Emergence of insect-transmitted plant viruses over the past 10–20 years has been disproportionately driven by two so-called supervectors: the whitefly, , and the Western flower thrips, . High rates of reproduction and dispersal, extreme polyphagy, and development of insecticide resistance, together with human activities, have made these insects global pests. These supervectors transmit a diversity of plant viruses by different mechanisms and mediate virus emergence through local evolution, host shifts, mixed infections, and global spread. Associated virus evolution involves reassortment, recombination, and component capture. Emergence of –transmitted geminiviruses (begomoviruses), ipomoviruses, and torradoviruses has led to global disease outbreaks as well as multiple paradigm shifts. Similarly, has mediated tospovirus host shifts and global dissemination and the emergence of pollen-transmitted ilarviruses. The plant virus–supervector interaction offers exciting opportunities for basic research and global implementation of generalized disease management strategies to reduce economic and environmental impacts.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Koonin EV, Dolja VV, Krupovic M. 1.  2015. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–80:2–25 [Google Scholar]
  2. Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. 2.  2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327–59 [Google Scholar]
  3. Fereres A. 3.  2015. Insect vectors as drivers of plant virus emergence. Curr. Opin. Virol. 10:42–46 [Google Scholar]
  4. Fereres A, Moreno A. 4.  2009. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 141:158–68 [Google Scholar]
  5. Ghanim M. 5.  2014. A review of the mechanisms and components that determine the transmission efficiency of Tomato yellow leaf curl virus (Geminiviridae: Begomovirus) by its whitefly vector. Virus Res. 186:47–54 [Google Scholar]
  6. Ng JC, Falk BW. 6.  2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 44:183–212 [Google Scholar]
  7. Andret-Link P, Fuchs M. 7.  2005. Transmission specificity of plant viruses by vectors. J. Plant Pathol. 87:153–65 [Google Scholar]
  8. Rojas MR, Gilbertson RL. 8.  2008. Emerging plant viruses: a diversity of mechanisms and opportunities. Plant Virus Evolution MJ Roossinck 27–51 Berlin: Springer-Verlag [Google Scholar]
  9. Jones RAC. 9.  2009. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141:113–30 [Google Scholar]
  10. Seal SE, van den Bosch F, Jeger MJ. 10.  2006. Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit. Rev. Plant Sci. 25:23–46 [Google Scholar]
  11. Gilbertson RL, Rojas MR, Natwick ET. 11.  2011. Development of integrated pest management (IPM) strategies for whitefly (Bemisia tabaci)-transmissible geminiviruses. The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants WMO Thompson 323–56 Dordrecht, Neth.: Springer [Google Scholar]
  12. Jones DR. 12.  2003. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109:195–219 [Google Scholar]
  13. Jones DR. 13.  2005. Plant viruses transmitted by thrips. Eur. J. Plant Pathol. 113:119–57 [Google Scholar]
  14. Navas-Castillo J, Fiallo-Olive E, Sanchez-Campos S. 14.  2011. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49:219–48 [Google Scholar]
  15. Brown JK, Frohlich DR, Rosell RC. 15.  1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex?. Annu. Rev. Entomol. 40:511–34 [Google Scholar]
  16. DeBarro PJ, Liu SS, Boykin LM, Dinsdale AB. 16.  2011. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 56:1–19 [Google Scholar]
  17. Reitz SR. 17.  2009. Biology and ecology of the Western flower thrips (Thysanoptera: Thripidae): the making of a pest. Fla. Entomol. 92:7–13 [Google Scholar]
