health, and safety regulation?. Science 272:221–22 [Google Scholar]
  6. Arrow KJ, Dasgupta P, Goulder LH, Mumford KJ, Oleson K. 2012. Sustainability and the measurement of wealth. Environ. Dev. Econ. 17:3317–53 [Google Scholar]
  7. Arrow KJ, Fisher AC. 1974. Environmental preservation, uncertainty and irreversibility. Q. J. Econ. 88:2312–19 [Google Scholar]
  8. Backus G, Berkhout P, Eaton D, de Kleijn T, van Mil E. et al. 2009. EU policy on GMOs: a quick scan of the economic consequences The Hague: LEI Wageningen UR [Google Scholar]
  9. Barrows G, Sexton S, Zilberman D. 2014. Agricultural biotechnology: the promise and prospects of genetically modified crops. J. Econ. Perspect. 28:199–120 [Google Scholar]
  10. Beckmann V. 2000. Transaktionskosten und institutionelle Wahl in der Landwirtschaft: Zwischen Markt, Hierarchie und Kooperation Berlin: Edition Sigma [Google Scholar]
  11. Beckmann V, Soregaroli C, Wesseler J. 2010. Ex-ante regulation and ex-post liability under uncertainty and irreversibility: governing the coexistence of GM crops. Econ. Open-Access Open-Assess. E-J. 4:2010–19 [Google Scholar]
  12. Belton B, Hein A, Htoo K, Seng Kham L, Nischan U. et al. 2015. Aquaculture in transition: value chain transformation, fish and food security in Myanmar Work Pap. 230981 Dep. Agric. Food Resour. Econ., Mich. State. Univ. Lansing: [Google Scholar]
  13. Bioenergy Tech. Off. 2016. BETO establishes a consortium of national laboratories to streamline biomanufacturing. Energy.gov Oct. 5. http://www.energy.gov/eere/bioenergy/articles/beto-establishes-consortium-national-laboratories-streamline [Google Scholar]
  14. Birch K. 2016. Emergent imaginaries and fragmented policy frameworks in the Canadian bio-economy. Sustainability 8:101007 [Google Scholar]
  15. Carlson R. 2016. Estimating the biotech sector's contribution to the US economy. Nat. Biotechnol. 34:3247–55 [Google Scholar]
  16. Carrus M. 2017. Bio-based economy and climate change—important links, pitfalls and opportunities Rep., Nova-Inst. Hürth, Ger.: [Google Scholar]
  17. Chem. Herit. Found. 2015. Herbert W. Boyer and Stanley N. Cohen Chem. Herit. Found Blog Aug. 11. https://www.chemheritage.org/historical-profile/herbert-w-boyer-and-stanley-n-cohen [Google Scholar]
  18. Clomburg JM, Crumbley AM, Gonzalez R. 2017. Industrial manufacturing: the future of chemical production. Science 355:6320aag0804 [Google Scholar]
  19. Coase R. 1960. The problem of social cost. J. Law Econ. 3:1–44 [Google Scholar]
  20. Coase R. 2006. The conduct of economics: the example of Fisher Body and General Motors. J. Econ. Manag. Strat. 15:2255–78 [Google Scholar]
  21. Cok B, Tsiropoulos I, Roes AL, Patel MK. 2014. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels Bioprod. Bioref. 8:16–29 [Google Scholar]
  22. Cornwall W. 2017. The burning question. Science 355:632018–21 [Google Scholar]
  23. Crosby AW. 1986. Ecological Imperialism. The Biological Expansion of Europe, 900–1900 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  24. de Carvalho Macedo I, Nassar AM, Cowiec AL, Seabra JEA, Marellid L. et al. 2015. Greenhouse gas emissions from bioenergy. Bioenergy and Sustainability: Bridging the Gaps GM Souza, R Victoria, C Joly, L Verdade 582–616 Paris: SCOPE [Google Scholar]
  25. Diamond J. 2005. Collapse: How Societies Choose to Fail or Succeed New York: Viking [Google Scholar]
