1932

Abstract

Influenza virus exploits cellular factors to complete each step of viral replication. Yet, multiple host proteins actively block replication. Consequently, infection success depends on the relative speed and efficacy at which both the virus and host use their respective effectors. Post-translational modifications (PTMs) afford both the virus and the host means to readily adapt protein function without the need for new protein production. Here we use influenza virus to address concepts common to all viruses, reviewing how PTMs facilitate and thwart each step of the replication cycle. We also discuss advancements in proteomic methods that better characterize PTMs. Although some effectors and PTMs have clear pro- or antiviral functions, PTMs generally play regulatory roles to tune protein functions, levels, and localization. Synthesis of our current understanding reveals complex regulatory schemes where the effects of PTMs are time and context dependent as the virus and host battle to control infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-010320-070410
2020-09-29
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-010320-070410.html?itemId=/content/journals/10.1146/annurev-virology-010320-070410&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Peacock TP, Sheppard CM, Staller E, Barclay WS 2019. Host determinants of influenza RNA synthesis. Annu. Rev. Virol. 6:215–33
    [Google Scholar]
  2. 2. 
    Dou D, Revol R, Östbye H, Wang H, Daniels R 2018. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol. 9:1581
    [Google Scholar]
  3. 3. 
    Shaw ML, Palese P. 2013. Orthomyxoviruses. In Fields Virology DM Knipe, PM Howley 1151–85 Philadelphia, PA: Lippincott Williams & Wilkins, 6th ed..
    [Google Scholar]
  4. 4. 
    Long JS, Mistry B, Haslam SM, Barclay WS 2019. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17:267–81
    [Google Scholar]
  5. 5. 
    Chang J, Kunkel SL, Chang CH 2009. Negative regulation of MyD88-dependent signaling by IL-10 in dendritic cells. PNAS 106:4318327–32
    [Google Scholar]
  6. 6. 
    de Vries RP, de Vries E, Bosch BJ, de Groot RJ, Rottier PJM, de Haan CAM 2010. The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology 403:117–25
    [Google Scholar]
  7. 7. 
    Skehel JJ, Stevens DJ, Daniels RS, Douglas AR, Knossow M et al. 1984. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. PNAS 81:61779–83
    [Google Scholar]
  8. 8. 
    Kosik I, Ince WL, Gentles LE, Oler AJ, Kosikova M et al. 2018. Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLOS Pathog 14:1e1006796
    [Google Scholar]
  9. 9. 
    Yángüez E, Hunziker A, Dobay MP, Yildiz S, Schading S et al. 2018. Phosphoproteomic-based kinase profiling early in influenza virus infection identifies GRK2 as antiviral drug target. Nat. Commun. 9:13679
    [Google Scholar]
  10. 10. 
    Eierhoff T, Hrincius ER, Rescher U, Ludwig S, Ehrhardt C 2010. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLOS Pathog 6:9e1001099
    [Google Scholar]
  11. 11. 
    Kunzelmann K, Beesley AH, King NJ, Karupiah G, Young JA, Cook DI 2000. Influenza virus inhibits amiloride-sensitive Na+ channels in respiratory epithelia. PNAS 97:1810282–87
    [Google Scholar]
  12. 12. 
    Pleschka S, Wolff T, Ehrhardt C, Hobom G, Planz O et al. 2001. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat. Cell Biol. 3:3301–5
    [Google Scholar]
  13. 13. 
    Ehrhardt C, Marjuki H, Wolff T, Nürnberg B, Planz O et al. 2006. Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cell. Microbiol. 8:81336–48
    [Google Scholar]
  14. 14. 
    Pohl MO, von Recum-Knepper J, Rodriguez-Frandsen A, Lanz C, Yángüez E et al. 2017. Identification of Polo-like kinases as potential novel drug targets for influenza A virus. Sci. Rep. 7:18629
    [Google Scholar]
  15. 15. 