  18. Yudin LS, Cho JJ, Mitchell WC. 18.  1986. Host range of Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), with special reference to Leucaena glauca. Environ. Entomol. 15:1292–95 [Google Scholar]
  19. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. 19.  2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 11:777–88 [Google Scholar]
  20. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. 20.  2005. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43:361–94 [Google Scholar]
  21. Rybicki EP. 21.  1994. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch. Virol. 139:49–77 [Google Scholar]
  22. Briddon RW, Patil BL, Nawaz-ul-Rehman MS, Fauquet CM. 22.  2010. Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol. Biol. 10:97 [Google Scholar]
  23. Mansoor S, Zafar Y, Briddon RW. 23.  2006. Geminivirus disease complexes: the threat is spreading. Trends Plant Sci. 11:209–12 [Google Scholar]
  24. 24. ICTV (Int. Comm. Taxon. Viruses) 2014. Virus Taxonomy: 2014 Release Master Species List 29 (MSL #29), Exec. Comm. 46 (EC 46), Montreal, Can., July 2014, email ratif. 2015 (MSL #29). www.ictvonline.org/virustaxonomy.asp?msl_id=29 [Google Scholar]
  25. Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T. 25.  2004. A simple method for cloning the complete begomovirus genome using the bacteriophage ϕ29 DNA polymerase. J. Virol. Methods 116:209–11 [Google Scholar]
  26. Haible D, Kober S, Jeske H. 26.  2006. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J. Virol. Methods 135:9–16 [Google Scholar]
  27. Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J. 27.  et al. 2014. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 186:20–31 [Google Scholar]
  28. Varsani A, Navas-Castillo J, Moriones E, Hernandez-Zepeda C, Idris A. 28.  et al. 2014. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch. Virol. 159:2193–203 [Google Scholar]
  29. Gilbertson RL, Faria JC, Ahlquist PG, Maxwell DP. 29.  1993. Genetic diversity in geminiviruses causing bean golden mosaic disease: the nucleotide sequence of the infectious cloned DNA components of a Brazilian isolate of bean golden mosaic virus. Phytopathology 83:709–15 [Google Scholar]
  30. Morales FJ. 30.  2010. Distribution and dissemination of begomoviruses in Latin America and the Caribbean. Bemisia: Bionomics and Management of a Global Pest PA Stansly, SE Naranjo 283–318 London: Springer [Google Scholar]
  31. Rocha CS, Castillo-Urquiza GP, Lima AT, Silva FN, Xavier CA. 31.  et al. 2013. Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J. Virol. 87:5784–99 [Google Scholar]
  32. Kenyon L, Tsai WS, Shih SL, Lee LM. 32.  2014. Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res. 186:104–13 [Google Scholar]
  33. Qazi J, Ilyas M, Mansoor S, Briddon R. 33.  2007. Legume yellow mosaic viruses: genetically isolated begomoviruses. Mol. Plant Pathol. 8:343–48 [Google Scholar]
  34. Zhou YC, Noussourou M, Kon T, Rojas MR, Jiang H. 34.  et al. 2008. Evidence for local evolution of tomato-infecting begomovirus species in West Africa: characterization of Tomato leaf curl Mali virus and Tomato yellow leaf crumple virus from Mali. Arch. Virol. 153:693–706 [Google Scholar]
  35. Leke WN, Mignouna DB, Brown JK, Kvarnheden A. 35.  2015. Begomovirus disease complex: emerging threat to vegetable production systems of West and Central Africa. Agric. Food Secur. 4:1 [Google Scholar]
  36. Marquez-Martin B, Aragon-Caballero L, Fiallo-Olive E, Navas-Castillo J, Moriones E. 36.  2011. Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru. Eur. J. Plant Pathol. 129:1–7 [Google Scholar]
  37. Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL. 37.  2013. Characterization of a New World monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J. Virol. 87:5397–413 [Google Scholar]
