1932

Abstract

Techniques for atomic-resolution structural biology have evolved during the past several decades. Breakthroughs in instrumentation, sample preparation, and data analysis that occurred in the past decade have enabled characterization of viruses with an unprecedented level of detail. Here we review the recent advances in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for structural analysis of viruses and viral assemblies. MAS NMR is a powerful method that yields information on 3D structures and dynamics in a broad range of experimental conditions. After a brief introduction, we discuss recent structural and functional studies of several viruses investigated with atomic resolution at various levels of structural organization, from individual domains of a membrane protein reconstituted into lipid bilayers to virus-like particles and intact viruses. We present examples of the unique information revealed by MAS NMR about drug binding, conduction mechanisms, interactions with cellular host factors, and DNA packaging in biologically relevant environments that are inaccessible by other methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-011921-064653
2021-09-29
2024-09-13
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-011921-064653.html?itemId=/content/journals/10.1146/annurev-virology-011921-064653&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bloembergen N, Rowland TJ. 1953. On the nuclear magnetic resonance in metals and alloys. Acta Metall. 1:731–46
    [Google Scholar]
  2. 2. 
    Andrew ER, Bradbury A, Eades RG. 1958. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659
    [Google Scholar]
  3. 3. 
    Lowe IJ. 1959. Free induction decays of rotating solids. Phys. Rev. Lett. 2:285–87
    [Google Scholar]
  4. 4. 
    Andrew ER, Bradbury A, Eades RG. 1959. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:1802–3
    [Google Scholar]
  5. 5. 
    Hoult DI, Richards RE. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24:71–85
    [Google Scholar]
  6. 6. 
    Schwalbe H. 2017. Editorial: new 1.2 GHz NMR spectrometers—new horizons?. Angew. Chem. Int. Ed. 56:10252–53
    [Google Scholar]
  7. 7. 
    Goldbourt A, Gross BJ, Day LA, McDermott AE. 2007. Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J. Am. Chem. Soc. 129:2338–44
    [Google Scholar]
  8. 8. 
    Yu T-Y, Schaefer J. 2008. REDOR NMR characterization of DNA packaging in bacteriophage T4. J. Mol. Biol. 382:1031–42
    [Google Scholar]
  9. 9. 
    Abramov G, Morag O, Goldbourt A. 2011. Magic-angle spinning NMR of a class I filamentous bacteriophage virus. J. Phys. Chem. B 115:9671–80
    [Google Scholar]
  10. 10. 
    Abramov G, Goldbourt A. 2014. Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR. J. Biomol. NMR 59:219–30
    [Google Scholar]
  11. 11. 
    Morag O, Sgourakis NG, Baker D, Goldbourt A. 2015. The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. PNAS 112:971–76
    [Google Scholar]
  12. 12. 
    Mandala VS, Loftis AR, Shcherbakov AA, Pentelute BL, Hong M. 2020. Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nat. Struct. Mol. Biol. 27:160–67
    [Google Scholar]
  13. 13. 
    Zinke M, Sachowsky KAA, Öster C, Zinn-Justin S, Ravelli R et al. 2020. Architecture of the flexible tail tube of bacteriophage SPP1. Nat. Commun. 11:5759
    [Google Scholar]
  14. 14. 
    Lu M, Russell RW, Bryer AJ, Quinn CM, Hou G et al. 2020. Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR. Nat. Struct. Mol. Biol. 27:863–69
    [Google Scholar]
  15. 15. 
    Jeon J, Qiao X, Hung I, Mitra AK, Desfosses A et al. 2017. Structural model of the tubular assembly of the Rous Sarcoma virus capsid protein. J. Am. Chem. Soc. 139:2006–13
    [Google Scholar]
  16. 16. 
    Shishovs M, Rumnieks J, Diebolder C, Jaudzems K, Andreas LB et al. 2016. Structure of AP205 coat protein reveals circular permutation in ssRNA bacteriophages. J. Mol. Biol. 428:4267–79
    [Google Scholar]
  17. 17. 
    Zhang H, Lin EC, Das BB, Tian Y, Opella SJ. 2015. Structural determination of virus protein U from HIV-1 by NMR in membrane environments. Biochim. Biophys. Acta Biomembr. 1848:3007–18
    [Google Scholar]
  18. 18. 
    Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. 2020. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 27:1202–8
    [Google Scholar]
  19. 19. 
