1932

Abstract

Programmed ribosomal frameshifting (PRF) is a conserved translational recoding mechanism found in all branches of life and viruses. In bacteria, archaea, and eukaryotes PRF is used to downregulate protein production by inducing a premature termination of translation, which triggers messenger RNA (mRNA) decay. In viruses, PRF is used to drive the production of a new protein while downregulating the production of another protein, thus maintaining a stoichiometry optimal for productive infection. Traditionally, PRF motifs have been defined by the characteristics of two elements: a slippery heptanucleotide sequence followed by an RNA pseudoknot or stem-loop within the mRNA. Recently, additional and new elements have been identified that regulate PRF in both host and viral translation. These additional factors suggest PRF is an evolutionarily conserved process whose function and regulation we are just beginning to understand.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-012120-101548
2020-09-29
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-012120-101548.html?itemId=/content/journals/10.1146/annurev-virology-012120-101548&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV 2016. Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res 44:7007–78
    [Google Scholar]
  2. 2. 
    Dinman JD. 2006. Programmed ribosomal frameshifting goes beyond viruses: Organisms from all three kingdoms use frameshifting to regulate gene expression, perhaps signaling a paradigm shift. Microbe Wash. DC 1:521–27
    [Google Scholar]
  3. 3. 
    Jacks T, Varmus HE. 1985. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:1237–42
    [Google Scholar]
  4. 4. 
    Schwartz DE, Tizard R, Gilbert W 1983. Nucleotide sequence of Rous sarcoma virus. Cell 32:853–69
    [Google Scholar]
  5. 5. 
    Weiss SR, Hackett PB, Oppermann H, Ullrich A, Levintow L, Bishop JM 1978. Cell-free translation of avian sarcoma virus RNA: Suppression of the gag termination codon does not augment synthesis of the joint gag/pol product. Cell 15:607–14
    [Google Scholar]
  6. 6. 
    Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE 1988. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331:280–83
    [Google Scholar]
  7. 7. 
    Brierley I, Boursnell ME, Binns MM, Bilimoria B, Blok VC et al. 1987. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–85
    [Google Scholar]
  8. 8. 
    Firth AE, Jagger BW, Wise HM, Nelson CC, Parsawar K et al. 2012. Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction. Open Biol 2:120109
    [Google Scholar]
  9. 9. 
    Fang Y, Treffers EE, Li Y, Tas A, Sun Z et al. 2012. Efficient −2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. PNAS 109:E2920–2920
    [Google Scholar]
  10. 10. 
    Li Y, Firth AE, Brierley I, Cai Y, Napthine S et al. 2019. Programmed −2/−1 ribosomal frameshifting in simarteriviruses: an evolutionarily conserved mechanism. J. Virol. 93:e00370-19
    [Google Scholar]
  11. 11. 
    Xue SA, Jones MD, Lu QL, Middeldorp JM, Griffin BE 2003. Genetic diversity: Frameshift mechanisms alter coding of a gene (Epstein-Barr virus LF3 gene) that contains multiple 102-base-pair direct sequence repeats. Mol. Cell. Biol. 23:2192–201
    [Google Scholar]
  12. 12. 
    Christie GE, Temple LM, Bartlett BA, Goodwin TS 2002. Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J. Bacteriol. 184:6522–31
    [Google Scholar]
  13. 13. 
    Levin ME, Hendrix RW, Casjens SR 1993. A programmed translational frameshift is required for the synthesis of a bacteriophage λ tail assembly protein. J. Mol. Biol. 234:124–39
    [Google Scholar]
  14. 14. 
    Condron BG, Atkins JF, Gesteland RF 1991. Frameshifting in gene 10 of bacteriophage T7. J. Bacteriol. 173:6998–7003
    [Google Scholar]
  15. 15. 
    Kwun HJ, Toptan T, Ramos da Silva S, Atkins JF, Moore PS, Chang Y 2014. Human DNA tumor viruses generate alternative reading frame proteins through repeat sequence recoding. PNAS 111:E4342–4342
    [Google Scholar]
  16. 16. 