  38. Sanchez-Campos S, Martinez-Ayala A, Marquez-Martin B, Aragon-Caballero L, Navas-Castillo J, Moriones E. 38.  2013. Fulfilling Koch's postulates confirms the monopartite nature of tomato leaf deformation virus, a begomovirus native to the New World. Virus Res. 173:286–93 [Google Scholar]
  39. Zhou X. 39.  2013. Advances in understanding begomovirus satellites. Annu. Rev. Phytopathol. 51:357–81 [Google Scholar]
  40. Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J. 40.  2000. A unique virus complex causes Ageratum yellow vein disease. PNAS 97:6890–95 [Google Scholar]
  41. Kon T, Gilbertson RL. 41.  2012. Two genetically related begomoviruses causing tomato leaf curl disease in Togo and Nigeria differ in virulence and host range but do not require a betasatellite for induction of disease symptoms. Arch. Virol. 157:107–20 [Google Scholar]
  42. Li R, Weldegergis BT, Li J, Jung C, Qu J. 42.  et al. 2014. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008 [Google Scholar]
  43. Kumar J, Kumar J, Singh SP, Tuli R. 43.  2014. Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease. J. Virol. 88:7093–104 [Google Scholar]
  44. Kon T, Rojas MR, Abdourhamane IK, Gilbertson RL. 44.  2009. Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J. Gen. Virol. 90:1001–13 [Google Scholar]
  45. Chen LF, Rojas MR, Kon T, Gamby K, Xoconostle-Cazares B, Gilbertson RL. 45.  2009. A severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel recombinant begomovirus (Tomato yellow leaf curl Mali virus) and a betasatellite. Mol. Plant Pathol. 10:415–30 [Google Scholar]
  46. Weng SH, Tsai WS, Kenyon L, Tsai CW. 46.  2015. Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields of Taiwan. Ann. Appl. Biol. 166:321–30 [Google Scholar]
  47. Liu B, Preisser EL, Chu D, Pan H, Xie W. 47.  et al. 2013. Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and Tomato yellow leaf curl virus. J. Virol. 87:4929–37 [Google Scholar]
  48. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS. 48.  et al. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–72 [Google Scholar]
  49. Chu D, Zhang YJ, Brown JK, Cong B, Xu B. 49.  et al. 2006. The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Fla. Entomol. 89:168–74 [Google Scholar]
  50. Chu D, Wan F, Zhang Y, Brown J. 50.  2010. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ. Entomol. 39:1028–36 [Google Scholar]
  51. Pan H, Chu D, Yan W, Su Q, Liu B. 51.  et al. 2012. Rapid spread of Tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLOS ONE 7:e34817 [Google Scholar]
  52. Gilbertson RL, Rojas MR, Kon T, Jaquez J. 52.  2007. Introduction of Tomato yellow leaf curl virus into the Dominican Republic: the development of a successful integrated pest management strategy. Tomato Yellow Leaf Curl Virus Disease H Czosnek 279–303 Dordrecht, Neth.: Springer [Google Scholar]
  53. Polston J, McGovern R, Brown L. 53.  1999. Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis. 83:984–88 [Google Scholar]
  54. Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJ. 54.  et al. 2010. The spread of Tomato yellow leaf curl virus from the Middle East to the world. PLOS Pathog. 6:e1001164 [Google Scholar]
  55. Sufrin-Ringwald T, Lapidot M. 55.  2011. Characterization of a synergistic interaction between two cucurbit-infecting begomoviruses: Squash leaf curl virus and Watermelon chlorotic stunt virus. Phytopathology 101:281–89 [Google Scholar]
  56. Hagen C, Rojas MR, Sudarshana MR, Xoconostle-Cazares B, Natwick ET. 56.  et al. 2008. Biology and molecular characterization of Cucurbit leaf crumple virus, an emergent cucurbit-infecting begomovirus in the Imperial Valley of California. Plant Dis. 92:781–93 [Google Scholar]
