1932

Abstract

We survey the rapidly growing economic literature on environmental catastrophes and the various approaches developed to address the hovering threats. Various theoretical descriptions of catastrophic occurrences are classified with respect to the uncertain conditions that trigger the events, the postoccurrence dynamic regime, and the form of the inflicted damage. We show that variations in each of these characteristics strongly affect the ensuing optimal response to the threats. The basic setup is then extended in several dimensions, allowing the modeler to consider more realistic formulations of catastrophic scenarios. Recent efforts to incorporate catastrophic events within large-scale numerical schemes to study the global climate change problem are reviewed. The number of publications in this vein increases in tandem with the growing number of disasters reported globally and their scale of damage, reflecting the growing concern that this phenomenon portends environmental collapse.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-100920-020522
2021-10-05
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/resource/13/1/annurev-resource-100920-020522.html?itemId=/content/journals/10.1146/annurev-resource-100920-020522&mimeType=html&fmt=ahah

Literature Cited

  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM et al. 2003. Abrupt climate change. Science 299:2005–10
    [Google Scholar]
  2. Anthoff D, Tol RSJ. 2014. Climate policy under fat-tailed risk: an application of FUND. Ann. Oper. Res. 220:223–37
    [Google Scholar]
  3. Aronsson T, Backlund K, Löfgren K-G. 1998. Nuclear power, externalities and non-standard Pigouvian taxes: a dynamic analysis under uncertainty. Environ. Resour. Econ. 11:177–95
    [Google Scholar]
  4. Arrow KJ. 2009. A note on uncertainty and discounting in models of economic growth. J. Risk Uncertain. 38:87–94
    [Google Scholar]
  5. Arvaniti M, Krishnamurthy CK, Crépin A-S. 2019. Time-consistent resource management with regime shifts Work. Pap. Ser. 19/329 Cent. Econ. Res. ETH Zürich:
    [Google Scholar]
  6. Athanassoglou S, Xepapadeas A. 2012. Pollution control with uncertain stock dynamics: when, and how, to be precautious. J. Environ. Econ. Manag. 63:304–20
    [Google Scholar]
  7. Aurland-Bredesen KJ. 2020. The benefit-cost ratio as a decision criteria when managing catastrophes. Environ. Resour. Econ. 77:345–63
    [Google Scholar]
  8. Ayong Le Kama A, Pommeret A, Frieur F 2014. Optimal emission policy under the risk of irreversible pollution. J. Public Econ. Theory 16:959–80
    [Google Scholar]
  9. Barbier EB. 2008. Ecosystems as natural assets. Found. Trends Microecon. 4:611–81
    [Google Scholar]
  10. Barrett S. 2003. Environment and Statecraft: The Strategy of Environmental Treaty-Making Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  11. Barrett S. 2008. The incredible economics of geoengineering. Environ. Resour. Econ. 39:45–54
    [Google Scholar]
  12. Barrett S. 2013. Climate treaties and approaching catastrophes. J. Environ. Econ. Manag. 66:235–50
    [Google Scholar]
  13. Barrett S, Dannenberg A 2012. Climate negotiations under scientific uncertainty. PNAS 109:17372–76
    [Google Scholar]
  14. Barro RJ. 2015. Environmental protection, rare disasters and discount rates. Economica 82:3251–23
    [Google Scholar]
  15. Berry K, Finnoff D. 2016. Choosing between adaptation and prevention with an increasing probability of a pandemic. J. Econ. Behav. Organ. 132:177–92
    [Google Scholar]
  16. Besley T, Dixit A 2019. Environmental catastrophes and mitigation policies in a multiregion world. PNAS 116:5270–76