    Advani VM, Dinman JD. 2016. Reprogramming the genetic code: the emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 38:21–26
    [Google Scholar]
  17. 17. 
    Hammell AB, Taylor RC, Peltz SW, Dinman JD 1999. Identification of putative programmed −1 ribosomal frameshift signals in large DNA databases. Genome Res 9:417–27
    [Google Scholar]
  18. 18. 
    Hogg JR. 2016. Viral evasion and manipulation of host RNA quality control pathways. J. Virol. 90:7010–18
    [Google Scholar]
  19. 19. 
    Flint SJ, Racaniello VR, Rall GF, Skalka AM, Enquist LW 2015. Principles of Virology Washington, DC: ASM
    [Google Scholar]
  20. 20. 
    Li Y, Shang P, Shyu D, Carrillo C, Naraghi-Arani P et al. 2018. Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses. Virology 517:164–76
    [Google Scholar]
  21. 21. 
    Ito M, Yanagi Y, Ichinohe T 2012. Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLOS Pathog 8:e1002857
    [Google Scholar]
  22. 22. 
    Rogers KJ, Jones-Burrage S, Maury W, Mukhopadhyay S 2020. TF protein of Sindbis virus antagonizes host type I interferon responses in a palmitoylation-dependent manner. Virology 542:63–70
    [Google Scholar]
  23. 23. 
    Melian EB, Hinzman E, Nagasaki T, Firth AE, Wills NM et al. 2010. NS1′ of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J. Virol. 84:1641–47
    [Google Scholar]
  24. 24. 
    Snyder JE, Kulcsar KA, Schultz KL, Riley CP, Neary JT et al. 2013. Functional characterization of the alphavirus TF protein. J. Virol. 87:8511–23
    [Google Scholar]
  25. 25. 
    Ramsey J, Renzi EC, Arnold RJ, Trinidad JC, Mukhopadhyay S 2017. Palmitoylation of Sindbis virus TF protein regulates its plasma membrane localization and subsequent incorporation into virions. J. Virol. 91:e02000-16
    [Google Scholar]
  26. 26. 
    Napthine S, Ling R, Finch LK, Jones JD, Bell S et al. 2017. Protein-directed ribosomal frameshifting temporally regulates gene expression. Nat. Commun. 8:15582
    [Google Scholar]
  27. 27. 
    Kendra JA, de la Fuente C, Brahms A, Woodson C, Bell TM et al. 2017. Ablation of programmed −1 ribosomal frameshifting in Venezuelan equine encephalitis virus results in attenuated neuropathogenicity. J. Virol. 91:e01766-16
    [Google Scholar]
  28. 28. 
    Plant EP, Dinman JD. 2008. The role of programmed −1 ribosomal frameshifting in coronavirus propagation. Front. Biosci. 13:4873–81
    [Google Scholar]
  29. 29. 
    Firth AE, Chung BY, Fleeton MN, Atkins JF 2008. Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virol. J. 5:108
    [Google Scholar]
  30. 30. 
    Jacks T, Madhani HD, Masiarz FR, Varmus HE 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447–58
    [Google Scholar]
  31. 31. 
    ten Dam EB, Verlaan PW, Pleij CW 1995. Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions. RNA 1:146–54
    [Google Scholar]
  32. 32. 
    Giedroc DP, Cornish PV. 2009. Frameshifting RNA pseudoknots: structure and mechanism. Virus Res 139:193–208
    [Google Scholar]
  33. 33. 
    Chamorro M, Parkin N, Varmus HE 1992. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. PNAS 89:713–17
    [Google Scholar]
  34. 34. 
    Mouzakis KD, Lang AL, Vander Meulen KA, Easterday PD, Butcher SE 2013. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res 41:1901–13
    [Google Scholar]
  35. 35. 
    Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I 2006. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441:244–47
    [Google Scholar]
  36. 36. 
    Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH et al. 2008. Following translation by single ribosomes one codon at a time. Nature 452:598–603
    [Google Scholar]
  37. 37. 
    Leininger SE, Narayan K, Deutsch C, O'Brien EP 2019. Mechanochemistry in translation. Biochemistry 58:4657–66
    [Google Scholar]
  38. 38. 
    Zhong Z, Yang L, Zhang H, Shi J, Vandana JJ et al. 2016. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for −1 ribosomal frameshifting stimulation. Sci. Rep. 6:39549
    [Google Scholar]
  39. 39. 
    Chen G, Chang KY, Chou MY, Bustamante C, Tinoco I Jr 2009. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of −1 ribosomal frameshifting. PNAS 106:12706–11
    [Google Scholar]
  40. 40. 
    Ritchie DB, Foster DA, Woodside MT 2012. Programmed −1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. PNAS 109:16167–72
    [Google Scholar]
  41. 41. 
    Bock LV, Caliskan N, Korniy N, Peske F, Rodnina MV, Grubmuller H 2019. Thermodynamic control of −1 programmed ribosomal frameshifting. Nat. Commun. 10:4598
    [Google Scholar]
  42. 42. 
    Halma MTJ, Ritchie DB, Cappellano TR, Neupane K, Woodside MT 2019. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure. PNAS 116:19500–5
    [Google Scholar]
  43. 43. 
    Moomau C, Musalgaonkar S, Khan YA, Jones JE, Dinman JD 2016. Structural and functional characterization of programmed ribosomal frameshift signals in West Nile virus strains reveals high structural plasticity among cis-acting RNA elements. J. Biol. Chem. 291:15788–95
    [Google Scholar]
  44. 44. 
    Houck-Loomis B, Durney MA, Salguero C, Shankar N, Nagle JM et al. 2011. An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature 480:561–64
    [Google Scholar]
  45. 45. 
    Nixon PL, Giedroc DP. 2000. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot. J. Mol. Biol. 296:659–71
    [Google Scholar]
  46. 46. 
    Nixon PL, Giedroc DP. 1998. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability. Biochemistry 37:16116–29
    [Google Scholar]
  47. 47. 
    Smith AM, Costello MS, Kettring AH, Wingo RJ, Moore SD 2019. Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs. PNAS 116:21769–79
    [Google Scholar]
  48. 48. 
    Korniy N, Samatova E, Anokhina MM, Peske F, Rodnina MV 2019. Mechanisms and biomedical implications of −1 programmed ribosome frameshifting on viral and bacterial mRNAs. FEBS Lett 593:1468–82
    [Google Scholar]
  49. 49. 
    Peng BZ, Bock LV, Belardinelli R, Peske F, Grubmuller H, Rodnina MV 2019. Active role of elongation factor G in maintaining the mRNA reading frame during translation. Sci. Adv. 5:eaax8030
    [Google Scholar]
  50. 50. 
    Liao PY, Choi YS, Dinman JD, Lee KH 2011. The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed −1 ribosomal frameshifting. Nucleic Acids Res 39:300–12
    [Google Scholar]
  51. 51. 
    Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV 2014. Programmed −1 frameshifting by kinetic partitioning during impeded translocation. Cell 157:1619–31
    [Google Scholar]
  52. 52. 
    Kim HK, Liu F, Fei J, Bustamante C, Gonzalez RL Jr, Tinoco I Jr 2014. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. PNAS 111:5538–43
    [Google Scholar]
  53. 53. 
    Chen J, Petrov A, Johansson M, Tsai A, O'Leary SE, Puglisi JD 2014. Dynamic pathways of −1 translational frameshifting. Nature 512:328–32
    [Google Scholar]
  54. 54. 
    Choi J, O'Loughlin S, Atkins JF, Puglisi JD 2020. The energy landscape of −1 ribosomal frameshifting. Sci. Adv. 6:eaax6969
    [Google Scholar]
  55. 55. 
    Yan S, Wen JD, Bustamante C, Tinoco I Jr 2015. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 160:870–81
    [Google Scholar]
  56. 56. 