  57. Adkins S, Webster CG, Kousik CS, Webb SE, Roberts PD. 57.  et al. 2011. Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Res. 159:110–14 [Google Scholar]
  58. Akad F, Webb S, Nyoike TW, Liburd OE, Turechek W. 58.  et al. 2008. Detection of Cucurbit leaf crumple virus in Florida cucurbits. Plant Dis. 92:648 [Google Scholar]
  59. Juarez M, Tovar R, Fiallo-Olive E, Aranda MA, Gosalvez B. 59.  et al. 2014. First detection of Tomato leaf curl New Delhi virus infecting zucchini in Spain. Plant Dis. 98:857–58 [Google Scholar]
  60. Tahir MN, Amin I, Briddon RW, Mansoor S. 60.  2011. The merging of two dynasties—identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. PLOS ONE 6:e20366 [Google Scholar]
  61. Rojas MR, Kon T, Natwick ET, Polston JE, Akad F, Gilbertson RL. 61.  2007. First report of Tomato yellow leaf curl virus associated with tomato yellow leaf curl disease in California, USA. Plant Dis. 91:1056 [Google Scholar]
  62. Valverde RA, Sabanadzovic S, Hammond J. 62.  2012. Viruses that enhance the aesthetics of some ornamental plants: beauty or beast. Plant Dis. 96:600–11 [Google Scholar]
  63. Kitamura K, Ogawa T, Sharma P, Ikegami M. 63.  2008. First report of Honeysuckle yellow vein mosaic virus on tomato affected by yellow dwarf disease in Japan. Plant Pathol. 57:391 [Google Scholar]
  64. Adams MJ, Zerbini FM, French R, Rabenstein F, Stenger DC, Valkonen JPT. 64.  2012. Potyviridae See Reference 139 1069–89 [Google Scholar]
  65. Dombrovsky A, Reingold V, Antignus Y. 65.  2014. Ipomovirus—an atypical genus in the family Potyviridae transmitted by whiteflies. Pest Manag. Sci. 70:1553–67 [Google Scholar]
  66. Chung BYW, Miller WA, Atkins JF, Firth AE. 66.  2008. An overlapping essential gene in the Potyviridae. PNAS 105:5897–902 [Google Scholar]
  67. Mbanzibwa DR, Tian Y, Mukasa SB, Valkonen JPT. 67.  2009. Cassava brown streak virus (Potyviridae) encodes a putative Maf/HAM1 pyrophosphatase implicated in reduction of mutations and P1 proteinase that suppresses RNA silencing but contains no HC-Pro. J. Virol. 83:6934–40 [Google Scholar]
  68. Webster CG, Adkins S. 68.  2012. Low genetic diversity of Squash vein yellowing virus in wild and cultivated cucurbits in the U.S. suggests a recent introduction. Virus Res. 163:520–27 [Google Scholar]
  69. Storey HH. 69.  1936. Virus diseases of East African plants. VI. A progress report on studies of the disease of cassava. East Afr. Agric. J. 2:34–39 [Google Scholar]
  70. Alicai T, Omongo CA, Maruthi MN, Hillocks RJ, Baguma Y. 70.  et al. 2007. Re-emergence of cassava brown streak disease in Uganda. Plant. Dis. 91:24–29 [Google Scholar]
  71. Hillocks RJ, Jennings DK. 71.  2003. Cassava brown streak disease: a review of present knowledge and research needs. Int. J. Pest Manag. 49:225–34 [Google Scholar]
  72. Legg JP, Jeremiah SC, Obiero HM, Maruthi MN, Ndyetabula I. 72.  et al. 2011. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Res. 159:161–70 [Google Scholar]
  73. Mbanzibwa DR, Tian Y, Tugume AK, Mukasa SB, Tairo F. 73.  et al. 2009. Genetically distinct strains of Cassava brown streak virus in the Lake Victoria basin and the Indian Ocean coastal area of East Africa. Arch. Virol. 154:353–59 [Google Scholar]
  74. Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F. 74.  et al. 2011. Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. J. Virol. Methods 171:394–400 [Google Scholar]
  75. Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereitt A. 75.  2010. Analysis of Cassava brown streak virus reveals the presence of distinct species causing cassava brown streak disease in East Africa. J. Gen. Virol. 91:1365–72 [Google Scholar]
  76. Cohen S, Nitzany FE. 76.  1960. A whitefly transmitted virus of cucurbits in Israel. Phytopathol. Mediterr. 1:44–46 [Google Scholar]