    Elbahesh H, Cline T, Baranovich T, Govorkova EA, Schultz-Cherry S, Russell CJ 2014. Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses. J. Virol. 88:126714–28
    [Google Scholar]
  16. 16. 
    Marjuki H, Gornitzky A, Marathe BM, Ilyushina NA, Aldridge JR et al. 2011. Influenza A virus-induced early activation of ERK and PI3K mediates V-ATPase-dependent intracellular pH change required for fusion. Cell. Microbiol. 13:4587–601
    [Google Scholar]
  17. 17. 
    Sieczkarski SB, Brown HA, Whittaker GR 2003. Role of protein kinase C II in influenza virus entry via late endosomes. J. Virol. 77:1460–69
    [Google Scholar]
  18. 18. 
    Planz O. 2013. Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Res 98:3457–68
    [Google Scholar]
  19. 19. 
    Su W-C, Chen Y-C, Tseng C-H, Hsu PW-C, Tung K-F et al. 2013. Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during virus entry. PNAS 110:4317516–21
    [Google Scholar]
  20. 20. 
    Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P 2008. Cellular proteins in influenza virus particles. PLOS Pathog 4:6e1000085
    [Google Scholar]
  21. 21. 
    Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P et al. 2014. Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346:6208473–77
    [Google Scholar]
  22. 22. 
    Chesarino NM, McMichael TM, Yount JS 2014. Regulation of the trafficking and antiviral activity of IFITM3 by post-translational modifications. Future Microbiol 9:101151–63
    [Google Scholar]
  23. 23. 
    Chesarino NM, McMichael TM, Yount JS 2015. E3 ubiquitin ligase NEDD4 promotes influenza virus infection by decreasing levels of the antiviral protein IFITM3. PLOS Pathog 11:8e1005095
    [Google Scholar]
  24. 24. 
    Yount JS, Moltedo B, Yang Y-Y, Charron G, Moran TM et al. 2010. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 6:8610–14
    [Google Scholar]
  25. 25. 
    Herz C, Stavnezer E, Krug R, Gurney T 1981. Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell 26:3 Part 1391–400
    [Google Scholar]
  26. 26. 
    Fodor E, te Velthuis AJW 2019. Structure and function of the influenza virus transcription and replication machinery. Cold Spring Harb. Perspect. Med. In press. https://doi.org/10.1101/cshperspect.a038398
    [Crossref] [Google Scholar]
  27. 27. 
    Plotch SJ, Bouloy M, Ulmanen I, Krug RM 1981. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:3847–58
    [Google Scholar]
  28. 28. 
    Engelhardt OG, Smith M, Fodor E 2005. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J. Virol. 79:95812–18
    [Google Scholar]
  29. 29. 
    Lukarska M, Fournier G, Pflug A, Resa-Infante P, Reich S et al. 2017. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541:7635117–21
    [Google Scholar]
  30. 30. 
    Serna Martin I, Hengrung N, Renner M, Sharps J, Martínez-Alonso M et al. 2018. A mechanism for the activation of the influenza virus transcriptase. Mol. Cell 70:1101–10
    [Google Scholar]
  31. 31. 
    Rodriguez A, Pérez-González A, Nieto A 2007. Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II. J. Virol. 81:105315–24
    [Google Scholar]
  32. 32. 
    Li J, Yu M, Zheng W, Liu W 2015. Nucleocytoplasmic shuttling of influenza A virus proteins. Viruses 7:52668–82
    [Google Scholar]
  33. 33. 
    Zheng W, Li J, Wang S, Cao S, Jiang J et al. 2015. Phosphorylation controls the nuclear-cytoplasmic shuttling of influenza A virus nucleoprotein. J. Virol. 89:115822–34
    [Google Scholar]
  34. 34. 
    Neumann G, Castrucci MR, Kawaoka Y 1997. Nuclear import and export of influenza virus nucleoprotein. J. Virol. 71:129690–700
    [Google Scholar]
  35. 35. 
    Han Q, Chang C, Li L, Klenk C, Cheng J et al. 2014. Sumoylation of influenza A virus nucleoprotein is essential for intracellular trafficking and virus growth. J. Virol. 88:169379–90
    [Google Scholar]
  36. 36. 