    Su MC, Chang CT, Chu CH, Tsai CH, Chang KY 2005. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for −1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res 33:134265–75
    [Google Scholar]
  57. 57. 
    Kelly JA, Dinman JD. 2020. Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS-CoV-2. bioRxiv 2020.03.13.991083. https://doi.org/10.1101/2020.03.13.991083
    [Crossref]
  58. 58. 
    Cho CP, Lin SC, Chou MY, Hsu HT, Chang KY 2013. Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins. PLOS ONE 8:e62283
    [Google Scholar]
  59. 59. 
    Charbonneau J, Gendron K, Ferbeyre G, Brakier-Gingras L 2012. The 5′ UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed −1 ribosomal frameshift that generates HIV-1 enzymes. RNA 18:519–29
    [Google Scholar]
  60. 60. 
    Mohan BR, Dinesh-Kumar SP, Miller WA 1995. Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology 212:186–95
    [Google Scholar]
  61. 61. 
    Hsu HT, Lin YH, Chang KY 2014. Synergetic regulation of translational reading-frame switch by ligand-responsive RNAs in mammalian cells. Nucleic Acids Res 42:14070–82
    [Google Scholar]
  62. 62. 
    Harrington HR, Zimmer MH, Chamness LM, Nash V, Penn WD et al. 2020. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. J. Biol. Chem. 295:6798808
    [Google Scholar]
  63. 63. 
    Ramsey J, Mukhopadhyay S. 2017. Disentangling the frames, the state of research on the alphavirus 6K and TF proteins. Viruses 9:228
    [Google Scholar]
  64. 64. 
    Chung BY, Firth AE, Atkins JF 2010. Frameshifting in alphaviruses: a diversity of 3′ stimulatory structures. J. Mol. Biol. 397:448–56
    [Google Scholar]
  65. 65. 
    Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I Jr, Bustamante C 2015. Mechanical force releases nascent chain–mediated ribosome arrest in vitro and in vivo. Science 348:457–60
    [Google Scholar]
  66. 66. 
    Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L et al. 2015. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep 12:1533–40
    [Google Scholar]
  67. 67. 
    Ismail N, Hedman R, Schiller N, von Heijne G 2012. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat. Struct. Mol. Biol. 19:1018–22
    [Google Scholar]
  68. 68. 
    Cymer F, Ismail N, von Heijne G 2014. Weak pulling forces exerted on Nin-orientated transmembrane segments during co-translational insertion into the inner membrane of Escherichia coli. . FEBS Lett 588:1930–34
    [Google Scholar]
  69. 69. 
    Niesen MJM, Muller-Lucks A, Hedman R, von Heijne G, Miller TF 3rd 2018. Forces on nascent polypeptides during membrane insertion and translocation via the Sec translocon. Biophys. J. 115:1885–94
    [Google Scholar]
  70. 70. 
    Brodsky JL, Goeckeler J, Schekman R 1995. BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. PNAS 92:9643–46
    [Google Scholar]
  71. 71. 
    Muldoon-Jacobs KL, Dinman JD. 2006. Specific effects of ribosome-tethered molecular chaperones on programmed −1 ribosomal frameshifting. Eukaryot. Cell 5:762–70
    [Google Scholar]
  72. 72. 
    Adamski FM, Donly BC, Tate WP 1993. Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA. Nucleic Acids Res 21:5074–78
    [Google Scholar]
  73. 73. 
    Rom E, Kahana C. 1994. Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. PNAS 91:3959–63
    [Google Scholar]
  74. 74. 
    Howard MT, Gesteland RF, Atkins JF 2004. Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides. RNA 10:1653–61
    [Google Scholar]
  75. 75. 
    Olsthoorn RC, Laurs M, Sohet F, Hilbers CW, Heus HA, Pleij CW 2004. Novel application of sRNA: stimulation of ribosomal frameshifting. RNA 10:1702–3
    [Google Scholar]
  76. 76. 