    Andreas LB, Reese M, Eddy MT, Gelev V, Ni QZ et al. 2015. Structure and mechanism of the influenza A M218–60 dimer of dimers. J. Am. Chem. Soc. 137:14877–86
    [Google Scholar]
  20. 20. 
    Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M. 2010. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–92
    [Google Scholar]
  21. 21. 
    Lee M, Yao H, Kwon B, Waring AJ, Ruchala P et al. 2018. Conformation and trimer association of the transmembrane domain of the parainfluenza virus fusion protein in lipid bilayers from solid-state NMR: insights into the sequence determinants of trimer structure and fusion activity. J. Mol. Biol. 430:695–709
    [Google Scholar]
  22. 22. 
    Hu F, Luo W, Hong M. 2010. Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330:505–8
    [Google Scholar]
  23. 23. 
    Movellan KT, Wegstroth M, Overkamp K, Leonov A, Becker S, Andreas LB 2020. Imidazole–imidazole hydrogen bonding in the pH-sensing histidine side chains of influenza A M2. J. Am. Chem. Soc. 142:2704–8
    [Google Scholar]
  24. 24. 
    Fu R, Miao Y, Qin H, Cross TA. 2020. Observation of the imidazole-imidazolium hydrogen bonds responsible for selective proton conductance in the influenza A M2 channel. J. Am. Chem. Soc. 142:2115–19
    [Google Scholar]
  25. 25. 
    Kovacs FA, Cross TA. 1997. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys. J. 73:2511–17
    [Google Scholar]
  26. 26. 
    Sackett K, Nethercott MJ, Zheng Z, Weliky DP. 2014. Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel β sheet fusion peptide structure in the final six-helix bundle state. J. Mol. Biol. 426:1077–94
    [Google Scholar]
  27. 27. 
    Bayro MJ, Ganser-Pornillos BK, Zadrozny KK, Yeager M, Tycko R. 2016. Helical conformation in the CA-SP1 junction of the immature HIV-1 lattice determined from solid-state NMR of virus-like particles. J. Am. Chem. Soc. 138:12029–32
    [Google Scholar]
  28. 28. 
    Marchanka A, Simon B, Althoff-Ospelt G, Carlomagno T. 2015. RNA structure determination by solid-state NMR spectroscopy. Nat. Commun. 6:7024
    [Google Scholar]
  29. 29. 
    Marchanka A, Stanek J, Pintacuda G, Carlomagno T. 2018. Rapid access to RNA resonances by proton-detected solid-state NMR at >100 kHz MAS. Chem. Commun. 54:8972–75
    [Google Scholar]
  30. 30. 
    Asami S, Rakwalska-Bange M, Carlomagno T, Reif B. 2013. Protein–RNA interfaces probed by 1H-detected MAS solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 52:2345–49
    [Google Scholar]
  31. 31. 
    Lacabanne D, Boudet J, Malär AA, Wu P, Cadalbert R et al. 2020. Protein side-chain–DNA contacts probed by fast magic-angle spinning NMR. J. Phys. Chem. B 124:11089–97
    [Google Scholar]
  32. 32. 
    Wang S, Fogeron ML, Schledorn M, Dujardin M, Penzel S et al. 2019. Combining cell-free protein synthesis and NMR into a tool to study capsid assembly modulation. Front. Mol. Biosci. 6:67
    [Google Scholar]
  33. 33. 
    Fogeron M-L, Jirasko V, Penzel S, Paul D, Montserret R et al. 2016. Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus. J. Biomol. NMR 65:87–98
    [Google Scholar]
  34. 34. 
    Kraus J, Sarkar S, Quinn CM, Polenova T. 2021. Solid-state NMR spectroscopy of microcrystalline proteins. Annu. Rep. NMR Spectrosc. 102:81–151
    [Google Scholar]
  35. 35. 
    Wang M, Lu M, Fritz MP, Quinn CM, Byeon I-JL et al. 2018. Fast magic-angle spinning 19FNMR spectroscopy of HIV-1 capsid protein assemblies. Angew. Chem. Int. Ed. 57:16375–79
    [Google Scholar]
  36. 36. 
    Wiegand T, Lacabanne D, Torosyan A, Boudet J, Cadalbert R et al. 2020. Sedimentation yields long-term stable protein samples as shown by solid-state NMR. Front. Mol. Biosci. 7:17
    [Google Scholar]
  37. 37. 