    [Google Scholar]
  17. Bosello F, Carraro C, De Cian E. 2013. Adaptation can help mitigation: an integrated approach to post-2012 climate policy. Environ. Dev. Econ. 18:270–90
    [Google Scholar]
  18. Bréchet T, Hritonenko N, Yatsenko Y. 2013. Adaptation and mitigation in long-term climate policy. Environ. Resour. Econ. 55:217–43
    [Google Scholar]
  19. Bretschger L, Vinogradova A. 2019. Best policy response to environmental shocks: applying a stochastic framework. J. Environ. Econ. Manag. 97:23–41
    [Google Scholar]
  20. Brozović N, Schlenker W. 2011. Optimal management of an ecosystem with an unknown threshold. Ecol. Econ. 70:627–40
    [Google Scholar]
  21. Cai Y, Lontzek TS. 2019. The social cost of carbon with economic and climate risks. J. Polit. Econ. 127:2684–734
    [Google Scholar]
  22. Chen Y. 2020. A revision game of experimentation on a common threshold. J. Econ. Theory 186:104997
    [Google Scholar]
  23. Clarke HR, Reed WJ. 1994. Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse. J. Econ. Dyn. Control 18:991–1010
    [Google Scholar]
  24. Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M. 2009. International climate policy architectures: overview of the EMF 22 international scenarios. Energy Econ 31:S64–81
    [Google Scholar]
  25. Crépin A-S. 2007. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36:191–213
    [Google Scholar]
  26. Crépin A-S, Biggs R, Polasky S, Troell M, de Zeeuw A. 2012. Regime shifts and management. Ecol. Econ. 84:15–22
    [Google Scholar]
  27. Crépin A-S, Nævdal E. 2020. Inertia risk: improving economic models of catastrophes. Scand. J. Econ. 122:41259–85
    [Google Scholar]
  28. Cropper ML. 1976. Regulating activities with catastrophic environmental effects. J. Environ. Econ. Manag. 3:1–15
    [Google Scholar]
  29. de Zeeuw A. 2014. Regime shifts in resource management. Annu. Rev. Resour. Econ. 6:85–104
    [Google Scholar]
  30. de Zeeuw A, Zemel A. 2012. Regime shifts and uncertainty in pollution control. J. Econ. Dyn. Control 36:939–50
    [Google Scholar]
  31. Diekert FK. 2017. Threatening thresholds? The effect of disastrous regime shifts on the non-cooperative use of environmental goods and services. J. Public Econ. 147:30–49
    [Google Scholar]
  32. Ehrlich I, Becker GS. 1972. Market insurance, self-insurance, and self-protection. J. Polit. Econ. 80:623–48
    [Google Scholar]
  33. Fesselmeyer E, Santugini M. 2013. Strategic exploitation of a common resource under environmental risk. J. Econ. Dyn. Control 37:125–36
    [Google Scholar]
  34. Gerlagh R, Liski M. 2018. Carbon prices for the next hundred years. Econ. J. 128:728–57
    [Google Scholar]
  35. Gilboa I, Schmeidler D. 1989. Maxmin expected utility with non-unique prior. J. Math. Econ. 18:141–53
    [Google Scholar]
  36. Gjerde J, Grepperud S, Kverndokk S. 1999. Optimal climate policy under the possibility of a catastrophe. Resour. Energy Econ. 21:289–317
    [Google Scholar]
  37. Gollier C, Treich N. 2003. Decision-making under scientific uncertainty: the economics of the precautionary principle. J. Risk Uncertain. 27:77–103
    [Google Scholar]
  38. Golosov M, Hassler J, Krusell P, Tsyvinski A. 2014. Optimal taxes on fossil fuel in general equilibrium. Econometrica 82:41–88
    [Google Scholar]
  39. Greenstone M, Kopits E, Wolverton A. 2013. Developing a social cost of carbon for US regulatory analysis: a methodology and interpretation. Rev. Environ. Econ. Policy 7:23–46
    [Google Scholar]
  40. Groeneveld RA, Springborn M, Costello C. 2014. Repeated experimentation to learn about a flow-pollutant threshold. Environ. Resour. Econ. 58:627–47