    Pal S, Santos A, Rosas JM, Ortiz-Guzman J, Rosas-Acosta G 2011. Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Res 158:1–212–27
    [Google Scholar]
  37. 37. 
    Domingues P, Golebiowski F, Tatham MH, Lopes AM, Taggart A et al. 2015. Global reprogramming of host SUMOylation during influenza virus infection. Cell Rep 13:71467–80
    [Google Scholar]
  38. 38. 
    Vreede FT, Jung TE, Brownlee GG 2004. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J. Virol. 78:179568–72
    [Google Scholar]
  39. 39. 
    Jorba N, Coloma R, Ortin J 2009. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLOS Pathog 5:5e1000462
    [Google Scholar]
  40. 40. 
    York A, Hengrung N, Vreede FT, Huiskonen JT, Fodor E 2013. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. PNAS 110:45E4238–4238
    [Google Scholar]
  41. 41. 
    Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I et al. 2019. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 573:7773287–90
    [Google Scholar]
  42. 42. 
    Ye Q, Krug RM, Tao YJ 2006. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444:71221078–82
    [Google Scholar]
  43. 43. 
    Donchet A, Oliva J, Labaronne A, Tengo L, Miloudi M et al. 2019. The structure of the nucleoprotein of Influenza D shows that all Orthomyxoviridae nucleoproteins have a similar NPCORE, with or without a NPTAIL for nuclear transport. Sci. Rep. 9:1600
    [Google Scholar]
  44. 44. 
    Ng AK-L, Lam MK-H, Zhang H, Liu J, Au SW-N et al. 2012. Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein. J. Virol. 86:126758–67
    [Google Scholar]
  45. 45. 
    Turrell L, Hutchinson EC, Vreede FT, Fodor E 2015. Regulation of influenza A virus nucleoprotein oligomerization by phosphorylation. J. Virol. 89:21452–55
    [Google Scholar]
  46. 46. 
    Mondal A, Potts GK, Dawson AR, Coon JJ, Mehle A 2015. Phosphorylation at the homotypic interface regulates nucleoprotein oligomerization and assembly of the influenza virus replication machinery. PLOS Pathog 11:4e1004826
    [Google Scholar]
  47. 47. 
    Chenavas S, Estrozi LF, Slama-Schwok A, Delmas B, Di Primo C et al. 2013. Monomeric nucleoprotein of influenza A virus. PLOS Pathog 9:3e1003275
    [Google Scholar]
  48. 48. 
    Hutchinson EC, Denham EM, Thomas B, Trudgian DC, Hester SS et al. 2012. Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry. PLOS Pathog 8:11e1002993
    [Google Scholar]
  49. 49. 
    Mondal A, Dawson AR, Potts GK, Freiberger EC, Baker SF et al. 2017. Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery. eLife 6:e26910
    [Google Scholar]
  50. 50. 
    York A, Hutchinson EC, Fodor E 2014. Interactome analysis of the influenza A virus transcription/replication machinery identifies protein phosphatase 6 as a cellular factor required for efficient virus replication. J. Virol. 88:2213284–99
    [Google Scholar]
  51. 51. 
    Cui L, Mahesutihan M, Zheng W, Meng L, Fan W et al. 2018. CDC25B promotes influenza A virus replication by regulating the phosphorylation of nucleoprotein. Virology 525:40–47
    [Google Scholar]
  52. 52. 
    Zhao C, Sridharan H, Chen R, Baker DP, Wang S, Krug RM 2016. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nat. Commun. 7:112754
    [Google Scholar]
  53. 53. 
    Giese S, Ciminski K, Bolte H, Moreira ÉA, Lakdawala S et al. 2017. Role of influenza A virus NP acetylation on viral growth and replication. Nat. Commun. 8:11259
    [Google Scholar]
  54. 54. 