  77. Adkins S, Webb SE, Achor D, Roberts PD, Baker CA. 77.  2007. Identification and characterization of a novel whitefly-transmitted member of the family Potyviridae isolated from cucurbits in Florida. Phytopathology 97:145–54 [Google Scholar]
  78. Egel DS, Adkins S. 78.  2007. Squash vein yellowing virus identified in watermelon (Citrullus lanatus) in Indiana. Plant Dis. 91:1056 [Google Scholar]
  79. Acevedo V, Rodrigues JCV, Estévez de Jensen C, Webster CG, Adkins S, Wessel-Beaver L. 79.  2013. First report of Squash vein yellowing virus affecting watermelon and bitter gourd in Puerto Rico. Plant Dis. 97:1516 [Google Scholar]
  80. Batuman O, Natwick ET, Wintermantel WM, Tian T, McCreight JD. 80.  et al. 2015. First report of an ipomovirus infecting cucurbits in the Imperial Valley of California. Plant Dis. 99:1042 [Google Scholar]
  81. Adkins S, McCollum TG, Albano JP, Kousik CS, Baker CA. 81.  et al. 2013. Physiological effects of Squash vein yellowing virus infection on watermelon. Plant Dis. 97:1137–48 [Google Scholar]
  82. Tairo F, Mukasa SB, Jones RAC, Kullaya A, Rubaihayo PR, Valkonen JPT. 82.  2005. Unraveling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD), and its practical implications. Mol. Plant Pathol. 6:199–211 [Google Scholar]
  83. Abraham A, Menzel W, Vetten HJ, Winter S. 83.  2012. Analysis of the tomato mild mottle virus genome indicates that it is the most divergent member of the genus Ipomovirus (family Potyviridae). Arch. Virol 157:353–57 [Google Scholar]
  84. Dombrovsky A, Sapkota R, Lachman O, Pearlsman M, Antignus Y. 84.  2013. A new aubergine disease caused by a whitefly-borne strain of Tomato mild mottle virus (TomMMoV). Plant Pathol. 62:750–59 [Google Scholar]
  85. Jeremiah SC, Ndyetabula IL, Mkamilo GS, Haji S, Muhanna MM. 85.  et al. 2015. The dynamics and environmental influence on interactions between cassava brown streak disease and the whitefly, Bemisia tabaci. Phytopathology 105:646–55 [Google Scholar]
  86. Maruthi MN, Hillocks RJ, Mtunda K, Raya MD, Muhanna M. 86.  et al. 2005. Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). J. Phytopathol. 153:307–12 [Google Scholar]
  87. Mbanzibwa DR, Tian Y, Tugume AK, Patil BL, Yadav JS. 87.  et al. 2011. Evolution of cassava brown streak disease-associated viruses. J. Gen. Virol. 92:974–87 [Google Scholar]
  88. Tugume AK, Mukasa SB, Kalkkinen N, Valkonen JPT. 88.  2010. Recombination and selection pressure in the ipomovirus Sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the center of evolution in East Africa. J. Gen. Virol. 91:1092–108 [Google Scholar]
  89. Janssen D, Velasco L, Martín G, Segundo E, Cuadrado IM. 89.  2007. Low genetic diversity among Cucumber vein yellowing virus isolates from Spain. Virus Genes 34:367–71 [Google Scholar]
  90. Webster CG, Coutts BA, Jones RAC, Jones MGK, Wylie SJ. 90.  2007. Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume-infecting potyviruses in the southwest Australian floristic region. Plant Pathol. 56:729–42 [Google Scholar]
  91. Coutts BA, Kehoe MA, Webster CG, Wylie SJ, Jones RAC. 91.  2011. Indigenous and introduced potyviruses of legumes and Passiflora spp. from Australia: biological properties and comparison of coat protein nucleotide sequences. Arch. Virol. 156:1757–74 [Google Scholar]
  92. Picó B, Villar C, Nuez F. 92.  2003. Screening Cucumis sativus landraces for resistance to Cucumber vein yellowing virus. Plant Breeding 122:426–30 [Google Scholar]
  93. Kousik CS, Adkins S, Turechek W, Roberts PD. 93.  2009. Sources of resistance in U.S. plant introductions to watermelon vine decline caused by Squash vein yellowing virus. Hort. Sci. 44:256–62 [Google Scholar]
  94. Hanssen IM, Lapidot M, Thomma PHJ. 94.  2010. Emerging viral diseases of tomato crops. Mol. Plant-Microbe Interact. 23:539–48 [Google Scholar]