    Yu CH, Noteborn MH, Olsthoorn RC 2010. Stimulation of ribosomal frameshifting by antisense LNA. Nucleic Acids Res 38:8277–83
    [Google Scholar]
  77. 77. 
    Wu B, Zhang H, Sun R, Peng S, Cooperman BS et al. 2018. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Res 46:9736–48
    [Google Scholar]
  78. 78. 
    Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO et al. 2014. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512:265–69
    [Google Scholar]
  79. 79. 
    Li Y, Treffers EE, Napthine S, Tas A, Zhu L et al. 2014. Transactivation of programmed ribosomal frameshifting by a viral protein. PNAS 111:E2172–2172
    [Google Scholar]
  80. 80. 
    Napthine S, Treffers EE, Bell S, Goodfellow I, Fang Y et al. 2016. A novel role for poly(C) binding proteins in programmed ribosomal frameshifting. Nucleic Acids Res 44:5491–503
    [Google Scholar]
  81. 81. 
    Carocci M, Cordonnier N, Huet H, Romey A, Relmy A et al. 2011. Encephalomyocarditis virus 2A protein is required for viral pathogenesis and inhibition of apoptosis. J. Virol. 85:10741–54
    [Google Scholar]
  82. 82. 
    Wang X, Xuan Y, Han Y, Ding X, Ye K et al. 2019. Regulation of HIV-1 Gag-Pol expression by Shiftless, an inhibitor of programmed −1 ribosomal frameshifting. Cell 176:625–35
    [Google Scholar]
  83. 83. 
    Suzuki Y, Chin WX, Han Q, Ichiyama K, Lee CH et al. 2016. Characterization of RyDEN (C19orf66) as an interferon-stimulated cellular inhibitor against dengue virus replication. PLOS Pathog 12:e1005357
    [Google Scholar]
  84. 84. 
    Balinsky CA, Schmeisser H, Wells AI, Ganesan S, Jin T et al. 2017. IRAV (FLJ11286), an interferon-stimulated gene with antiviral activity against dengue virus, interacts with MOV10. J. Virol. 91:e01606-16
    [Google Scholar]
  85. 85. 
    Kobayashi Y, Zhuang J, Peltz S, Dougherty J 2010. Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting. J. Biol. Chem. 285:19776–84
    [Google Scholar]
  86. 86. 
    Inge-Vechtomov S, Zhouravleva G, Philippe M 2003. Eukaryotic release factors (eRFs) history. Biol. Cell 95:195–209
    [Google Scholar]
  87. 87. 
    de Smit MH, van Duin J, van Knippenberg PH, van Eijk HG 1994. CCC.UGA: a new site of ribosomal frameshifting in Escherichia coli. . Gene 143:43–47
    [Google Scholar]
  88. 88. 
    Atkins JF, Gesteland RF, Reid BR, Anderson CW 1979. Normal tRNAs promote ribosomal frameshifting. Cell 18:1119–31
    [Google Scholar]
  89. 89. 
    Weiss R, Gallant J. 1983. Mechanism of ribosome frameshifting during translation of the genetic code. Nature 302:389–93
    [Google Scholar]
  90. 90. 
    Belcourt MF, Farabaugh PJ. 1990. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339–52
    [Google Scholar]
  91. 91. 
    Pande S, Vimaladithan A, Zhao H, Farabaugh PJ 1995. Pulling the ribosome out of frame by +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Mol. Cell. Biol. 15:298–304
    [Google Scholar]
  92. 92. 
    Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ 1999. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol. Cell 4:1005–15
    [Google Scholar]
  93. 93. 
    Baranov PV, Gesteland RF, Atkins JF 2004. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA 10:221–30
    [Google Scholar]
  94. 94. 
    Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F et al. 2019. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res 47:5210–22
    [Google Scholar]
  95. 95. 
    Schmalen A, Karius-Fischer J, Rauch P, Setz C, Korn K et al. 2018. The N-terminus of the HIV-1 p6 Gag protein regulates susceptibility to degradation by IDE. Viruses 10:710
    [Google Scholar]
  96. 96. 
