1932

Abstract

The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-012423-110530
2023-09-29
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-012423-110530.html?itemId=/content/journals/10.1146/annurev-virology-012423-110530&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Maragakis LL, Perencevich EN, Cosgrove SE. 2008. Clinical and economic burden of antimicrobial resistance. Expert Rev. Anti-Infect. Ther. 6:5751–63
    [Google Scholar]
  2. 2.
    de Kraker MEA, Davey PG, Grundmann H, BURDEN Study Group 2011. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLOS Med. 8:10e1001104
    [Google Scholar]
  3. 3.
    Cosgrove SE. 2006. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 42:Suppl. 2S82–89
    [Google Scholar]
  4. 4.
    Sommer MOA, Munck C, Toft-Kehler RV, Andersson DI. 2017. Prediction of antibiotic resistance: time for a new preclinical paradigm?. Nat. Rev. Microbiol. 15:11689–96
    [Google Scholar]
  5. 5.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18:3268–81
    [Google Scholar]
  6. 6.
    Streicher LM. 2021. Exploring the future of infectious disease treatment in a post-antibiotic era: a comparative review of alternative therapeutics. J. Glob. Antimicrob. Resist. 24:285–95
    [Google Scholar]
  7. 7.
    World Health Organ 2014. Antimicrobial Resistance: Global Report on Surveillance. Geneva: World Health Organ.
  8. 8.
    Cent. Dis. Control Prev 2019. Antibiotic Resistance Threats in the United States. Atlanta: US Dep. Health Hum. Serv.
  9. 9.
    Sulakvelidze A, Alavidze Z, Morris JG. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45:3649–59
    [Google Scholar]
  10. 10.
    Chan BK, Abedon ST. 2012. Phage therapy pharmacology: phage cocktails. Adv. Appl. Microbiol. 78:1–23
    [Google Scholar]
  11. 11.
    Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Future Microbiol. 8:6769–83
    [Google Scholar]
  12. 12.
    Gordillo Altamirano FL, Barr JJ. 2019. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 32:2e00066–18
    [Google Scholar]
  13. 13.
    Liu D, Van Belleghem JD, de Vries CR, Burgener E, Chen Q et al. 2021. The safety and toxicity of phage therapy: a review of animal and clinical studies. Viruses 13:71268
    [Google Scholar]
  14. 14.
    Loc-Carrillo C, Abedon ST. 2011. Pros and cons of phage therapy. Bacteriophage 1:2111–14
    [Google Scholar]
  15. 15.
    Nilsson AS. 2014. Phage therapy—constraints and possibilities. Upsala J. Med. Sci. 119:2192–98
    [Google Scholar]
  16. 16.
    Principi N, Silvestri E, Esposito S. 2019. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 10:513
    [Google Scholar]
  17. 17.
    Rostøl JT, Marraffini L. 2019. Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25:2184–94
    [Google Scholar]
  18. 18.
    Bernheim A, Sorek R. 2020. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18:2113–19
    [Google Scholar]
  19. 19.
    Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. 2022. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7:101568–79
    [Google Scholar]
  20. 20.
    Oechslin F. 2018. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10:7351
    [Google Scholar]
  21. 21.
    McCallin S, Oechslin F 2019. Bacterial resistance to phage and its impact on clinical therapy. Phage Therapy: A Practical Approach A Górski, R Międzybrodzki, F Borysowski 59–88. Cham, Switz.: Springer
    [Google Scholar]
  22. 22.
    Phillips ZN, Tram G, Seib KL, Atack JM. 2019. Phase-variable bacterial loci: how bacteria gamble to maximise fitness in changing environments. Biochem. Soc. Transact. 47:41131–41
    [Google Scholar]
  23. 23.
    Beamud B, García-González N, Gómez-Ortega M, González-Candelas F, Domingo-Calap P, Sanjuan R. 2023. Genetic determinants of host tropism in Klebsiella phages. Cell Rep. 42:2112048
    [Google Scholar]
  24. 24.
    Wong GCL, Antani JD, Lele PP, Chen J, Nan B et al. 2021. Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Phys. Biol. 18:5051501
    [Google Scholar]
  25. 25.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. 2020. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18:267–83
    [Google Scholar]
  26. 26.
    Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:2174–82
    [Google Scholar]
  27. 27.
    Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y et al. 2019. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574:7780691–95
    [Google Scholar]
  28. 28.
    Tal N, Morehouse BR, Millman A, Stokar-Avihail A, Avraham C et al. 2021. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184:235728–39.e16
    [Google Scholar]
  29. 29.
    Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE. 2012. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:6067428–32
    [Google Scholar]
  30. 30.
    Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature 577:7790327–36
    [Google Scholar]
  31. 31.
    Samson JE, Magadán AH, Sabri M, Moineau S. 2013. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11:10675–87
    [Google Scholar]
  32. 32.
    Birkholz N, Fineran PC. 2022. Turning down the (C)BASS: Phage-encoded inhibitors jam bacterial immune signaling. Mol. Cell 82:122185–87
    [Google Scholar]
  33. 33.
    Costa AR, van den Berg DF, Esser JQ, Muralidharan A, van den Bossche H et al. 2022. Accumulation of defense systems drives panphage resistance in Pseudomonas aeruginosa. bioRxiv 2022.08.12.503731. https://doi.org/10.1101/2022.08.12.503731
  34. 34.
    Hobbs SJ, Wein T, Lu A, Morehouse BR, Schnabel J et al. 2022. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 605:7910522–26
    [Google Scholar]
  35. 35.
    Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD et al. 2020. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577:7789244–48
    [Google Scholar]
  36. 36.