  95. Verbeek M, Dullemans AM, van den Heuvel JFJM, Maris PC, van der Vlugt RAA. 95.  2007. Identification and characterization of Tomato torrado virus, a new plant picorna-like virus from tomato. Arch. Virol. 152:881–90 [Google Scholar]
  96. Turina M, Ricker MD, Lenzi R, Masenga V, Ciuffo M. 96.  2007. A severe disease of tomato in the Culiacan area (Sinaloa, Mexico) is caused by a new picorna-like viral species. Plant Dis. 91:932–41 [Google Scholar]
  97. Batuman O, Kuo YW, Palmieri M, Rojas MR, Gilbertson RL. 97.  2010. Tomato chocolate spot virus, a member of a new torradovirus species that causes a necrosis-associated disease of tomato in Guatemala. Arch. Virol. 155:857–69 [Google Scholar]
  98. Sanfacon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T. 98.  2009. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus and the proposed genus Torradovirus. Arch. Virol. 154:899–907 [Google Scholar]
  99. Verbeek M, Dullemans AM, van Raaij HM, Verhoeven JT, van der Vlugt RA. 99.  2014. Lettuce necrotic leaf curl virus, a new plant virus infecting lettuce and a proposed member of the genus Torradovirus. Arch. Virol. 159:801–5 [Google Scholar]
  100. Seo JK, Kang M, Kwak HR, Kim MK, Kim CS. 100.  et al. 2015. Complete genome sequence of motherwort yellow mottle virus, a novel putative member of the genus Torradovirus. Arch. Virol. 160:587–90 [Google Scholar]
  101. Verbeek M, van Bekkum PJ, Dullemans AM, van der Vlugt RAA. 101.  2014. Torradoviruses are transmitted in a semi-persistent and stylet-borne manner by three whitefly vectors. Virus Res. 186:55–60 [Google Scholar]
  102. Zielinska L, Byczyk J, Rymelska N, Borodynko N, Pospieszny H, Hasiow-Jaroszewska B. 102.  2012. Cytopathology of Tomato torrado virus infection in tomato and Nicotiana benthamiana. J. Phytopathol. 160:685–89 [Google Scholar]
  103. Wieczorek P, Budziszewska M, Obrepalska-Steplowska A. 103.  2015. Construction of infectious clones of Tomato torrado virus and their delivery by agrofiltration. Arch. Virol. 160:517–21 [Google Scholar]
  104. Gambley CF, Thomas JE, Persley DM. 104.  2010. First report of Tomato torrado virus on tomato from Australia. Plant. Dis. 94:486 [Google Scholar]
  105. Pappu HR, Jones RAC, Jain RK. 105.  2009. Global status of tospovirus epidemics in diverse cropping systems: success achieved and challenges ahead. Virus Res. 141:219–36 [Google Scholar]
  106. Riley DG, Joseph SV, Srinivasan R, Diffie S. 106.  2011. Thrips vectors of tospoviruses. J. Integr. Pest Manag.1 doi: 10.1603/IPM10020 [Google Scholar]
  107. Tyagi K, Kumar V. 107.  2015. First report of Western flower thrips, Frankliniella occidentalis (Pergande) (Thripidae: Thysanoptera) from India—a potential havoc to Indian agriculture. Halteres 6:1–3 [Google Scholar]
  108. Chiemsombat P, Adkins S. 108.  2006. Tospoviruses. Characterization, Diagnosis and Management of Plant Viruses 3 GP Rao, PL Kumar, RJ Holguín-Peña 1–37 Houston: Studium [Google Scholar]
  109. Whitfield AE, Ullman DE, German TL. 109.  2005. Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 43:459–89 [Google Scholar]
  110. Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R. 110.  et al. 2011. Bunyaviridae See Reference 139 725–41 [Google Scholar]
  111. Mound LA. 111.  1996. The Thysanoptera vector species of tospoviruses. Acta Hort. 431:298–309 [Google Scholar]
  112. Ullman DE, German TL, Sherwood JL, Westcot DM, Cantone FA. 112.  1993. Tospovirus replication in insect vector cells: immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456–63 [Google Scholar]
  113. Wijkamp I, Van Lent J, Kormelink R, Goldbach R, Peters D. 113.  1993. Multiplication of Tomato spotted wilt virus in its vector, Frankliniella occidentalis. J. Gen. Virol. 74:341–49 [Google Scholar]