    Yelverton E, Lindsley D, Yamauchi P, Gallant JA 1994. The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli. Mol. Microbiol 11:303–13
    [Google Scholar]
  97. 97. 
    Han KZ, Ning J, Zhang BT, Wang YR, Zhang HK et al. 2016. High power single-frequency Innoslab amplifier. Appl. Opt. 55:5341–44
    [Google Scholar]
  98. 98. 
    Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM et al. 2012. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337:199–204
    [Google Scholar]
  99. 99. 
    Kim SN, Choi JH, Park MW, Jeong SJ, Han KS, Kim HJ 2005. Identification of the +1 ribosomal frameshifting site of LRV1–4 by mutational analysis. Arch. Pharm. Res. 28:956–62
    [Google Scholar]
  100. 100. 
    Auzat I, Droge A, Weise F, Lurz R, Tavares P 2008. Origin and function of the two major tail proteins of bacteriophage SPP1. Mol. Microbiol. 70:557–69
    [Google Scholar]
  101. 101. 
    Zimmer M, Sattelberger E, Inman RB, Calendar R, Loessner MJ 2003. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed +1 translational frameshifting in structural protein synthesis. Mol. Microbiol. 50:303–17
    [Google Scholar]
  102. 102. 
    Curran JF. 1993. Analysis of effects of tRNA:message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site. Nucleic Acids Res 21:1837–43
    [Google Scholar]
  103. 103. 
    Hong S, Sunita S, Maehigashi T, Hoffer ED, Dunkle JA, Dunham CM 2018. Mechanism of tRNA-mediated +1 ribosomal frameshifting. PNAS 115:11226–31
    [Google Scholar]
  104. 104. 
    Farabaugh PJ. 1996. Programmed translational frameshifting. Annu. Rev. Genet. 30:507–28
    [Google Scholar]
  105. 105. 
    Albers S, Czech A. 2016. Exploiting tRNAs to boost virulence. Life 6:4
    [Google Scholar]
  106. 106. 
    Pavon-Eternod M, David A, Dittmar K, Berglund P, Pan T et al. 2013. Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation. Nucleic Acids Res 41:1914–21
    [Google Scholar]
  107. 107. 
    Pang YL, Abo R, Levine SS, Dedon PC 2014. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res 42:e170
    [Google Scholar]
  108. 108. 
    Torrent M, Chalancon G, de Groot NS, Wuster A, Babu MM 2018. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11:eaat6409
    [Google Scholar]
  109. 109. 
    Riba A, Di Nanni N, Mittal N, Arhne E, Schmidt A, Zavolan M 2019. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. PNAS 116:15023–32
    [Google Scholar]
  110. 110. 
    Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y et al. 2010. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141:344–54
    [Google Scholar]
  111. 111. 
    Sanchez G, Bosch A, Pinto RM 2003. Genome variability and capsid structural constraints of hepatitis A virus. J. Virol. 77:452–59
    [Google Scholar]
  112. 112. 
    Zhou JH, Zhang J, Sun DJ, Ma Q, Chen HT et al. 2013. The distribution of synonymous codon choice in the translation initiation region of dengue virus. PLOS ONE 8:e77239
    [Google Scholar]
  113. 113. 
    Ding YZ, You YN, Sun DJ, Chen HT, Wang YL et al. 2014. The effects of the context-dependent codon usage bias on the structure of the nsp1α of porcine reproductive and respiratory syndrome virus. Biomed. Res. Int. 2014:765320
    [Google Scholar]
  114. 114. 
    Gerresheim GK, Bathke J, Michel AM, Andreev DE, Shalamova LA et al. 2019. Cellular gene expression during hepatitis C virus replication as revealed by ribosome profiling. Int. J. Mol. Sci. 20:1321
    [Google Scholar]
  115. 115. 
    Dinman JD, Wickner RB. 1992. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 66:3669–76
    [Google Scholar]
  116. 116. 
