Viral abundance in soils can range from below detection limits in hot deserts to over 1 billion per gram in wetlands. Abundance appears to be strongly influenced by water availability and temperature, but a lack of informational standards creates difficulties for cross-study analysis. Soil viral diversity is severely underestimated and undersampled, although current measures of viral richness are higher for soils than for aquatic ecosystems. Both morphometric and metagenomic analyses have raised questions about the prevalence of nontailed, ssDNA viruses in soils. Soil is complex and critically important to terrestrial biodiversity and human civilization, but impacts of viral activities on soil ecosystem services are poorly understood. While information from aquatic systems and medical microbiology suggests the potential for viral influences on nutrient cycles, food web interactions, gene transfer, and other key processes in soils, very few empirical data are available. To understand the soil virome, much work remains.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Viruses in Soil Ecosystems: An Unknown Quantity Within an Unexplored Territory

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Grijns A. 1.  1927. Clover-plants in sterile cultivation do not produce a bacteriophage of B. radicola. Zent. Bakteriol. Parasitenkd. Infekt. Hyg. 71:248–51 [Google Scholar]
  2. Van Twest R, Kropinski AM. 2.  2009. Bacteriophage enrichment from water and soil. Methods Mol. Biol. 501:15–21 [Google Scholar]
  3. Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR. 3.  2013. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol. Fertil. Soils 49:857–69 [Google Scholar]
  4. Ashelford KE, Day MJ, Fry JC. 4.  2003. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69:285–89 [Google Scholar]
  5. Reavy B, Swanson MM, Cock PJA, Dawson L, Freitag TE. 5.  et al. 2015. Distinct circular single-stranded DNA viruses exist in different soil types. Appl. Environ. Microbiol. 81:3934–45 [Google Scholar]
  6. Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M. 6.  2009. Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann. Appl. Biol. 155:51–60 [Google Scholar]
  7. Amosse J, Bettarel Y, Bouvier C, Bouvier T, Duc TT. 7.  et al. 2013. The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost). Soil Biol. Biochem. 66:197–203 [Google Scholar]
  8. Chen L, Xun W, Sun L, Zhang N, Shen Q, Zhang R. 8.  2014. Effect of different long-term fertilization regimes on the viral community in an agricultural soil of southern China. Eur. J. Soil Biol. 62:121–26 [Google Scholar]
  9. Doan TT, Bouvier C, Bettarel Y, Bouvier T, Henry-des-Tureaux T. 9.  et al. 2014. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Appl. Soil Ecol. 73:78–86 [Google Scholar]
  10. Gonzalez-Martin C, Teigell-Perez N, Lyles M, Valladares B, Griffin DW. 10.  2013. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions. Res. Microbiol. 164:17–21 [Google Scholar]
  11. Helsley KR, Brown TM, Furlong K, Williamson KE. 11.  2014. Applications and limitations of tea extract as a virucidal agent to assess the role of phage predation in soils. Biol. Fertil. Soils 50:263–74 [Google Scholar]
  12. Williamson KE, Wommack KE, Radosevich M. 12.  2003. Sampling natural viral communities from soil for culture-independent analyses. Appl. Environ. Microbiol. 69:6628–33 [Google Scholar]
  13. Williamson KE, Radosevich M, Wommack KE. 13.  2005. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71:3119–25 [Google Scholar]
  14. Williamson KE, Radosevich M, Smith DW, Wommack KE. 14.  2007. Incidence of lysogeny within temperate and extreme soil environments. Environ. Microbiol. 9:2563–74 [Google Scholar]
  15. Ferris MM, Stoffel CL, Maurer TT, Rowlen KL. 15.  2002. Quantitative intercomparison of transmission electron microscopy, flow cytometry, and epifluorescence microscopy for nanometric particle analysis. Anal. Biochem. 304:249–56 [Google Scholar]