    [Google Scholar]
  41. Hassler J, Krusell P, Olovsson C. 2018. The consequences of uncertainty: climate sensitivity and economic sensitivity to the climate. Annu. Rev. Econ. 10:189–205
    [Google Scholar]
  42. Heal G. 1984. Interactions between economy and climate: a framework for policy design under uncertainty. Advances in Applied Microeconomics, Vol. 3 VK Smith, AD White 151–68 Greenwich, CT/London: JAI Press
    [Google Scholar]
  43. Hillman AL, Long NV. 1983. Pricing and depletion of an exhaustible resource when there is anticipation of trade disruption. Q. J. Econ. 98:215–33
    [Google Scholar]
  44. Hope C. 2008. Optimal carbon emissions and the social cost of carbon over time under uncertainty. Integr. Assess. J. 8:107–122
    [Google Scholar]
  45. Hope C. 2011. The PAGE09 integrated assessment model: a technical description Tech. Rep. 4/2011 Judge Bus. Sch., Univ Cambridge: https://www.jbs.cam.ac.uk/wp-content/uploads/2020/08/wp1104.pdf
    [Google Scholar]
  46. Ikefuji M, Horii R. 2012. Natural disasters in a two-sector model of endogenous growth. J. Public Econ. 96:784–96
    [Google Scholar]
  47. Kane S, Shogren JF. 2000. Linking adaptation and mitigation in climate change policy. Clim. Change 45:75–102
    [Google Scholar]
  48. Karp L, Tsur Y. 2011. Time perspective and climate change policy. J. Environ. Econ. Manag. 62:1–14
    [Google Scholar]
  49. Kemp MC 1976. How to eat a cake of unknown size. Three Topics in the Theory of International Trade MC Kemp 297–308 Amsterdam: North Holland
    [Google Scholar]
  50. Kemp MC. 1977. Further generalizations of the cake-eating problem under uncertainty. Theory Decis 8:363–67
    [Google Scholar]
  51. Konrad KA, Olsen TE, Schöb R. 1994. Resource extraction and the threat of possible expropriation: the role of Swiss bank accounts. J. Environ. Econ. Manag. 26:149–62
    [Google Scholar]
  52. Kopits E, Marten A, Wolverton A 2014. Incorporating catastrophic climate change into policy analysis. Clim. Policy 14:637–64
    [Google Scholar]
  53. Laurent-Lucchetti J, Santugini M. 2012. Ownership risk and the use of common-pool natural resources. J. Environ. Econ. Manag. 63:242–59
    [Google Scholar]
  54. Leizarowitz A, Tsur Y. 2012. Resource management with stochastic recharge and environmental threats. J. Econ. Dyn. Control 36:736–53
    [Google Scholar]
  55. Lemoine D, Traeger C. 2014. Watch your step: optimal policy in a tipping climate. Am. Econ. J. Econ. Policy 6:137–66
    [Google Scholar]
  56. Lemoine D, Traeger CP. 2016a. Ambiguous tipping points. J. Econ. Behav. Organ. 132:5–18
    [Google Scholar]
  57. Lemoine D, Traeger CP. 2016b. Economics of tipping the climate dominoes. Nat. Clim. Change 6:514–19
    [Google Scholar]
  58. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W et al. 2008. Tipping elements in the earth's climate system. PNAS 105:1786–93
    [Google Scholar]
  59. Levhari D, Mirman LJ. 1980. The great fish war: an example using a dynamic Cournot-Nash solution. Bell J. Econ. 11:322–34
    [Google Scholar]
  60. Liski M, Salanié F. 2020. Catastrophes, delays, and learning Work. Pap. 20-1148, TSE. https://www.tse-fr.eu/fr/people/francois-salanie?tab=working-papers
    [Google Scholar]
  61. Long NV. 1975. Resource extraction under the uncertainty about possible nationalization. J. Econ. Theory 10:42–53
    [Google Scholar]
  62. Long NV. 2011. Dynamic games in the economics of natural resources: a survey. Dyn. Games Appl. 1:115–48
    [Google Scholar]
  63. Long NV. 2012. Applications of dynamic games to global and transboundary environmental issues: a review of the literature. Strateg. Behav. Environ. 2:1–59