    Hatakeyama D, Shoji M, Yamayoshi S, Yoh R, Ohmi N et al. 2018. Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. J. Biol. Chem. 293:197126–38
    [Google Scholar]
  55. 55. 
    Chen H, Qian Y, Chen X, Ruan Z, Ye Y et al. 2019. HDAC6 restricts influenza A virus by deacetylation of the RNA polymerase PA subunit. J. Virol. 93:4e01896-18
    [Google Scholar]
  56. 56. 
    Oishi K, Yamayoshi S, Kozuka-Hata H, Oyama M, Kawaoka Y 2018. N-terminal acetylation by NatB is required for the shutoff activity of influenza A virus PA-X. Cell Rep 24:4851–60
    [Google Scholar]
  57. 57. 
    Jagger BW, Wise HM, Kash JC, Walters K-A, Wills NM et al. 2012. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337:6091199–204
    [Google Scholar]
  58. 58. 
    Khaperskyy DA, McCormick C. 2015. Timing is everything: coordinated control of host shutoff by influenza A virus NS1 and PA-X proteins. J. Virol. 89:136528–31
    [Google Scholar]
  59. 59. 
    Kirui J, Mondal A, Mehle A 2016. Ubiquitination upregulates influenza virus polymerase function. J. Virol. 90:2310906–14
    [Google Scholar]
  60. 60. 
    Fu B, Wang L, Ding H, Schwamborn JC, Li S, Dorf ME 2015. TRIM32 senses and restricts influenza A virus by ubiquitination of PB1 polymerase. PLOS Pathog 11:6e1004960
    [Google Scholar]
  61. 61. 
    Di Pietro A, Kajaste-Rudnitski A, Oteiza A, Nicora L, Towers GJ et al. 2013. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J. Virol. 87:84523–33
    [Google Scholar]
  62. 62. 
    Paterson D, Fodor E. 2012. Emerging roles for the influenza A virus nuclear export protein (NEP). PLOS Pathog 8:12e1003019
    [Google Scholar]
  63. 63. 
    Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ et al. 2017. Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe 22:5627–38
    [Google Scholar]
  64. 64. 
    Lin HT, Chen CC, Liu PY, Wu HL, Wu TH et al. 2018. Grail attenuates influenza A virus infection and pathogenesis by inhibiting viral nucleoprotein. Sci. Rep. 8:117242
    [Google Scholar]
  65. 65. 
    Liu C-H, Zhou L, Chen G, Krug RM 2015. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. PNAS 112:4514048–53
    [Google Scholar]
  66. 66. 
    Widjaja I, de Vries E, Tscherne DM, Garcia-Sastre A, Rottier PJM, de Haan CAM 2010. Inhibition of the ubiquitin-proteasome system affects influenza A virus infection at a postfusion step. J. Virol. 84:189625–31
    [Google Scholar]
  67. 67. 
    Lin Y-C, Jeng K-S, Lai MMC 2017. CNOT4-mediated ubiquitination of influenza A virus nucleoprotein promotes viral RNA replication. mBio 8:3e00597-17
    [Google Scholar]
  68. 68. 
    Liao T-L, Wu C-Y, Su W-C, Jeng K-S, Lai MMC 2010. Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J 29:223879–90
    [Google Scholar]
  69. 69. 
    Lakdawala SS, Fodor E, Subbarao K 2016. Moving on out: transport and packaging of influenza viral RNA into virions. Annu. Rev. Virol. 3:411–27
    [Google Scholar]
  70. 70. 
    Wang S, Zhao Z, Bi Y, Sun L, Liu X, Liu W 2013. Tyrosine 132 phosphorylation of influenza A virus M1 protein is crucial for virus replication by controlling the nuclear import of M1. J. Virol. 87:116182–91
    [Google Scholar]
  71. 71. 
    Whittaker G, Kemler I, Helenius A 1995. Hyperphosphorylation of mutant influenza virus matrix protein, M1, causes its retention in the nucleus. J. Virol. 69:1439–45
    [Google Scholar]
  72. 72. 