  16. Gerba CP. 16.  1984. Applied and theoretical aspects of virus adsorption to surfaces. Adv. Appl. Microbiol. 30:133–68 [Google Scholar]
  17. Loveland JP, Ryan JN, Amy GL, Harvey RW. 17.  1996. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A 107:205–21 [Google Scholar]
  18. Duboise SM, Moore BE, Sorber CA, Sagik BP. 18.  1979. Viruses in soil systems. CRC Crit. Rev. Microbiol. 7:245–301 [Google Scholar]
  19. Wen K, Ortmann AC, Suttle CA. 19.  2004. Accurate estimation of viral abundance by epifluorescence microscopy. Appl. Environ. Microbiol. 70:3862–67 [Google Scholar]
  20. Field D, Garrity G, Gray T, Morrison N, Selengut J. 20.  et al. 2008. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 26:541–47 [Google Scholar]
  21. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR. 21.  et al. 2011. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29:415–20 [Google Scholar]
  22. Schloss PD, Handelsman J. 22.  2006. Toward a census of bacteria in soil. PLOS Comput. Biol. 2:e92 [Google Scholar]
  23. 23. Natl. Cent. Biotechnol. Inf. (NCBI). 2015. Viral genome browser. Filter by host: bacteria NCBI Viral Genomes Resource, Bethesda, MD, retrieved April 2017. https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=10239&host=bacteria [Google Scholar]
  24. Wommack KE, Nasko DJ, Chopyk J, Sakowski EG. 24.  2015. Counts and sequences, observations that continue to change our understanding of viruses in nature. J. Microbiol. 53:181–92 [Google Scholar]
  25. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T. 25.  et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–96 [Google Scholar]
  26. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W. 26.  et al. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12:635–45 [Google Scholar]
  27. Fuxa JR. 27.  2004. Ecology of insect nucleopolyhedroviruses. Agric. Ecosyst. Environ. 103:27–43 [Google Scholar]
  28. Roossinck MJ. 28.  2012. Plant virus metagenomics: biodiversity and ecology. Annu. Rev. Genet. 46:359–69 [Google Scholar]
  29. Ackermann HW. 29.  2001. Frequency of morphological phage descriptions in the year 2000. Arch. Virol. 146:843–57 [Google Scholar]
  30. Weinbauer MG. 30.  2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28:127–81 [Google Scholar]
  31. Wommack KE, Colwell RR. 31.  2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69–114 [Google Scholar]
  32. Filée J, Tétart F, Suttle CA, Krisch HM. 32.  2005. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. PNAS 102:12471–76 [Google Scholar]
  33. Fujii T, Nakayama N, Nishida M, Sekiya H, Kato N. 33.  et al. 2008. Novel capsid genes (g23) of T4-type bacteriophages in a Japanese paddy field. Soil Biol. Biochem. 40:1049–58 [Google Scholar]
  34. Wang G, Hayashi M, Saito M, Tsuchiya K, Asakawa S, Kimura M. 34.  2009. Survey of major capsid genes (g23) of T4-type bacteriophages in Japanese paddy field soils. Soil Biol. Biochem. 41:13–20 [Google Scholar]
  35. Wang G, Murase J, Taki K, Ohashi Y, Yoshikawa N. 35.  et al. 2009. Changes in major capsid genes (g23) of T4-type bacteriophages with soil depth in two Japanese rice fields. Biol. Fertil. Soils 45:521–29 [Google Scholar]
  36. Liu J, Wang G, Wang Q, Liu J, Jin J, Liu X. 36.  2012. Phylogenetic diversity and assemblage of major capsid genes (g23) of T4-type bacteriophages in paddy field soils during rice growth season in northeast China. Soil Sci. Plant Nutr. 58:435–44 [Google Scholar]
  37. Wang G, Yu Z, Liu J, Jin J, Liu X, Kimura M. 37.  2011. Molecular analysis of the major capsid genes (g23) of T4-type bacteriophages in an upland black soil in northeast China. Biol. Fertil. Soils 47:273–82 [Google Scholar]
  38. Zheng C, Wang G, Liu J, Song C, Gao H, Liu X. 38.  2013. Characterization of the major capsid genes (g23) of T4-type bacteriophages in the wetlands of northeast China. Microb. Ecol. 65:616–25 [Google Scholar]