    Russell RW, Fritz MP, Kraus J, Quinn CM, Polenova T, Gronenborn AM. 2019. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some ‘with a little help from a friend. .’ J. Biomol. NMR 73:333–46
    [Google Scholar]
  38. 38. 
    Quinn CM, Polenova T. 2017. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q. Rev. Biophys. 50:e1
    [Google Scholar]
  39. 39. 
    Havlin RH, Tycko R 2005. Probing site-specific conformational distributions in protein folding with solid-state NMR. PNAS 102:3284–89
    [Google Scholar]
  40. 40. 
    Gupta R, Zhang H, Lu M, Hou G, Caporini M et al. 2019. Dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance combined with molecular dynamics simulations permits detection of order and disorder in viral assemblies. J. Phys. Chem. B 123:5048–58
    [Google Scholar]
  41. 41. 
    Natl. Cent. Immun. Respir. Dis 2020. Past seasons estimated influenza disease burden. Centers for Disease Control and Prevention. https://www.cdc.gov/flu/about/burden/past-seasons.html
    [Google Scholar]
  42. 42. 
    Wang C, Lamb RA, Pinto LH. 1995. Activation of the M2 ion channel of influenza virus: a role for the transmembrane domain histidine residue. Biophys. J. 69:1363–71
    [Google Scholar]
  43. 43. 
    Tang Y, Zaitseva F, Lamb RA, Pinto LH. 2002. The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J. Biol. Chem. 277:39880–86
    [Google Scholar]
  44. 44. 
    Sharma M, Yi M, Dong H, Qin H, Peterson E et al. 2010. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–12
    [Google Scholar]
  45. 45. 
    Hong M, Fritzsching KJ, Williams JK. 2012. Hydrogen-bonding partner of the proton-conducting histidine in the influenza M2 proton channel revealed from 1H chemical shifts. J. Am. Chem. Soc. 134:14753–55
    [Google Scholar]
  46. 46. 
    Hu F, Schmidt-Rohr K, Hong M 2012. NMR detection of pH-dependent histidine–water proton exchange reveals the conduction mechanism of a transmembrane proton channel. J. Am. Chem. Soc. 134:3703–13
    [Google Scholar]
  47. 47. 
    Colvin MT, Andreas LB, Chou JJ, Griffin RG. 2014. Proton association constants of His 37 in the influenza-A M218–60 dimer-of-dimers. Biochemistry 53:5987–94
    [Google Scholar]
  48. 48. 
    Tzitzoglaki C, Wright A, Freudenberger K, Hoffmann A, Tietjen I et al. 2017. Binding and proton blockage by amantadine variants of the influenza M2WT and M2S31N explained. J. Med. Chem. 60:1716–33
    [Google Scholar]
  49. 49. 
    Ekanayake EV, Fu R, Cross TA. 2016. Structural influences: cholesterol, drug, and proton binding to full-length influenza A M2 protein. Biophys. J. 110:1391–99
    [Google Scholar]
  50. 50. 
    Williams JK, Tietze D, Wang J, Wu Y, DeGrado WF, Hong M. 2013. Drug-induced conformational and dynamical changes of the S31N mutant of the influenza M2 proton channel investigated by solid-state NMR. J. Am. Chem. Soc. 135:9885–97
    [Google Scholar]
  51. 51. 
    Cady SD, Mishanina TV, Hong M. 2009. Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding. J. Mol. Biol. 385:1127–41
    [Google Scholar]
  52. 52. 
    Andreas LB, Eddy MT, Pielak RM, Chou J, Griffin RG. 2010. Magic angle spinning NMR investigation of influenza A M218−60: support for an allosteric mechanism of inhibition. J. Am. Chem. Soc. 132:10958–60
    [Google Scholar]
  53. 53. 
    Cady SD, Hong M 2008. Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. PNAS 105:1483–88
    [Google Scholar]
  54. 54. 
    Andreas LB, Barnes AB, Corzilius B, Chou JJ, Miller EA et al. 2013. Dynamic nuclear polarization study of inhibitor binding to the M218–60 proton transporter from influenza A. Biochemistry 52:2774–82
    [Google Scholar]
  55. 55. 