    Halder UC, Bhowmick R, Roy Mukherjee T, Nayak MK, Chawla-Sarkar M 2013. Phosphorylation drives an apoptotic protein to activate antiapoptotic genes: paradigm of influenza A matrix 1 protein function. J. Biol. Chem. 288:2014554–68
    [Google Scholar]
  73. 73. 
    Liu X, Zhao Z, Xu C, Sun L, Chen J et al. 2012. Cyclophilin A restricts influenza A virus replication through degradation of the M1 protein. PLOS ONE 7:2e31063
    [Google Scholar]
  74. 74. 
    Mahesutihan M, Zheng W, Cui L, Li Y, Jiao P et al. 2018. CypA regulates AIP4-mediated M1 ubiquitination of influenza A virus. Virol. Sin. 33:5440–48
    [Google Scholar]
  75. 75. 
    Gao S, Wu J, Liu R-Y, Li J, Song L et al. 2015. Interaction of NS2 with AIMP2 facilitates the switch from ubiquitination to SUMOylation of M1 in influenza A virus-infected cells. J. Virol. 89:1300–11
    [Google Scholar]
  76. 76. 
    Wu C-Y, Jeng K-S, Lai MM-C 2011. The SUMOylation of matrix protein M1 modulates the assembly and morphogenesis of influenza A virus. J. Virol. 85:136618–28
    [Google Scholar]
  77. 77. 
    Marjuki H, Alam MI, Ehrhardt C, Wagner R, Planz O et al. 2006. Membrane accumulation of influenza A virus hemagglutinin triggers nuclear export of the viral genome via protein kinase Cα-mediated activation of ERK signaling. J. Biol. Chem. 281:2416707–15
    [Google Scholar]
  78. 78. 
    Ludwig S, Wolff T, Ehrhardt C, Wurzer WJ, Reinhardt J et al. 2004. MEK inhibition impairs influenza B virus propagation without emergence of resistant variants. FEBS Lett 561:1–337–43
    [Google Scholar]
  79. 79. 
    Bruce EA, Digard P, Stuart AD 2010. The Rab11 pathway is required for influenza A virus budding and filament formation. J. Virol. 84:125848–59
    [Google Scholar]
  80. 80. 
    Eisfeld AJ, Kawakami E, Watanabe T, Neumann G, Kawaoka Y 2011. RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J. Virol. 85:136117–26
    [Google Scholar]
  81. 81. 
    Lakdawala SS, Wu Y, Wawrzusin P, Kabat J, Broadbent AJ et al. 2014. Influenza A virus assembly intermediates fuse in the cytoplasm. PLOS Pathog 10:32–3
    [Google Scholar]
  82. 82. 
    Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, Rockman S et al. 2019. The structure of the influenza A virus genome. Nat. Microbiol. 4:111781–89
    [Google Scholar]
  83. 83. 
    Takeda M, Leser GP, Russell CJ, Lamb RA 2003. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. PNAS 100:2514610–17
    [Google Scholar]
  84. 84. 
    Fiedler K, Kurzchalia TV, Simons K, Kobayashi T 1993. Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:256365–73
    [Google Scholar]
  85. 85. 
    Zurcher T, Luo G, Palese P 1994. Mutations at palmitylation sites of the influenza virus hemagglutinin affect virus formation. J. Virol. 68:95748–54
    [Google Scholar]
  86. 86. 
    Wagner R, Herwig A, Azzouz N, Klenk HD 2005. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J. Virol. 79:106449–58
    [Google Scholar]
  87. 87. 
    Holsinger LJ, Shaughnessy MA, Micko A, Pinto LH, Lamb RA 1995. Analysis of the posttranslational modifications of the influenza virus M2 protein. J. Virol. 69:21219–25
    [Google Scholar]
  88. 88. 
    Sugrue RJ, Belshe RB, Hay AJ 1990. Palmitoylation of the influenza A virus M2 protein. Virology 179:151–56
    [Google Scholar]
  89. 89. 