  39. Liu J, Wang G, Zheng C, Yuan X, Jin J, Liu X. 39.  2011. Specific assemblages of major capsid genes (g23) of T4-type bacteriophages isolated from upland black soils in northeast China. Soil Biol. Biochem. 43:1980–84 [Google Scholar]
  40. Klenk HP, Göker M. 40.  2010. En route to a genome-based classification of archaea and bacteria?. Syst. Appl. Microbiol. 33:175–82 [Google Scholar]
  41. Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A. 41.  2010. Recombinant bacteriophage lysins as antibacterials. Bioeng. Bugs 1:9–16 [Google Scholar]
  42. Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A. 42.  et al. 2006. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLOS Genet 2:e92 [Google Scholar]
  43. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K. 43.  et al. 2014. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. mBio 5:e01051–13 [Google Scholar]
  44. Allen LZ, Ishoey T, Novotny MA, McLean JS, Lasken RS, Williamson SJ. 44.  2011. Single virus genomics: a new tool for virus discovery. PLOS ONE 6:e17722 [Google Scholar]
  45. Labonté JM, Swan BK, Poulos B, Luo H, Koren S. 45.  et al. 2015. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J 9:2386–99 [Google Scholar]
  46. Kim K, Chang H, Nam Y, Roh SW, Kim M. 46.  et al. 2008. Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl. Environ. Microbiol. 74:5975–85 [Google Scholar]
  47. Green JC, Rahman F, Saxton MA, Williamson KE. 47.  2017. Quantifying aquatic viral community change associated with stormwater runoff in a wet retention pond using metagenomic time series data. Aquat. Microb. Ecol. Submitted
  48. Marine R, McCarren C, Vorrasane V, Nasko D, Crowgey E. 48.  et al. 2014. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome 2:3 [Google Scholar]
  49. Scholz MB, Lo CC, Chain PSG. 49.  2012. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr. Opin. Biotechnol. 23:9–15 [Google Scholar]
  50. Green JC, Rahman F, Saxton MA, Williamson KE. 50.  2015. Metagenomic assessment of viral diversity in Lake Matoaka, a temperate, eutrophic freshwater lake in southeastern Virginia, USA. Aquat. Microb. Ecol. 75:117–28 [Google Scholar]
  51. Weitz JS, Wilhelm SW. 51.  2012. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol. Rep. 4:17 [Google Scholar]
  52. Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML. 52.  et al. 2015. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J 9:1352–64 [Google Scholar]
  53. Marsh P, Wellington E. 53.  1994. Phage-host interactions in soil. FEMS Microbiol. Ecol. 15:99–107 [Google Scholar]
  54. Pantastico-Caldas M, Duncan KE, Istock CA, Bell JA. 54.  1992. Population dynamics of bacteriophage and Bacillus subtilis in soil. Ecology 73:1888–902 [Google Scholar]
  55. Srinivasiah S, Lovett J, Ghosh D, Roy K, Fuhrmann JJ. 55.  et al. 2015. Dynamics of autochthonous soil viral communities parallels dynamics of host communities under nutrient stimulation. FEMS Microbiol. Ecol. 91:fiv063 [Google Scholar]
  56. Ashelford KE, Day MJ, Bailey MJ, Lilley AK, Fry JC. 56.  1999. In situ population dynamics of bacterial viruses in a terrestrial environment. Appl. Environ. Microbiol. 65:169–74 [Google Scholar]
  57. Ashelford KE, Norris SJ, Fry JC, Bailey MJ, Day MJ. 57.  2000. Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl. Environ. Microbiol. 66:4193–99 [Google Scholar]
  58. Keel C, Ucurum Z, Michaux P, Adrian M, Haas D. 58.  2002. Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens strain CHA0 in natural soil. Mol. Plant-Microbe Interact. 15:567–76 [Google Scholar]
  59. Allen B, Willner D, Oechel WC, Lipson D. 59.  2010. Top-down control of microbial activity and biomass in an arctic soil ecosystem. Environ. Microbiol. 12:642–48 [Google Scholar]
  60. Kimura M, Jia Z, Nakayama N, Asakawa S. 60.  2008. Ecology of viruses in soils: past, present and future perspectives. Soil Sci. Plant Nutr. 54:1–32 [Google Scholar]