    Rodnina MV. 2016. The ribosome in action: tuning of translational efficiency and protein folding. Protein Sci 25:1390–406
    [Google Scholar]
  117. 117. 
    Mauger DM, Cabral BJ, Presnyak V, Su SV, Reid DW et al. 2019. mRNA structure regulates protein expression through changes in functional half-life. PNAS 116:24075–83
    [Google Scholar]
  118. 118. 
    Kudla G, Murray AW, Tollervey D, Plotkin JB 2009. Coding-sequence determinants of gene expression in Escherichia coli. . Science 324:255–58
    [Google Scholar]
  119. 119. 
    Gingold H, Dahan O, Pilpel Y 2012. Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome. Nucleic Acids Res 40:10053–63
    [Google Scholar]
  120. 120. 
    Ben-Yehezkel T, Atar S, Zur H, Diament A, Goz E et al. 2015. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants. RNA Biol 12:972–84
    [Google Scholar]
  121. 121. 
    Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P et al. 2012. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1:251–64
    [Google Scholar]
  122. 122. 
    Waudby CA, Dobson CM, Christodoulou J 2019. Nature and regulation of protein folding on the ribosome. Trends Biochem. Sci. 44:914–26
    [Google Scholar]
  123. 123. 
    Bartoszewski R, Kroliczewski J, Piotrowski A, Jasiecka AJ, Bartoszewska S et al. 2016. Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. Cell. Mol. Biol. Lett. 21:23
    [Google Scholar]
  124. 124. 
    O'Brien EP, Ciryam P, Vendruscolo M, Dobson CM 2014. Understanding the influence of codon translation rates on cotranslational protein folding. Acc. Chem. Res. 47:1536–44
    [Google Scholar]
  125. 125. 
    Neuman BW, Stein DA, Kroeker AD, Churchill MJ, Kim AM et al. 2005. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol. 79:9665–76
    [Google Scholar]
  126. 126. 
    Brierley I, Dos Ramos FJ 2006. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res 119:29–42
    [Google Scholar]
  127. 127. 
    Brakier-Gingras L, Charbonneau J, Butcher SE 2012. Targeting frameshifting in the human immunodeficiency virus. Expert Opin. Ther. Targets 16:249–58
    [Google Scholar]
  128. 128. 
    Hu HT, Cho CP, Lin YH, Chang KY 2016. A general strategy to inhibiting viral −1 frameshifting based on upstream attenuation duplex formation. Nucleic Acids Res 44:256–66
    [Google Scholar]
  129. 129. 
    Dinman JD, Ruiz-Echevarria MJ, Peltz SW 1998. Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents. Trends Biotechnol 16:190–96
    [Google Scholar]
  130. 130. 
    Dolan PT, Whitfield ZJ, Andino R 2018. Mapping the evolutionary potential of RNA viruses. Cell Host Microbe 23:435–46
    [Google Scholar]
  131. 131. 
    Ogden PJ, Kelsic ED, Sinai S, Church GM 2019. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366:1139–43
    [Google Scholar]
  132. 132. 
    Jacobs JL, Belew AT, Rakauskaite R, Dinman JD 2007. Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. . Nucleic Acids Res 35:165–74
    [Google Scholar]
  133. 133. 
    Manktelow E, Shigemoto K, Brierley I 2005. Characterization of the frameshift signal of Edr, a mammalian example of programmed −1 ribosomal frameshifting. Nucleic Acids Res 33:1553–63
    [Google Scholar]
  134. 134. 
    Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J et al. 2006. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA 296:2805–14
    [Google Scholar]
  135. 135. 
    Clark MB, Janicke M, Gottesbuhren U, Kleffmann T, Legge M et al. 2007. Mammalian gene PEG10 expresses two reading frames by high efficiency −1 frameshifting in embryonic-associated tissues. J. Biol. Chem. 282:37359–69
    [Google Scholar]
/content/journals/10.1146/annurev-virology-012120-101548
Loading
/content/journals/10.1146/annurev-virology-012120-101548
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error