    [Google Scholar]
  64. Long NV 2021. Managing, inducing and preventing regime shifts: a review of the literature. Dynamic Economic Problems with Regime Switches (Dynamic Modeling and Econometrics in Economics and Finance, Vol. 25 JL Haunschmied, RM Kovacevic, W Semmler, VM Veliov 1–36 Cham, Switz: Springer
    [Google Scholar]
  65. Long NV, Sinn H-W. 1985. Surprise price shifts, tax changes and the supply behaviour of resource extracting firms. Aust. Econ. Pap. 24:278–89
    [Google Scholar]
  66. Lontzek TS, Cai Y, Judd KL, Lenton TM. 2015. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nat. Clim. Change 5:441–44
    [Google Scholar]
  67. Mäler K-G, Xepapadeas A, de Zeeuw A. 2003. The economics of shallow lakes. Environ. Resour. Econ. 26:603–24
    [Google Scholar]
  68. Martin IWR, Pindyck RS 2015. Averting catastrophes: the strange economics of Scylla and Charybdis. Am. Econ. Rev. 105:2947–85
    [Google Scholar]
  69. Martin IWR, Pindyck RS 2021. Welfare costs of catastrophes: lost consumption and lost lives. Econ. J. 131:634946–69
    [Google Scholar]
  70. Mastrandrea MD, Schneider SH. 2001. Integrated assessment of abrupt climatic changes. Clim. Policy 1:433–49
    [Google Scholar]
  71. Metcalf GE, Stock JH. 2017. Integrated assessment models and the social cost of carbon: a review and assessment of US experience. Rev. Environ. Econ. Policy 11:80–99
    [Google Scholar]
  72. Miller S, Nkuiya B. 2016. Coalition formation in fisheries with potential regime shift. J. Environ. Econ. Manag. 79:189–207
    [Google Scholar]
  73. Millner A. 2013. On welfare frameworks and catastrophic climate risks. J. Environ. Econ. Manag. 65:310–25
    [Google Scholar]
  74. Mitra T, Roy S 2006. Optimal exploitation of renewable resources under uncertainty and the extinction of species. Econ. Theory 28:1–23
    [Google Scholar]
  75. Müller-Fürstenberger G, Schumacher I. 2015. Insurance and climate-driven extreme events. J. Econ. Dyn. Control 54:59–73
    [Google Scholar]
  76. Nævdal E. 2006. Dynamic optimization in the presence of threshold effects when the location of the threshold is uncertain—with an application to a possible disintegration of the Western Antarctic Ice Sheet. J. Econ. Dyn. Control 30:1131–58
    [Google Scholar]
  77. Nkuiya B. 2015. Transboundary pollution game with potential shift in damages. J. Environ. Econ. Manag. 72:1–14
    [Google Scholar]
  78. Nordhaus WD. 1992. An optimal transition path for controlling greenhouse gases. Science 258:1315–19
    [Google Scholar]
  79. Nordhaus WD. 1994. Managing the Global Commons: The Economics of Climate Change Cambridge, MA: MIT Press
    [Google Scholar]
  80. Nordhaus WD. 2011. The economics of tail events with an application to climate change. Rev. Environ. Econ. Policy 5:240–57
    [Google Scholar]
  81. Nordhaus WD. 2014. The perils of the learning model for modeling endogenous technological change. Energy J 35:635–46
    [Google Scholar]
  82. Nordhaus WD. 2015. Climate clubs: overcoming free-riding in international climate policy. Am. Econ. Rev. 105:1339–70
    [Google Scholar]
  83. Nordhaus WD. 2017. Revisiting the social cost of carbon. PNAS 114:1518–23
    [Google Scholar]
  84. Perrings C, Walker BH. 1997. Biodiversity, resilience and the control of ecological economic systems: the case of fire-driven rangelands. Ecol. Econ. 22:73–83
    [Google Scholar]
  85. Pindyck RS. 2011. Fat tails, thin tails, and climate change policy. Rev. Environ. Econ. Policy 5:258–74
    [Google Scholar]
  86. Pindyck RS, Wang N. 2013. The economic and policy consequences of catastrophes. Am. Econ. J. Econ. Policy 5:306–39