    Andreas LB, Eddy MT, Chou JJ, Griffin RG. 2012. Magic-angle-spinning NMR of the drug resistant S31N M2 proton transporter from influenza A. J. Am. Chem. Soc. 134:7215–18
    [Google Scholar]
  56. 56. 
    Schnell JR, Chou JJ. 2008. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–95
    [Google Scholar]
  57. 57. 
    Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L et al. 2008. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–99
    [Google Scholar]
  58. 58. 
    Liao SY, Fritzsching KJ, Hong M. 2013. Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR. Protein Sci. 22:1623–38
    [Google Scholar]
  59. 59. 
    Mandala VS, Williams JK, Hong M. 2018. Structure and dynamics of membrane proteins from solid-state NMR. Annu. Rev. Biophys. 47:201–22
    [Google Scholar]
  60. 60. 
    Kwon B, Roos M, Mandala VS, Shcherbakov AA, Hong M. 2019. Elucidating relayed proton transfer through a His–Trp–His triad of a transmembrane proton channel by solid-state NMR. J. Mol. Biol. 431:2554–66
    [Google Scholar]
  61. 61. 
    Schoeman D, Fielding BC. 2019. Coronavirus envelope protein: current knowledge. Virol. J. 16:69
    [Google Scholar]
  62. 62. 
    DeDiego ML, Álvarez E, Almazán F, Rejas MT, Lamirande E et al. 2007. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol. 81:1701–13
    [Google Scholar]
  63. 63. 
    Surya W, Li Y, Torres J. 2018. Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim. Biophys. Acta Biomembr. 1860:1309–17
    [Google Scholar]
  64. 64. 
    Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX, Gong X. 2007. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 16:2065–71
    [Google Scholar]
  65. 65. 
    Li Y, Surya W, Claudine S, Torres J 2014. Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J. Biol. Chem. 289:12535–49
    [Google Scholar]
  66. 66. 
    Quinn CM, Wang M, Fritz MP, Runge B, Ahn J et al. 2018. Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5α identified by magic-angle spinning NMR and molecular dynamics simulations. PNAS 115:11519–24
    [Google Scholar]
  67. 67. 
    Gupta S, Tycko R. 2018. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. J. Biomol. NMR 70:103–14
    [Google Scholar]
  68. 68. 
    Wang M, Quinn CM, Perilla JR, Zhang H, Shirra R Jr. et al. 2017. Quenching protein dynamics interferes with HIV capsid maturation. Nat. Commun. 8:1779
    [Google Scholar]
  69. 69. 
    Bayro MJ, Tycko R. 2016. Structure of the dimerization interface in the mature HIV-1 capsid protein lattice from solid state NMR of tubular assemblies. J. Am. Chem. Soc. 138:8538–46
    [Google Scholar]
  70. 70. 
    Liu C, Perilla JR, Ning J, Lu M, Hou G et al. 2016. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nat. Commun. 7:10714
    [Google Scholar]
  71. 71. 
    Lu J-X, Bayro MJ, Tycko R. 2016. Major variations in HIV-1 capsid assembly morphologies involve minor variations in molecular structures of structurally ordered protein segments. J. Biol. Chem. 291:13098–112
    [Google Scholar]
  72. 72. 
    Gupta R, Lu M, Hou G, Caporini MA, Rosay M et al. 2016. Dynamic nuclear polarization enhanced MAS NMR spectroscopy for structural analysis of HIV-1 protein assemblies. J. Phys. Chem. B 120:329–39
    [Google Scholar]
  73. 73. 
    Zhang H, Hou G, Lu M, Ahn J, Byeon I-JL et al. 2016. HIV-1 capsid function is regulated by dynamics: quantitative atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM, and MD. J. Am. Chem. Soc. 138:14066–75
    [Google Scholar]
  74. 74. 
    Suiter CL, Quinn CM, Lu M, Hou G, Zhang H, Polenova T. 2015. MAS NMR of HIV-1 protein assemblies. J. Magn. Reson. 253:10–22
    [Google Scholar]
  75. 75. 
    Lu M, Hou G, Zhang H, Suiter CL, Ahn J et al. 2015. Dynamic allostery governs cyclophilin A–HIV capsid interplay. PNAS 112:14617–22
    [Google Scholar]
  76. 76. 
    Han Y, Hou G, Suiter CL, Ahn J, Byeon I-JL et al. 2013. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 135:17793–803
    [Google Scholar]
  77. 77. 