  26. Dixit AK, Pindyck RS. 1994. Investment Under Uncertainty Princeton, NJ: Princeton Univ. Press [Google Scholar]
  27. Dobbs R, Remes J, Manyika J, Roxburgh C, Smit S, Schaer F. 2012. Urban world: cities and the rise of the consuming class Rep., McKinsey Glob. Inst. New York: [Google Scholar]
  28. DST (Dep. Sci. Technol.) 2013. The Bio-Economy Strategy Pretoria, S. Afr.: DST http://www.innovus.co.za/media/Bioeconomy_Strategy.pdf [Google Scholar]
  29. Du X, Reardon T, Zilberman D. 2016. Supply chain design and adoption of indivisible technology. Amer. J. Agric. Econ. 98:51419–31 [Google Scholar]
  30. Efken J, Banse M, Rothe A, Dieter M, Dirksmeyer W. et al. 2012. Volkswirtschaftliche Bedeutung der biobasierten Wirtschaft in Deutschland Work. Pap., 07/2012 Johann Heinrich v. Thünen-Inst. Braunschweig, Ger.: [Google Scholar]
  31. Egelie KJ, Graff GD, Strand SP, Johansen B. 2016. The emerging patent landscape of CRISPR-Cas gene editing technology. Nat. Biotechnol. 34:101025–31 [Google Scholar]
  32. El-Chichakli B, von Braun J, Lang C, Barben D, Philp J. 2016. Policy: five cornerstones of a global bioeconomy. Nature 535:221–23 [Google Scholar]
  33. Eur. Comm. 2012. Innovating for Sustainable Growth. A Bioeconomy for Europe Luxembourg: Off. Eur. Union [Google Scholar]
  34. Eur. Counc. Environ. 1999. 2194th Council Meeting—Environment Luxembourg:24–25 June 1999. C/99/203/ [Google Scholar]
  35. FAO (Food Agric. Org.). 2013. Statistical Year Book 2013: World Food and Agriculture Rome: FAO [Google Scholar]
  36. FAO (Food Agric. Org.). 2016. How Sustainability Is Addressed in Official Bioeconomy Strategies at International, National and Regional Levels Rome: FAO [Google Scholar]
  37. Fed. Minist. Educ. Res. 2015. Bioeconomy in Germany. Opportunities for a Bio-Based and Sustainable Future Berlin/Bonn: Fed. Minist. Educ. Res https://www.bmbf.de/pub/Biooekonomie_in_Deutschland_Eng.pdf [Google Scholar]
  38. Fed. Minist. Educ. Res. 2011. National Research Strategy Bioeconomy 2030 Berlin/Bonn: Fed. Minist. Educ. Res https://www.bmbf.de/pub/National_Research_Strategy_BioEconomy_2030.pdf [Google Scholar]
  39. Fed. Minist. Envir. Nat. Conserv. Nucl. Saf. 2016. National Program for Sustainable Consumption Berlin: Fed. Minist. Envir. Nat. Conserv. Nucl. Saf http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Produkte_und_Umwelt/nat_programm_konsum_bf.pdf [Google Scholar]
  40. Fed. Minist. Food Agr. 2014. National Policy Strategy on Bioeconomy Berlin: Fed. Minist. Food Agr http://www.bmel.de/SharedDocs/Downloads/EN/Publications/NatPolicyStrategyBioeconomy.pdf?__blob=publicationFile [Google Scholar]
  41. Finn. Minist. Envir. 2014. The Finnish Bioeconomy Strategy Helsinki: Gov. Finl http://biotalous.fi/wp-content/uploads/2014/08/The_Finnish_Bioeconomy_Strategy_110620141.pdf [Google Scholar]
  42. Gabrielczyk T. 2013. Diese lebende Hauswand produziert Energie. Welt Apr. 5. https://www.welt.de/wissenschaft/article115860368/Diese-lebende-Hauswand-produziert-Energie.html [Google Scholar]
  43. Germ. Bioecon. Counc. 2015a. Global Visions for the Bioeconomy—An International Delphi-Study Berlin: Bioökonomierat [Google Scholar]
  44. Germ. Bioecon. Counc. 2015b. Bioeconomy Policy (Part II): Synopsis and Analyses Of National Strategies Around the World Berlin: Bioökonomierat [Google Scholar]