    Chlanda P, Zimmerberg J. 2016. Protein-lipid interactions critical to replication of the influenza A virus. FEBS Lett 590:131940–54
    [Google Scholar]
  90. 90. 
    Grantham ML, Wu W-H, Lalime EN, Lorenzo ME, Klein SL, Pekosz A 2009. Palmitoylation of the influenza A virus M2 protein is not required for virus replication in vitro but contributes to virus virulence. J. Virol. 83:178655–61
    [Google Scholar]
  91. 91. 
    Chen BJ, Takeda M, Lamb RA 2005. Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J. Virol. 79:2113673–84
    [Google Scholar]
  92. 92. 
    Su W-C, Yu W-Y, Huang S-H, Lai MMC 2018. Ubiquitination of the cytoplasmic domain of influenza A virus M2 protein is crucial for production of infectious virus particles. J. Virol. 92:4e01972-17
    [Google Scholar]
  93. 93. 
    Rossman JS, Jing X, Leser GP, Lamb RA 2010. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:6902–13
    [Google Scholar]
  94. 94. 
    Iwasaki A, Pillai PS. 2014. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14:5315–28
    [Google Scholar]
  95. 95. 
    Levene RE, Gaglia MM. 2018. Host shutoff in influenza A virus: many means to an end. Viruses 10:9475
    [Google Scholar]
  96. 96. 
    Krug RM, García-Sastre A. 2013. The NS1 protein: a master regulator of host and viral functions. Textbook of Influenza RG Webster, AS Monto, TJ Braciale, RA Lamb 114–32 Oxford, UK: John Wiley & Sons, 2nd ed..
    [Google Scholar]
  97. 97. 
    Mehle A, McCullers JA. 2013. Structure and function of the influenza virus replication machinery and PB1-F2. Textbook of Influenza RG Webster, AS Monto, TJ Braciale, RA Lamb 133–45 Oxford, UK: John Wiley & Sons, 2nd ed..
    [Google Scholar]
  98. 98. 
    Zheng W, Cao S, Chen C, Li J, Zhang S et al. 2017. Threonine 80 phosphorylation of non-structural protein 1 regulates the replication of influenza A virus by reducing the binding affinity with RIG-I. Cell. Microbiol. 19:2e12643
    [Google Scholar]
  99. 99. 
    Hsiang T-Y, Zhou L, Krug RM 2012. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses. J. Virol. 86:1910370–76
    [Google Scholar]
  100. 100. 
    Kathum OA, Schräder T, Anhlan D, Nordhoff C, Liedmann S et al. 2016. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity. Cell. Microbiol. 18:6784–91
    [Google Scholar]
  101. 101. 
    Zhao C, Hsiang TY, Kuo RL, Krug RM 2010. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. PNAS 107:52253–58
    [Google Scholar]
  102. 102. 
    Tang Y, Zhong G, Zhu L, Liu X, Shan Y et al. 2010. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J. Immunol. 184:105777–90
    [Google Scholar]
  103. 103. 
    Santos A, Pal S, Chacón J, Meraz K, Gonzalez J et al. 2013. SUMOylation affects the interferon blocking activity of the influenza A nonstructural protein NS1 without affecting its stability or cellular localization. J. Virol. 87:105602–20
    [Google Scholar]
  104. 104. 
    Xu K, Klenk C, Liu B, Keiner B, Cheng J et al. 2011. Modification of nonstructural protein 1 of influenza A virus by SUMO1. J. Virol. 85:21086–98
    [Google Scholar]
  105. 105. 
    Chen W, Calvo PAA, Malide D, Gibbs J, Schubert U et al. 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7:121306–12
    [Google Scholar]
  106. 106. 
    Mazur I, Anhlan D, Mitzner D, Wixler L, Schubert U, Ludwig S 2008. The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell. Microbiol. 10:51140–52
    [Google Scholar]
  107. 107. 
    Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O et al. 2006. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443:7111578–81
    [Google Scholar]
  108. 108. 
    Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P 2007. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLOS Pathog 3:101414–21
    [Google Scholar]
  109. 109. 