  61. Fuhrman JA. 61.  1999. Marine viruses and their biogeochemical and ecological effects. Nature 399:541–48 [Google Scholar]
  62. Winget DM, Helton RR, Williamson KE, Bench SR, Williamson SJ, Wommack KE. 62.  2011. Repeating patterns of virioplankton production within an estuarine ecosystem. PNAS 108:11506–11 [Google Scholar]
  63. Matteson AR, Loar SN, Pickmere S, DeBruyn JM, Ellwood MJ. 63.  et al. 2012. Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand. FEMS Microbiol. Ecol. 79:709–19 [Google Scholar]
  64. Middelboe M. 64.  2000. Bacterial growth rate and marine virus-host dynamics. Microb. Ecol. 40:114–24 [Google Scholar]
  65. Rowe JM, DeBruyn JM, Poorvin L, LeCleir GR, Johnson ZI. 65.  et al. 2012. Viral and bacterial abundance and production in the Western Pacific Ocean and the relation to other oceanic realms. FEMS Microbiol. Ecol. 79:359–70 [Google Scholar]
  66. Winter C, Bouvier T, Weinbauer MG, Thingstad TF. 66.  2010. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol. Mol. Biol. Rev 7442–57 [Google Scholar]
  67. Wilhelm SW, Suttle CA. 67.  1999. Viruses and nutrient cycles in the sea. BioScience 49:781 [Google Scholar]
  68. Golchin A, Oades J, Skjemstad J, Clarke P. 68.  1994. Soil structure and carbon cycling. Aust. J. Soil Res. 32:1043 [Google Scholar]
  69. Parton WJ, Schimel DS, Cole CV, Ojima DS. 69.  1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51:1173–79 [Google Scholar]
  70. Whitman WB, Coleman DC, Wiebe WJ. 70.  1998. Prokaryotes: the unseen majority. PNAS 95:6578–83 [Google Scholar]
  71. Ali FS, Loynachan TE, Hammad AMM, Aharchi Y. 71.  1998. Polyvirulent rhizobiophage from a soybean rhizosphere soil. Soil Biol. Biochem. 30:2171–75 [Google Scholar]
  72. Appunu C, Dhar B. 72.  2008. Isolation and symbiotic characteristics of two Tn5-derived phage-resistant Bradyrhizobium japonicum strains that nodulate soybean. Curr. Microbiol. 57:212–17 [Google Scholar]
  73. Sharma RS, Mohmmed A, Babu CR. 73.  2002. Diversity among rhizobiophages from rhizospheres of legumes inhabiting three ecogeographical regions of India. Soil Biol. Biochem. 34:965–73 [Google Scholar]
  74. Evans J, Barnet YM, Vincent JM. 74.  1979. Effect of a bacteriophage on colonisation and nodulation of clover roots by paired strains of Rhizobium trifolii. Can. J. Microbiol. 25:974–78 [Google Scholar]
  75. Barnet YM. 75.  1980. The effect of rhizobiophages on populations of Rhizobium trifolii in the root zone of clover plants. Can. J. Microbiol. 26:572–76 [Google Scholar]
  76. Hashem FM, Angle JS. 76.  1988. Rhizobiophage effects on Bradyrhizobium japonicum, nodulation and soybean growth. Soil Biol. Biochem. 20:69–73 [Google Scholar]
  77. Jaiswal SK, Dhar B. 77.  2010. Morphology and general characteristics of phages specific to Lens culinaris rhizobia. Biol. Fertil. Soils 46:681–87 [Google Scholar]
  78. Stewart FM, Levin BR. 78.  1984. The population biology of bacterial viruses: Why be temperate. Theor. Popul. Biol. 26:93–117 [Google Scholar]
  79. Campbell A. 79.  2006. General aspects of lysogeny. The Bacteriophages R Calendar 66–73 Oxford, UK: Oxford Univ. Press, 2nd ed.. [Google Scholar]
  80. Rokney A, Kobiler O, Amir A, Court DL, Stavans J. 80.  et al. 2008. Host responses influence on the induction of lambda prophage. Mol. Microbiol. 68:29–36 [Google Scholar]
  81. Ghosh D, Roy K, Williamson KE, Srinivasiah S, Wommack KE, Radosevich M. 81.  2009. Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction. Appl. Environ. Microbiol. 75:7142–52 [Google Scholar]
  82. Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. 82.  2015. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13:641–50 [Google Scholar]
  83. Paul JH. 83.  2008. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?. ISME J 2:579–89 [Google Scholar]
  84. Dedrick RM, Jacobs-Sera D, Bustamante CAG, Garlena RA, Mavrich TN. 84.  et al. 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2:16251 [Google Scholar]