  45. Golden JS, Handfield RB, Daystar J, McConnell TE. 2015. An economic impact analysis of the U.S. biobased products industry: a report to the Congress of the United States of America. Ind. Biotech. 11:4201–9 [Google Scholar]
  46. Gov. Spain. 2016. The Spanish Bioeconomy Strategy: Horizon 2030 http://bioeconomia.agripa.org/download-doc/102159 [Google Scholar]
  47. Graff GD, Phillips D, Lei Z, Oh S, Nottenburg C, Pardey PG. 2013. Not quite a myriad of gene patents. Nat. Biotechnol. 31:5404–10 [Google Scholar]
  48. Greenpeace. 2008. How to Avoid Genetically Engineered Food: A Greenpeace Shopper's Guide Hamburg, Ger.: Greenpeace [Google Scholar]
  49. Hamilton K. 2000. Genuine saving as a sustainability indicator Environ. Dep. Pap. 77 World Bank Washington, DC: [Google Scholar]
  50. Hamilton K, Clemens M. 1998. Genuine Saving Rates in Developing Countries Washington, DC: World Bank [Google Scholar]
  51. Harari YN. 2014. Sapiens: A Brief History of Humankind New York: Harper Collins [Google Scholar]
  52. Heijman W. 2016. How big is the bio-business? Notes on measuring the size of the Dutch bio-economy. NJAS 77:5–8 [Google Scholar]
  53. Henry C. 1974. Investment decision under uncertainty: the irreversibility effect. Am. Econ. Rev. 64:1006–12 [Google Scholar]
  54. Herberg R. 2016. Künstliche Bäume sammeln CO2 ein. Wirt. Woche Aug. 9. http://www.wiwo.de/technologie/green/living/city-tree-kuenstliche-baeume-sammeln-co2-ein/13988458.html [Google Scholar]
  55. Int. Energy Agency. 2014. Africa Energy Outlook Paris: IEA [Google Scholar]
  56. James P. 2015. Urban Sustainability in Theory and Practice: Circles of Sustainability London: Routledge [Google Scholar]
  57. JLL. 2014. Life Sciences Cluster Report New York: Jones Lang LaSalle [Google Scholar]
  58. Johns CHW. 1903. The Oldest Code of Laws in the World, The Code of Laws Promulgated by Hammurabi, King of Babylon B.C. 2285–2242 Edinburgh, Scot.: T. & T. Clark [Google Scholar]
  59. Joss S. 2015. Sustainable Cities: Governing for Urban Innovation London: Palgrave Macmillan [Google Scholar]
  60. Jpn. Minist. Agric. For. Fish. 2012. Biomass Policies and Assistance Measures in Japan Tokyo: Jpn. Minist. Agric. For. Fish http://www.maff.go.jp/e/pdf/reference6-8.pdf [Google Scholar]
  61. Katz S, Voigt M. 1986. Bread and beer. Expedition 28:223–34 [Google Scholar]
  62. Keegan D, Kretschmer B, Elbersen B, Panoutsou C. 2013. Cascading use: a systematic approach to biomass beyond the energy sector. Biofuels Bioprod. Biorefin. 7:2193–206 [Google Scholar]
  63. Kolstad CD, Ulen TS, Johnson GV. 1990. Ex post liability for harm versus ex ante safety regulation: substitutes or compliments. Am. Econ. Rev. 80:4888–901 [Google Scholar]
  64. Krugman P. 1979. Increasing returns, monopolistic competition, and international trade. J. Int. Econ. 9:4469–79 [Google Scholar]
  65. Langeveld JWA, Meesters KPH, Breure MS. 2016. The biobased economy and the bioeconomy in the Netherlands Res. Rep. 1601 Biomass Res. Wageningen, Neth.: [Google Scholar]
  66. Leitzel L, Weisman E. 1999. Investing in policy reform. JITE 155:4696–709 [Google Scholar]
  67. Lu L, Reardon T, Zilberman D. 2016. Supply chain design and adoption of indivisible technology. Amer. J. Agric. Econ. 98:51419–31 [Google Scholar]
  68. McCormick K, Kautto N. 2013. The bioeconomy in Europe: an overview. Sustainability 5:62589–608 [Google Scholar]
  69. Merton RC. 1998. Applications of option-pricing theory: twenty-five years later. Am. Econ. Rev. 88:3323–49 [Google Scholar]