    [Google Scholar]
  87. Polasky S, de Zeeuw A, Wagener F. 2011. Optimal management with potential regime shifts. J. Environ. Econ. Manag. 62:229–40
    [Google Scholar]
  88. Raveh O, Tsur Y. 2020a. Reelection, growth and public debt. Eur. J. Polit. Econ. 63:101889
    [Google Scholar]
  89. Raveh O, Tsur Y 2020b. Resource windfalls and public debt: a political economy perspective. Eur. Econ. Rev. 123:103371
    [Google Scholar]
  90. Reed WJ. 1984. The effect of the risk of fire on the optimal rotation of a forest. J. Environ. Econ. Manag. 11:180–90
    [Google Scholar]
  91. Reed WJ. 1987. Protecting a forest against fire: optimal protection patterns and harvest policies. Nat. Resour. Model. 2:23–54
    [Google Scholar]
  92. Reed WJ, Heras HE. 1992. The conservation and exploitation of vulnerable resources. Bull. Math. Biol. 54:185–207
    [Google Scholar]
  93. Ren B, Polasky S. 2014. The optimal management of renewable resources under the risk of potential regime shift. J. Econ. Dyn. Control 40:195–212
    [Google Scholar]
  94. Saphores JD. 2003. Harvesting a renewable resource under uncertainty. J. Econ. Dyn. Control 28:509–29
    [Google Scholar]
  95. Schumacher I. 2019. Climate policy must favour mitigation over adaptation. Environ. Resour. Econ. 74:1519–31
    [Google Scholar]
  96. Sennewald K, Wälde K. 2006. Itô’s lemma and the Bellman equation for Poisson processes: an applied view. J. Econ. 89:1–36
    [Google Scholar]
  97. Shalizi Z, Lecocq F. 2010. To mitigate or to adapt: Is that the question? Observations on an appropriate response to the climate change challenge to development strategies. World Bank Res. Obs. 25:295–321
    [Google Scholar]
  98. Sims C, Finnoff D. 2016. Opposing irreversibilities and tipping point uncertainty. J. Assoc. Environ. Resour. Econ. 3:985–1022
    [Google Scholar]
  99. Sinn H-W. 2012. The Green Paradox: A Supply-Side Approach to Global Warming Cambridge, MA: MIT Press
    [Google Scholar]
  100. Stern N. 2007. The Economics of Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  101. Stern N. 2008. The economics of climate change. Am. Econ. Rev. 98:1–37
    [Google Scholar]
  102. Stern N. 2016. Current climate models are grossly misleading. Nature 530:407–9
    [Google Scholar]
  103. Tol RSJ. 2002a. Estimates of the damage costs of climate change. I. Benchmark estimates. Environ. Resour. Econ. 21:47–73
    [Google Scholar]
  104. Tol RSJ. 2002b. Estimates of the damage costs of climate change. II. Dynamic estimates. Environ. Resour. Econ. 21:135–60
    [Google Scholar]
  105. Tol RSJ. 2005. Adaptation and mitigation: tradeoffs in substance and methods. Environ. Sci. Policy 8:572–78
    [Google Scholar]
  106. Tol RSJ. 2018. The economic impacts of climate change. Rev. Environ. Econ. Policy 12:4–25
    [Google Scholar]
  107. Tsur Y, Withagen C. 2013. Preparing for catastrophic climate change. J. Econ. 110:225–39
    [Google Scholar]
  108. Tsur Y, Zemel A. 1994. Endangered species and natural resource exploitation: extinction versus coexistence. Nat. Resour. Model. 8:389–413
    [Google Scholar]
  109. Tsur Y, Zemel A. 1995. Uncertainty and irreversibility in groundwater resource management. J. Environ. Econ. Manag. 29:149–61
    [Google Scholar]
  110. Tsur Y, Zemel A. 1996. Accounting for global warming risks: resource management under event uncertainty. J. Econ. Dyn. Control 20:1289–305
    [Google Scholar]
  111. Tsur Y, Zemel A. 1998. Pollution control in an uncertain environment. J. Econ. Dyn. Control 22:967–75
    [Google Scholar]
  112. Tsur Y, Zemel A. 2001. The infinite horizon dynamic optimization problem revisited: a simple method to determine equilibrium states. Eur. J. Oper. Res. 131:482–90