  114. Stafford CA, Walker GP, Ullman DE. 114.  2011. Infection with a plant virus modifies vector feeding behavior. PNAS 108:9350–55 [Google Scholar]
  115. Brittlebank CC. 115.  1919. Tomato diseases. J. Agric. Vic. 17:231–35 [Google Scholar]
  116. Samuel G, Bald JG, Pitman HA. 116.  1930. Investigations on spotted wilt of tomatoes Res. Bull. 44, Counc. Sci. Ind. Res., Melbourne, Aust. [Google Scholar]
  117. McMichael LA, Persley DM, Thomas JE. 117.  2002. A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Australas. Plant Pathol. 31:231–39 [Google Scholar]
  118. Chiemsombat P, Gajanandana O, Warin N, Hongprayoon R, Bhunchoth A, Pongsapich P. 118.  2008. Biological and molecular characterization of tospoviruses in Thailand. Arch. Virol. 153:571–77 [Google Scholar]
  119. Culbreath AK, Srinivasan R. 119.  2011. Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S. Virus Res. 159:101–9 [Google Scholar]
  120. Webster CG, Frantz G, Reitz SR, Funderburk JE, Mellinger HC. 120.  et al. 2015. Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology 105:388–98 [Google Scholar]
  121. Goldbach R, Peters D. 121.  1994. Possible causes of the emergence of tospovirus diseases. Semin. Virol. 5:113–20 [Google Scholar]
  122. Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E. 122.  et al. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12:938–54 [Google Scholar]
  123. Londoño A, Capobianco H, Zhang S, Polston JE. 123.  2012. First record of Tomato chlorotic spot virus in the USA. Trop. Plant Pathol. 37:333–38 [Google Scholar]
  124. Webster CG, Estévez de Jensen C, Rivera-Vargas LI, Rodrigues JCV, Mercado W. 124.  et al. 2013. First report of Tomato chlorotic spot virus (TCSV) in tomato, pepper and jimsonweed in Puerto Rico. Plant Health Prog. doi: 10.1094/PHP-2013-0812-01-BR [Google Scholar]
  125. Estévez de Jensen C, Adkins S. 125.  2014. First report of Tomato chlorotic spot virus in lettuce in Puerto Rico. Plant Dis. 98:1015 [Google Scholar]
  126. Batuman O, Rojas MR, Almanzar A, Gilbertson RL. 126.  2014. First report of Tomato chlorotic spot virus in processing tomatoes in the Dominican Republic. Plant Dis. 98:286 [Google Scholar]
  127. Baysal-Gurel F, Li R, Ling KS, Miller SA. 127.  2015. First report of Tomato chlorotic spot virus infecting tomatoes in Ohio. Plant Dis. 99:163 [Google Scholar]
  128. Williams LV, López Lambertini PM, Shohara K, Biderbost EB. 128.  2001. Occurrence and geographical distribution of tospovirus species infecting tomato crops in Argentina. Plant Dis. 85:1227–29 [Google Scholar]
  129. Webster CG, Turechek WW, Mellinger HC, Frantz G, Roe N. 129.  et al. 2011. Expansion of Groundnut ringspot virus host and geographic ranges in solanaceous vegetables in peninsular Florida. Plant Health Prog. doi: 10.1094/PHP-2011-0725-01-BR [Google Scholar]
  130. Baker CA, Adkins S. 130.  2015. First report of Tomato chlorotic spot virus in Hoya wayetii and Schlumbergera truncata. Plant Health Prog. 16:29–30 [Google Scholar]
  131. Warfield CY, Clemens K, Adkins S. 131.  2015. First report of Tomato chlorotic spot virus on annual vinca (Catharanthus roseus) in the United States. Plant Dis 99:895 [Google Scholar]
  132. Kuo YW, Gilbertson RL, Turini T, Brennan EB, Smith RF, Koike ST. 132.  2014. Characterization and epidemiology of outbreaks of Impatiens necrotic spot virus on lettuce in coastal California. Plant Dis. 98:1050–59 [Google Scholar]
  133. Briese T, Calisher CH, Higgs S. 133.  2013. Viruses of the family Bunyaviridae: Are all available isolates reassortants?. Virology 446:207–16 [Google Scholar]
  134. Qiu WP, Moyer JW. 134.  1999. Tomato spotted wilt tospovirus adapts to the TSWV N gene-derived resistance by genome reassortment. Phytopathology 89:186–94 [Google Scholar]