  70. Mezey EW, Conrad JM. 2010. Real options in resource economics. Annu. Rev. Resour. Econ. 2:33–52 [Google Scholar]
  71. MOSTI. (Malays. Minist. Sci. Technol. Innov.). 2015. Bioeconomy transformation programme. Enriching the nationa, securing the future Annu. Rep., MOSTI Putrajaya, Malays: http://www.bioeconomycorporation.my/wp-content/uploads/2011/11/publications/BTP_AR_2015.pdf [Google Scholar]
  72. Mukherji PN, Sengupta C. 2004. Indigeneity and Universality in Social Science. A South Asian Response New Delhi: Sage [Google Scholar]
  73. Nowicki P, Banse M, Bolck C, Bos H, Scott E. 2008. Biobased economy. State-of-the-art assessment Rep., Agric. Econ. Res. Inst. The Hague, Neth.: [Google Scholar]
  74. OECD (Organ. Econ. Coop. Dev.). 2009. The Bioeconomy to 2030. Designing a Policy Agenda Paris: OECD [Google Scholar]
  75. OECD (Organ. Econ. Coop. Dev.). 2010. OECD Economic Globalisation Indicators 2010 Paris: OECD [Google Scholar]
  76. OECD (Organ. Econ. Coop. Dev.). 2011a. Farm Management Practices to Foster Green Growth Paris: OECD [Google Scholar]
  77. OECD (Organ. Econ. Coop. Dev.). 2011b. Towards Green Growth Paris: OECD [Google Scholar]
  78. OECD (Organ. Econ. Coop. Dev.). 2016. Key biotechnology indicators Updated Oct. 2016. http://www.oecd.org/sti/biotech/keybiotechnologyindicators.htm [Google Scholar]
  79. Perrings C, Brock W. 2009. Irreversibility in economics. Annu. Rev. Resour. Econ. 1:219–38 [Google Scholar]
  80. Pindyck RS. 2000. Irreversibilities and the timing of environmental policy. Resour. Energy Econ. 22:3233–59 [Google Scholar]
  81. Porter ME. 2003. The economic performance of regions. Reg. Stud. 37:6/7549–78 [Google Scholar]
  82. Reardon T, Boughton D, Tschirley D, Haggblade S, Dolislager M. et al. 2015. Urbanization, diet change, and transformation of the downstream and midstream of the agrifood system: effects on the poor in Africa and Asia. Faith Econ 66:43–63 [Google Scholar]
  83. Reardon T, Timmer P. 2014. Five inter-linked transformations in the Asian agrifood economy: food security implications. Glob. Food Secur. 3:108–17 [Google Scholar]
  84. Ronzon T, Santini F, M'Barek R. 2015. The bioeconomy in the European Union in numbers. Facts and figures on biomass, turnover and employment Rep., Eur. Comm., Joint Res. Cent., Inst. Prospect. Tech. Stud. Sevilla, Spain: [Google Scholar]
  85. Rosegrant MW, Ringler C, Zhu T, Tokgoz S, Bhandary P. 2013. Water and food in the bioeconomy: challenges and opportunities for development. Agric. Econ. 44:s1139–50 [Google Scholar]
  86. Rothbard M. 1982. Law, property rights, and air pollution. Cato J 2:155–99 [Google Scholar]
  87. Sagar AD, Najam A. 1998. The human development index: a critical review. Ecol. Econ. 25:3249–64 [Google Scholar]
  88. SBA (Stat. Bundesamt). 2009. Produzierendes Gewerbe, Material- und Wareneingangserhebung im verarbeitenden Gewerbe sowie im Bergbau und in der Gewinnung von Steinen und Erden für das Erhebungsjahr 2006 Wiesbaden, Ger.: Stat. Bundesamt [Google Scholar]
  89. Schaart JG, van de Wiel C, Lotz LAP, Smulders MJM. 2016. Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:5438–49 [Google Scholar]
  90. Shleifer A. 2010. Efficient regulation. Regulation vs. Litigation: Perspectives from Economics and Law DP Kessler 27–44 Chicago: Univ. Chicago Press [Google Scholar]