    [Google Scholar]
  113. Tsur Y, Zemel A. 2004. Endangered aquifers: groundwater management under threats of catastrophic events. Water Resourc. Res. 40:W06S20
    [Google Scholar]
  114. Tsur Y, Zemel A. 2007. Bio-economic resource management under threats of environmental catastrophes. Ecol. Res. 22:431–38
    [Google Scholar]
  115. Tsur Y, Zemel A. 2008. Regulating environmental threats. Environ. Resour. Econ. 39:297–310
    [Google Scholar]
  116. Tsur Y, Zemel A. 2009. Endogenous discounting and climate policy. Environ. Resour. Econ. 44:507–20
    [Google Scholar]
  117. Tsur Y, Zemel A. 2014. Steady-state properties in a class of dynamic models. J. Econ. Dyn. Control 39:165–77
    [Google Scholar]
  118. Tsur Y, Zemel A. 2016a. The management of fragile resources: a long term perspective. Environ. Resour. Econ. 65:639–55
    [Google Scholar]
  119. Tsur Y, Zemel A. 2016b. Policy tradeoffs under risk of abrupt climate change. J. Econ. Behav. Organ. 132:Part B46–55
    [Google Scholar]
  120. Tsur Y, Zemel A. 2017a. Coping with multiple catastrophic threats. Environ. Resour. Econ. 68:175–96
    [Google Scholar]
  121. Tsur Y, Zemel A. 2017b. Steady state properties of multi-state economic models. Can. J. Econ. 50:506–21
    [Google Scholar]
  122. van der Ploeg F. 2018. Political economy of dynamic resource wars. J. Environ. Econ. Manag. 92:765–82
    [Google Scholar]
  123. van der Ploeg F, de Zeeuw A. 2016. Non-cooperative and cooperative responses to climate catastrophes in the global economy: a North-South perspective. Environ. Resour. Econ. 65:519–40
    [Google Scholar]
  124. van der Ploeg F, de Zeeuw A. 2018. Climate tipping and economic growth: precautionary capital and the price of carbon. J. Eur. Econ. Assoc. 16:1577–617
    [Google Scholar]
  125. van der Ploeg F, Withagen C. 2015. Global warming and the Green Paradox: a review of adverse effects of climate policies. Rev. Environ. Econ. Policy 9:285–303
    [Google Scholar]
  126. Vardas G, Xepapadeas A. 2010. Model uncertainty, ambiguity and the precautionary principle: implications for biodiversity management. Environ. Resour. Econ. 45:379–404
    [Google Scholar]
  127. Weitzman ML. 2009. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91:1–19
    [Google Scholar]
  128. Weitzman ML. 2011. Fat-tailed uncertainty in the economics of catastrophic climate change. Rev. Environ. Econ. Policy 5:275–92
    [Google Scholar]
  129. Weitzman ML. 2014. Fat tails and the social cost of carbon. Am. Econ. Rev. 104:544–46
    [Google Scholar]
  130. Wirl F. 2008. Tragedy of the commons in a stochastic game of a stock externality. J. Public Econ. Theory 10:99–124
    [Google Scholar]
  131. Yin R, Newman D. 1996. The effect of catastrophic risk on forest investment decisions. J. Environ. Econ. Manag. 31:186–97
    [Google Scholar]
  132. Yohe G. 1996. Exercises in hedging against extreme consequences of global change and the expected value of information. Glob. Environ. Change 6:87–101
    [Google Scholar]
  133. Yumashev D, Hope C, Schaefer K, Riemann-Campe K, Iglesias-Suarez F et al. 2019. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10:1900
    [Google Scholar]
  134. Zemel A. 2012. Precaution under mixed uncertainty: implications for environmental management. Resour. Energy Econ. 34:188–97
    [Google Scholar]
  135. Zemel A. 2015. Adaptation, mitigation and risk: an analytic approach. J. Econ. Dyn. Control 51:133–47
    [Google Scholar]
/content/journals/10.1146/annurev-resource-100920-020522
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error