  85. Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS. 85.  et al. 2016. Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–66 [Google Scholar]
  86. Brüssow H, Canchaya C, Hardt WD. 86.  2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560–602 [Google Scholar]
  87. Holmes RK. 87.  2000. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J. Infect. Dis. 181:Suppl. 1S156–67 [Google Scholar]
  88. Waldor MK, Mekalanos JJ. 88.  1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–14 [Google Scholar]
  89. Barondess JJ, Beckwith J. 89.  1995. bor gene of phage λ, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J. Bacteriol. 177:1247–53 [Google Scholar]
  90. Abebe HM, Sadowsky MJ, Kinkle BK, Schmidt EL. 90.  1992. Lysogeny in Bradyrhizobium japonicum and its effect on soybean nodulation. Appl. Environ. Microbiol. 58:3360–66 [Google Scholar]
  91. Balcazar JL. 91.  2014. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLOS Pathog 10:e1004219 [Google Scholar]
  92. Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS. 92.  et al. 2017. Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation. mBio 8:e02115–16 [Google Scholar]
  93. Zeph LR, Onaga MA, Stotzky G. 93.  1988. Transduction of Escherichia coli by bacteriophage P1 in soil. Appl. Environ. Microbiol. 54:1731–37 [Google Scholar]
  94. Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. 94.  2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLOS Biol 4:e234 [Google Scholar]
  95. Alperovitch-Lavy A, Sharon I, Rohwer F, Aro EM, Glaser F. 95.  et al. 2011. Reconstructing a puzzle: existence of cyanophages containing both photosystem-I and photosystem-II gene suites inferred from oceanic metagenomic datasets. Environ. Microbiol. 13:24–32 [Google Scholar]
  96. Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU. 96.  et al. 2011. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. PNAS 108:E757–64 [Google Scholar]
  97. Hurwitz BL, U'Ren JM. 97.  2016. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol. 31:161–68 [Google Scholar]
  98. Perez Sepulveda B, Redgwell T, Rihtman B, Pitt F, Scanlan DJ. 98.  et al. 2016. Marine phage genomics: the tip of the iceberg. FEMS Microbiol. Lett. 363:fnw158 [Google Scholar]
  99. Rosenwasser S, Ziv C, van Creveld SG, Vardi A. 99.  2016. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol 24:821–32 [Google Scholar]
  100. Ghosh D, Roy K, Williamson KE, White DC, Wommack KE. 100.  et al. 2008. Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl. Environ. Microbiol. 74:495–502 [Google Scholar]
  101. Curtis TP, Sloan WT, Scannell JW. 101.  2002. Estimating prokaryotic diversity and its limits. PNAS 99:10494–99 [Google Scholar]
  102. Kemp PF, Aller JY. 102.  2004. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47:161–77 [Google Scholar]
  103. Boumans R, Costanza R, Farley J, Wilson MA, Portela R. 103.  et al. 2002. Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecol. Econ. 41:529–60 [Google Scholar]
  104. Waksman S, Woodruff HB. 104.  1941. Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J. Bacteriol. 42:231–24 [Google Scholar]
  105. Daniel R. 105.  2004. The soil metagenome—a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15:199–204 [Google Scholar]
  106. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C. 106.  et al. 2007. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73:7059–66 [Google Scholar]
  107. Zablocki O, Adriaenssens EM, Cowan D. 107.  2016. Diversity and ecology of viruses in hyperarid desert soils. Appl. Environ. Microbiol. 82:770–77 [Google Scholar]
  108. Adriaenssens EM, Van Zyl L, De Maayer P, Rubagotti E, Rybicki E. 108.  et al. 2015. Metagenomic analysis of the viral community in Namib desert hypoliths. Environ. Microbiol. 17:480–95 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error