    Byeon I-JL, Hou G, Han Y, Suiter CL, Ahn J et al. 2012. Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies. J. Am. Chem. Soc. 134:6455–66
    [Google Scholar]
  78. 78. 
    Han Y, Ahn J, Concel J, Byeon I-JL, Gronenborn AM et al. 2010. Solid-state NMR studies of HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 132:1976–87
    [Google Scholar]
  79. 79. 
    Gupta S, Louis JM, Tycko R 2020. Effects of an HIV-1 maturation inhibitor on the structure and dynamics of CA-SP1 junction helices in virus-like particles. PNAS 117:10286–93
    [Google Scholar]
  80. 80. 
    Bayro MJ, Chen B, Yau W-M, Tycko R. 2014. Site-specific structural variations accompanying tubular assembly of the HIV-1 capsid protein. J. Mol. Biol. 426:1109–27
    [Google Scholar]
  81. 81. 
    Do HQ, Wittlich M, Glück JM, Möckel L, Willbold D et al. 2013. Full-length Vpu and human CD4(372–433) in phospholipid bilayers as seen by magic angle spinning NMR. Biol. Chem. 394:1453–63
    [Google Scholar]
  82. 82. 
    Lu J-X, Sharpe S, Ghirlando R, Yau W-M, Tycko R. 2010. Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers. Protein Sci. 19:1877–96
    [Google Scholar]
  83. 83. 
    Sharpe S, Yau W-M, Tycko R. 2006. Structure and dynamics of the HIV-1 Vpu transmembrane domain revealed by solid-state NMR with magic-angle spinning. Biochemistry 45:918–33
    [Google Scholar]
  84. 84. 
    Kwon B, Mandal T, Elkins MR, Oh Y, Cui Q, Hong M. 2020. Cholesterol interaction with the trimeric HIV fusion protein gp41 in lipid bilayers investigated by solid-state NMR spectroscopy and molecular dynamics simulations. J. Mol. Biol. 432:4705–21
    [Google Scholar]
  85. 85. 
    Lee M, Morgan CA, Hong M. 2019. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers. J. Biol. Chem. 294:14732–44
    [Google Scholar]
  86. 86. 
    Kwon B, Lee M, Waring AJ, Hong M. 2018. Oligomeric structure and three-dimensional fold of the HIV gp41 membrane-proximal external region and transmembrane domain in phospholipid bilayers. J. Am. Chem. Soc. 140:8246–59
    [Google Scholar]
  87. 87. 
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in old world monkeys. Nature 427:848–53
    [Google Scholar]
  88. 88. 
    Stremlau M, Perron M, Lee M, Li Y, Song B et al. 2006. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. PNAS 103:5514–19
    [Google Scholar]
  89. 89. 
    Skrisovska L, Schubert M, Allain FHT. 2009. Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J. Biomol. NMR 46:51–65
    [Google Scholar]
  90. 90. 
    Zinke M, Fricke P, Lange S, Zinn-Justin S, Lange A. 2018. Protein−protein interfaces probed by methyl labeling and proton-detected solid-state NMR spectroscopy. ChemPhysChem 19:2457–60
    [Google Scholar]
  91. 91. 
    Zinke M, Fricke P, Samson C, Hwang S, Wall JS et al. 2017. Bacteriophage tail-tube assembly studied by proton-detected 4D solid-state NMR. Angew. Chem. Int. Ed. 56:9497–501
    [Google Scholar]
  92. 92. 
    Tissot AC, Renhofa R, Schmitz N, Cielens I, Meijerink E et al. 2010. Versatile virus-like particle carrier for epitope based vaccines. PLOS ONE 5:e9809
    [Google Scholar]
  93. 93. 
    Hu X, Deng Y, Chen X, Zhou Y, Zhang H et al. 2017. Immune response of a novel ATR-AP205-001 conjugate anti-hypertensive vaccine. Sci. Rep. 7:12580
    [Google Scholar]
  94. 94. 
    Janitzek CM, Peabody J, Thrane S, Carlsen PHR, Theander TG et al. 2019. A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci. Rep. 9:5260
    [Google Scholar]
  95. 95. 