  135. Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar JM, Moury B. 135.  2010. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive genome reassortment and insights into emergence process. J. Gen. Virol. 92:961–73 [Google Scholar]
  136. Margaria P, Ciuffo M, Rosa C, Turina M. 136.  2015. Evidence of a Tomato spotted wilt virus resistance-breaking strain originated through natural reassortment between two evolutionary-distinct isolates. Virus Res. 196:157–61 [Google Scholar]
  137. Webster CG, Reitz SR, Perry KL, Adkins S. 137.  2011. A natural M RNA reassortment arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413:216–25 [Google Scholar]
  138. Pallas V, Aparicio F, Herranz MC, Sanchez-Navarro JA, Scott SW. 138.  2013. The molecular biology of ilarviruses. Adv. Virus Res. 87:139–81 [Google Scholar]
  139. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. 139.  2012. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses London: Elsevier [Google Scholar]
  140. Batuman O, Miyao G, Kuo YW, Chen LF, Davis M, Gilbertson RL. 140.  2009. An outbreak of a necrosis disease of tomato in California in 2008 was caused by a new ilarvirus species related to Parietaria mottle virus. Plant Dis. 93:546 [Google Scholar]
  141. Caciagli P, Boccardo G, Lovisolo O. 141.  1989. Parietaria mottle virus, a possible new ilarvirus from Parietaria officinalis (Urticaceae). Plant Pathol. 38:577–84 [Google Scholar]
  142. Galipienso L, Herranz MC, Pallas V, Aramburu J. 142.  2005. Detection of a tomato strain of Parietaria mottle virus (PMoV-T) by molecular hybridization and RT-PCR in field samples from north-eastern Spain. Plant Pathol. 54:29–35 [Google Scholar]
  143. Janssen D, Saez E, Segundo E, Martin G, Gil F, Cuadrado IM. 143.  2005. Capsicum annuum—a new host of Parietaria mottle virus in Spain. Plant Pathol. 54:567 [Google Scholar]
  144. Roggero P, Ciuffo M, Katis N, Alioto D, Crescenzi A. 144.  et al. 2000. Necrotic disease in tomatoes in Greece and southern Italy caused by the tomato strain of Parietaria mottle virus. J. Plant Pathol. 82:159 [Google Scholar]
  145. Cupertino FP, Grogan RG, Petersen LJ, Kimble KA. 145.  1984. Tobacco streak virus infection of tomato and some natural weed hosts in California. Plant Dis. 68:331–33 [Google Scholar]
  146. Sdoodee R, Teakle DS. 146.  1987. Transmission of Tobacco streak virus by Thrips tabaci: a new method of plant virus transmission. Plant Pathol. 36:377–80 [Google Scholar]
  147. Greber RS, Teakle DS, Mink GI. 147.  1992. Thrips-facilitated transmission of Prune dwarf and Prunus necrotic ringspot viruses from cherry pollen to cucumber. Plant Dis. 76:1039–41 [Google Scholar]
  148. Klose MJ, Sdoodee R, Teakle DS, Milne JR, Greber RS, Walter GH. 148.  1996. Transmission of three strains of tobacco streak ilarvirus by different thrips species using virus-infected pollen. J. Phytopathol. 144:281–84 [Google Scholar]
  149. Batuman O, Chen LF, Gilbertson RL. 149.  2011. Characterization of Tomato necrotic spot virus (ToNSV), a new ilarvirus species infecting processing tomatoes in the Central Valley of California. Phytopathology 101:S13 [Google Scholar]
  150. Aramburu J, Galipienso L, Aparicio F, Soler S, Lopez C. 150.  2010. Mode of transmission of Parietaria mottle virus. J. Plant Pathol. 92:679–84 [Google Scholar]
  151. Zhao M, Ho H, Wu Y, He Y, Li M. 151.  2014. Western flower thrips (Frankliniella occidentalis) transmits Maize chlorotic mottle virus. J. Phytopathol. 162:532–36 [Google Scholar]
  152. Rosario K, Capobianco H, Ng TFF, Breitbart M, Polston J. 152.  2014. RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America. PLOS ONE 9:e86748 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error