    Zamarin D, Ortigoza MB, Palese P 2006. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J. Virol. 80:167976–83
    [Google Scholar]
  110. 110. 
    Mitzner D, Dudek SE, Studtrucker N, Anhlan D, Mazur I et al. 2009. Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. Cell. Microbiol. 11:101502–16
    [Google Scholar]
  111. 111. 
    Košík I, Práznovská M, Košíková M, Bobišová Z, Hollý J et al. 2015. The ubiquitination of the influenza A virus PB1-F2 protein is crucial for its biological function. PLOS ONE 10:4e0118477
    [Google Scholar]
  112. 112. 
    Xia C, Wolf JJ, Vijayan M, Studstill CJ, Ma W, Hahm B 2018. Casein kinase 1α mediates the degradation of receptors for type I and type II interferons caused by hemagglutinin of influenza A virus. J. Virol. 92:7e00006-18
    [Google Scholar]
  113. 113. 
    Xia C, Vijayan M, Pritzl CJ, Fuchs SY, McDermott AB, Hahm B 2016. Hemagglutinin of influenza A virus antagonizes type I interferon (IFN) responses by inducing degradation of type I IFN receptor 1. J. Virol. 90:52403–17
    [Google Scholar]
  114. 114. 
    Carlson CM, Turpin EA, Moser LA, O'Brien KB, Cline TD et al. 2010. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLOS Pathog 6:10e1001136
    [Google Scholar]
  115. 115. 
    Schultz-Cherry S, Hinshaw VS. 1996. Influenza virus neuraminidase activates latent transforming growth factor beta. J. Virol. 70:128624–29
    [Google Scholar]
  116. 116. 
    Zhao D, Liang L, Wang S, Nakao T, Li Y et al. 2017. Glycosylation of the hemagglutinin protein of H5N1 influenza virus increases its virulence in mice by exacerbating the host immune response. J. Virol. 91:7e02215-16
    [Google Scholar]
  117. 117. 
    Zost SJ, Parkhouse K, Gumina ME, Kim K, Diaz Perez S et al. 2017. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. PNAS 114:4712578–83
    [Google Scholar]
  118. 118. 
    Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE et al. 2014. The one hour yeast proteome. Mol. Cell. Proteom. 13:1339–47
    [Google Scholar]
  119. 119. 
    Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN et al. 2013. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J. Proteome Res. 12:1260–71
    [Google Scholar]
  120. 120. 
    Smith LM, Kelleher NL, Linial M, Goodlett D, Langridge-Smith P et al. 2013. Proteoform: a single term describing protein complexity. Nat. Methods 10:3186–87
    [Google Scholar]
  121. 121. 
    Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M et al. 2004. Open mass spectrometry search algorithm. J. Proteome Res. 3:5958–64
    [Google Scholar]
  122. 122. 
    Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13:92513–26
    [Google Scholar]
  123. 123. 
    Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI 2017. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14:5513–20
    [Google Scholar]
  124. 124. 
    Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M 2007. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4:9709–12
    [Google Scholar]
  125. 125. 
    Taus T, Kocher T, Pichler P, Paschke C, Schmidt A et al. 2011. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10:125354–62
    [Google Scholar]
  126. 126. 
    Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. PNAS 101:269528–33
    [Google Scholar]
  127. 127. 
    Riley NM, Hebert AS, Dürnberger G, Stanek F, Mechtler K et al. 2017. Phosphoproteomics with activated ion electron transfer dissociation. Anal. Chem. 89:126367–76
    [Google Scholar]
  128. 128. 
    Sharma K, D'Souza RCJ, Tyanova S, Schaab C, Wiśniewski JR et al. 2014. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8:51583–94
    [Google Scholar]
  129. 129. 
    Riley NM, Coon JJ. 2016. Phosphoproteomics in the age of rapid and deep proteome profiling. Anal. Chem. 88:174–94
    [Google Scholar]
  130. 130. 