    Yenkoidiok-Douti L, Williams AE, Canepa GE, Molina-Cruz A, Barillas-Mury C. 2019. Engineering a virus-like particle as an antigenic platform for a Pfs47-targeted malaria transmission-blocking vaccine. Sci. Rep. 9:16833
    [Google Scholar]
  96. 96. 
    Palladini A, Thrane S, Janitzek CM, Pihl J, Clemmensen SB et al. 2018. Virus-like particle display of HER2 induces potent anti-cancer responses. OncoImmunology 7:e1408749
    [Google Scholar]
  97. 97. 
    Maurer P, Bachmann MF. 2007. Vaccination against nicotine: an emerging therapy for tobacco dependence. Expert Opin. Investig. Drugs 16:1775–83
    [Google Scholar]
  98. 98. 
    Mohsen MO, Augusto G, Bachmann MF 2020. The 3Ds in virus-like particle based-vaccines: “design, delivery and dynamics. .” Immunol. Rev. 296:155–68
    [Google Scholar]
  99. 99. 
    Sergeyev IV, Itin B, Rogawski R, Day LA, McDermott AE 2017. Efficient assignment and NMR analysis of an intact virus using sequential side-chain correlations and DNP sensitization. PNAS 114:5171–76
    [Google Scholar]
  100. 100. 
    Sergeyev IV, Bahri S, Day LA, McDermott AE. 2014. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR. J. Chem. Phys. 141:22D533
    [Google Scholar]
  101. 101. 
    Sergeyev IV, Day LA, Goldbourt A, McDermott AE. 2011. Chemical shifts for the unusual DNA structure in Pf1 bacteriophage from dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy. J. Am. Chem. Soc. 133:20208–17
    [Google Scholar]
  102. 102. 
    Goldbourt A, Day LA, McDermott AE. 2010. Intersubunit hydrophobic interactions in Pf1 filamentous phage. J. Biol. Chem. 285:37051–59
    [Google Scholar]
  103. 103. 
    Lorieau JL, Day LA, McDermott AE 2008. Conformational dynamics of an intact virus: order parameters for the coat protein of Pf1 bacteriophage. PNAS 105:10366–71
    [Google Scholar]
  104. 104. 
    Goldbourt A, Day LA, McDermott AE. 2007. Assignment of congested NMR spectra: carbonyl backbone enrichment via the Entner–Doudoroff pathway. J. Magn. Reson. 189:157–65
    [Google Scholar]
  105. 105. 
    Abramov G, Shaharabani R, Morag O, Avinery R, Haimovich A et al. 2017. Structural effects of single mutations in a filamentous viral capsid across multiple length scales. Biomacromolecules 18:2258–66
    [Google Scholar]
  106. 106. 
    Morag O, Abramov G, Goldbourt A. 2014. Complete chemical shift assignment of the ssDNA in the filamentous bacteriophage fd reports on its conformation and on its interface with the capsid shell. J. Am. Chem. Soc. 136:2292–301
    [Google Scholar]
  107. 107. 
    Morag O, Abramov G, Goldbourt A. 2011. Similarities and differences within members of the Ff family of filamentous bacteriophage viruses. J. Phys. Chem. B 115:15370–79
    [Google Scholar]
  108. 108. 
    Porat G, Lusky OS, Dayan N, Goldbourt A. 2021. Nonuniformly sampled exclusively-13C/15N 4D solid-state NMR experiments: assignment and characterization of IKe phage capsid. Magn. Reson. Chem. 59:237–46
    [Google Scholar]
  109. 109. 
    Liu D, Day L. 1994. Pf1 virus structure: helical coat protein and DNA with paraxial phosphates. Science 265:671–74
    [Google Scholar]
  110. 110. 
    Tsuboi M, Tsunoda M, Overman SA, Benevides JM, Thomas GJ. 2010. A structural model for the single-stranded DNA genome of filamentous bacteriophage Pf1. Biochemistry 49:1737–43
    [Google Scholar]
  111. 111. 
    Welsh LC, Symmons MF, Marvin DA 2000. The molecular structure and structural transition of the α-helical capsid in filamentous bacteriophage Pf1. Acta Crystallogr. D 56:13750
    [Google Scholar]
  112. 112. 
    Baltimore D. 1971. Expression of animal virus genomes. Bacteriol. Rev. 35:235–41
    [Google Scholar]
/content/journals/10.1146/annurev-virology-011921-064653
Loading
/content/journals/10.1146/annurev-virology-011921-064653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error