  91. Smáradóttir SE, Magnúsdóttir L, Smárason , Þórðarson G, Johannessen B, Kemp Stefánsdóttir E. et al. 2014. Future opportunities for bioeconomy in the West Nordic countries Rep. 37-14 Skyr. Matís Reykjavik, Icel: http://orbit.dtu.dk/files/102826327/Publishers_version.pdf [Google Scholar]
  92. Smart RD, Blum M, Wesseler J. 2015. EU member states’ voting for authorizing genetically engineered crops: a regulatory gridlock. Ger. J. Econ. Rural Policy Group 64:4244–62 [Google Scholar]
  93. Smart RD, Blum M, Wesseler J. 2017. Trends in genetically engineered crops’ approval times in the United States and the European Union. J. Agric. Econ. 68:1182–98 [Google Scholar]
  94. Smit HTJ, Trigeorgis L. 2004. Strategic Investment: Real Options and Games Princeton, NJ: Princeton Univ. Press [Google Scholar]
  95. Smith H. 2016. Vincent Callebaut's hyperions is a sustainable ecosystem that resists climate change. Designboom Feb. 22. http://www.designboom.com/architecture/vincent-callebaut-hyperions-sustainable-ecosystem-02-22-2016/ [Google Scholar]
  96. Squicciarini, Swinnen JFM. 2016. The Economics of Chocolate Oxford, UK: Oxford Univ. Press [Google Scholar]
  97. Stevens AJ. 2004. The enactment of Bayh–Dole. J. Technol. Transfer 29:93–99 [Google Scholar]
  98. Stiglitz J, Sen A, Fitoussi J-P. 2009. The measurement of economic performance and social progress revisited Work. Pap. OFCE-Cent. Rech. Écon. Sci. Po Paris: [Google Scholar]
  99. Sugden R. 2003. Opportunity as a space for individuality: its value and the impossibility of measuring it. Ethics 113:783–809 [Google Scholar]
  100. Swinnen J, Deconinck K, Vandemoortele T, Vandeplas A. 2015. Quality Standards, Value Chains, and International Development: Economic and Political Theory Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  101. Swinnen J, Riera O. 2013. The global bio-economy. Agric. Econ. 44:s11–5 [Google Scholar]
  102. Swinnen JFM. 2011. The Economics of Beer Oxford, UK: Oxford Univ. Press [Google Scholar]
  103. Tassone VC, Wesseler J, Nesci FS. 2004. Diverging incentives for afforestation from carbon sequestration: an economic analysis of the EU afforestation programme in the south of Italy. Forest Policy Econ 6:6567–78 [Google Scholar]
  104. Tramper J, Zhu Y. 2011. Modern Biotechnology Wageningen, Neth.: Wageningen Acad. [Google Scholar]
  105. Trentmann N. 2016. Diese genialen Quadrat-Bäume sollen Smog wegfiltern. Welt Apr. 23. https://www.welt.de/wirtschaft/article154677312/Diese-genialen-Quadrat-Baeume-sollen-Smog-wegfiltern.html [Google Scholar]
  106. Trigeorgis L. 1996. Real Options Cambridge, MA: MIT Press [Google Scholar]
  107. UNFCC (United Nations Framew. Clim. Change). 2016. Soils for food security and climate Rep., UNFCC New York: http://newsroom.unfccc.int/lpaa/agriculture/join-the-41000-initiative-soils-for-food-security-and-climate/#downloads [Google Scholar]
  108. United Nations. 1992. Report of the United Nations Conference on Environment and Development United Nations Gen. Assem. Rio de Janeiro, Braz: http://www.un.org/documents/ga/conf151/aconf15126-1annex1.htm [Google Scholar]
  109. USDA (US Dep. Agric.) 2014. The Agricultural Act of 2014. https://www.congress.gov/bill/113th-congress/house-bill/2642 [Google Scholar]
  110. Van den Belt H. 2003. Debating the precautionary principle: “guilty until proven innocent” or “innocent until proven guilty”?. Plant Physiol 132:1122–26 [Google Scholar]