    Palmisano G, Parker BL, Engholm-Keller K, Lendal SE, Kulej K et al. 2012. A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development. Mol. Cell. Proteom. 11:111191–202
    [Google Scholar]
  131. 131. 
    Ankney JA, Muneer A, Chen X 2018. Relative and absolute quantitation in mass spectrometry-based proteomics. Annu. Rev. Anal. Chem. 11:49–77
    [Google Scholar]
  132. 132. 
    Wiese S, Reidegeld KA, Meyer HE, Warscheid B 2007. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:3340–50
    [Google Scholar]
  133. 133. 
    Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H et al. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1:5376–86
    [Google Scholar]
  134. 134. 
    Hundt J, Li Z, Liu Q 2013. Post-translational modifications of hepatitis C viral proteins and their biological significance. World J. Gastroenterol. 19:478929–39
    [Google Scholar]
  135. 135. 
    Riley NM, Hebert AS, Westphall MS, Coon JJ 2019. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat. Commun. 10:11311
    [Google Scholar]
  136. 136. 
    Kalesh K, Lukauskas S, Borg AJ, Snijders AP, Ayyappan V et al. 2019. An integrated chemical proteomics approach for quantitative profiling of intracellular ADP-ribosylation. Sci. Rep. 9:16655
    [Google Scholar]
  137. 137. 
    Ando Y, Elkayam E, McPherson RL, Dasovich M, Cheng SJ et al. 2019. ELTA: enzymatic labeling of terminal ADP-ribose. Mol. Cell 73:4845–56
    [Google Scholar]
  138. 138. 
    Sugiyama K, Kamada T, Shimizu K, Watanabe Y 1976. Preferential phosphorylation of NP-protein of influenza A2 virus by virion-associated protein kinase. Jpn. J. Microbiol. 20:3227–32
    [Google Scholar]
  139. 139. 
    Neumann-Staubitz P, Neumann H. 2016. The use of unnatural amino acids to study and engineer protein function. Curr. Opin. Struct. Biol. 38:119–28
    [Google Scholar]
  140. 140. 
    Lopez MS, Kliegman JI, Shokat KM 2014. The logic and design of analog-sensitive kinases and their small molecule inhibitors. Methods Enzymol 548:189–213
    [Google Scholar]
  141. 141. 
    Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH et al. 2016. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353:629445–50
    [Google Scholar]
  142. 142. 
    Hertel F, Zhang J. 2014. Monitoring of post-translational modification dynamics with genetically encoded fluorescent reporters. Biopolymers 101:2180–87
    [Google Scholar]
  143. 143. 
    Aye-Han N-N, Ni Q, Zhang J 2009. Fluorescent biosensors for real-time tracking of post-translational modification dynamics. Curr. Opin. Chem. Biol. 13:4392–97
    [Google Scholar]
  144. 144. 
    Buchberger AR, DeLaney K, Johnson J, Li L 2018. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90:1240–65
    [Google Scholar]
  145. 145. 
    Ludwig S, Hrincius ER, Boergeling Y 2019. The two sides of the same coin—influenza virus and intracellular signal transduction. Cold Spring Harb. Perspect. Med. In press. https://doi.org/10.1101/cshperspect.a038513
    [Crossref] [Google Scholar]
  146. 146. 
    van Gent M, Sparrer KMJ, Gack MU 2018. TRIM proteins and their roles in antiviral host defenses. Annu. Rev. Virol. 5:385–405
    [Google Scholar]
  147. 147. 
    Killip MJ, Fodor E, Randall RE 2015. Influenza virus activation of the interferon system. Virus Res 209:11–22
    [Google Scholar]
  148. 148. 
    Kennedy EM, Courtney DG, Tsai K, Cullen BR 2017. Viral epitranscriptomics. J. Virol. 91:9e02263-16
    [Google Scholar]
  149. 149. 
    Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K et al. 2017. Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:3377–386
    [Google Scholar]
/content/journals/10.1146/annurev-virology-010320-070410
Loading
/content/journals/10.1146/annurev-virology-010320-070410
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error