  111. Van den Brink R, Bromley D, Chavas J-P. 1995. The economics of Cain and Abel: agro‐pastoral property rights in the Sahel. J. Dev. Stud. 31:3373–99 [Google Scholar]
  112. Vandermeulen V, Prins W, Nolte S, Van Huylenbroeck G. 2011. How to measure the size of a bio-based economy: evidence from Flanders. Biomass Bioenerg 35:4368–75 [Google Scholar]
  113. Virgin I, Morris EJ. 2017. Creating Sustainable Bioeconomies: The Bioscience Revolution in Europe and Africa London: Routledge [Google Scholar]
  114. von Braun J. 2015. Bioeconomy: science and technology policy to harmonize biologization of economies with food security. The Fight Against Hunger and Malnutrition D Sahn 240–62 Oxford, UK: Oxford Univ. Press [Google Scholar]
  115. Wackernagel M, Rees WE. 1996. Our Ecological Footprint: Reducing Human Impact on the Earth Gabriola Isl., BC: New Society [Google Scholar]
  116. Wesseler J. 2009. The Santaniello theorem of irreversible benefits. AgBioForum 12:18–13 [Google Scholar]
  117. Wesseler J. 2014a. Biotechnologies and agrifood strategies: opportunities, threads and economic implications. Bio-based Appl. Econ. 3:3187–204 [Google Scholar]
  118. Wesseler J. 2014b. Financial, real, and quasi options: similarities and differences. Modeling, Optimization and Bioeconomy I A Pinto, D Zilberman 673–93 New York: Springer [Google Scholar]
  119. Wesseler J. 2015. Agriculture in the Bioeconomy: Economics and Policies Wageningen, Neth.: Wageningen Univ. [Google Scholar]
  120. Wesseler J, Scatasta S, Nillesen E. 2007. The maximum incremental social tolerable irreversible costs (MISTICs) and other benefits and costs of introducing transgenic maize in the EU-15. Pedobiologia 51:3261–69 [Google Scholar]
  121. Wesseler J, Smart R. 2014. Environmental impacts. Socio-Economic Considerations in Biotechnology Regulation K Ludlow, SJ Smyth, J Falck-Zepeda 81–95 New York: Springer [Google Scholar]
  122. Wesseler J, Smart R, Thomson J, Zilberman D. 2017. Foregone benefits of important food crop improvements in Sub-Saharan Africa. PLOS ONE. In press [Google Scholar]
  123. Wesseler J, Zilberman D. 2014. The economic power of the golden rice opposition. Environ. Dev. Econ. 19:6724–42 [Google Scholar]
  124. White House. 2012. National Bioeconomy Blueprint Washinton, DC: The White House https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/national_bioeconomy_blueprint_april_2012.pdf [Google Scholar]
  125. Winston ML. 2002. Travels in the Genetically Modified Zone Cambridge, MA: Harvard Univ. Press [Google Scholar]
  126. WTO (World Trade Org.). 2014. Modest trade growth anticipated for 2014 and 2015 following two year slump Press Release, Apr. 14 WTO, Geneva: https://www.wto.org/english/news_e/pres14_e/pr721_e.htm [Google Scholar]
  127. Zanuy D, Nussinov R, Alemán C. 2006. From peptide-based material science to protein fibrils: discipline convergence in nanobiology. Phys. Biol. 3:S80 [Google Scholar]
  128. Zilberman D. 2013. The economics of sustainable development. Amer. J. Agric. Econ. 96:2385–96 [Google Scholar]
  129. Zilberman D, Eunice K, Kirschner S, Kaplan S, Reeves J. 2013. Technology and the future bioeconomy. Agric. Econ. 44:s195–102 [Google Scholar]
/content/journals/10.1146/annurev-resource-100516-053701
Loading
/content/journals/10.1146/annurev-resource-100516-053701
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error