    Kortright KE, Chan BK, Evans BR, Turner PE. Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1. J. Evol. Biol. 35:111475–87
    [Google Scholar]
  37. 37.
    Kortright KE, Doss-Gollin S, Chan BK, Turner PE. 2021. Evolution of bacterial cross-resistance to lytic phages and albicidin antibiotic. Front. Microbiol. 12:658374
    [Google Scholar]
  38. 38.
    Kortright KE, Done RE, Chan BK, Souza V, Turner PE. 2022. Selection for phage resistance reduces virulence of Shigella flexneri. Appl. Environ. Microbiol. 88:2e01514–21
    [Google Scholar]
  39. 39.
    Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG et al. 2020. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. PNAS 117:2111207–16
    [Google Scholar]
  40. 40.
    Pires DP, Melo LDR, Azeredo J. 2021. Understanding the complex phage-host interactions in biofilm communities. Annu. Rev. Virol. 8:73–94
    [Google Scholar]
  41. 41.
    Gordillo Altamirano FL, Barr JJ. 2021. Unlocking the next generation of phage therapy: The key is in the receptors. Curr. Opin. Biotechnol. 68:115–23
    [Google Scholar]
  42. 42.
    Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P et al. 2017. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 215:5703–12
    [Google Scholar]
  43. 43.
    Smith HW, Huggins MBY. 1982. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiology 128:2307–18
    [Google Scholar]
  44. 44.
    Smith HW, Huggins MBY. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology 129:82659–75
    [Google Scholar]
  45. 45.
    Smith HW, Huggins MB, Shaw KMY. 1987. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. Microbiology 133:51127–35
    [Google Scholar]
  46. 46.
    Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J et al. 2017. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61:10e00954–17
    [Google Scholar]
  47. 47.
    Zhvania P, Hoyle NS, Nadareishvili L, Nizharadze D, Kutateladze M. 2017. Phage therapy in a 16-year-old boy with Netherton syndrome. Front. Med. 4:94
    [Google Scholar]
  48. 48.
    Khawaldeh A, Morales S, Dillon B, Alavidze Z, Ginn AN et al. 2011. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J. Med. Microbiol. 60:111697–700
    [Google Scholar]
  49. 49.
    Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K et al. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25:5730–33
    [Google Scholar]
  50. 50.
    Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA et al. 2019. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19:135–45
    [Google Scholar]
  51. 51.
    Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P et al. 2016. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4:124–37
    [Google Scholar]
  52. 52.
    Chan BK, Stanley GL, Kortright KE, Modak M, Ott IM et al. 2023. Personalized inhaled bacteriophage therapy decreases multidrug-resistant Pseudomonas aeruginosa. medRxiv 2023.01.23.22283996. https://doi.org/10.1101/2023.01.23.22283996
  53. 53.
    Cohan FM, Zandi M, Turner PE. 2020. Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection. Virus Evol. 6:2veaa060
    [Google Scholar]
  54. 54.
    Torres-Barceló C, Turner PE, Buckling A. 2022. Mitigation of evolved bacterial resistance to phage therapy. Curr. Opin. Virol. 53:101201
    [Google Scholar]
  55. 55.
    Burch CL, Chao L. 1999. Evolution by small steps and rugged landscapes in the RNA virus ϕ6. Genetics 151:3921–27
    [Google Scholar]
  56. 56.
    Bull JJ, Pfennig DW, Wang IN. 2004. Genetic details, optimization and phage life histories. Trends Ecol. Evol. 19:276–82
    [Google Scholar]
  57. 57.
    Abedon ST. 1989. Selection for bacteriophage latent period length by bacterial density: a theoretical examination. Microb. Ecol. 18:279–88
    [Google Scholar]
  58. 58.
    Moldovan R, Chapman-McQuiston E, Wu XL. 2007. On kinetics of phage adsorption. Biophys. J. 93:1303–15
    [Google Scholar]
  59. 59.
    Dennehy JJ, Abedon ST 2021. Adsorption: phage acquisition of bacteria. Bacteriophages DR Harper, ST Abedon, BH Burrowes, ML McConville 93–117. Cham, Switz.: Springer
    [Google Scholar]
  60. 60.
    Dennehy JJ, Abedon ST 2021. Phage infection and lysis. Bacteriophages DR Harper, ST Abedon, BH Burrowes, ML McConville 341–83. Cham, Switz.: Springer
    [Google Scholar]
  61. 61.
    Dennehy JJ, Turner PE. 2004. Reduced fecundity is the cost of cheating in RNA virus ϕ6. Proc. R. Soc. B 271:15542275–82
    [Google Scholar]
  62. 62.
    Chao L, Rang CU, Wong LE. 2002. Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage ϕ6. J. Virol. 76:73276–81
    [Google Scholar]
  63. 63.
    Stent GS. 1963. Molecular Biology of Bacterial Viruses San Francisco: Freeman
  64. 64.
    Clokie MRJ, Kropinski AM, eds. 2009. Bacteriophages. Totowa, NJ: Humana
  65. 65.
    Yang Y, Shen W, Zhong Q, Chen Q, He X et al. 2020. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Front. Microbiol. 11:327
    [Google Scholar]
  66. 66.
    Forti F, Roach DR, Cafora M, Pasini ME, Horner DS et al. 2018. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob. Agents Chemother. 62:6e02573–17
    [Google Scholar]
  67. 67.
    Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ. 2021. Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals 14:101019
    [Google Scholar]
  68. 68.
    Niu YD, Liu H, Du H, Meng R, Sayed Mahmoud E et al. 2021. Efficacy of individual bacteriophages does not predict efficacy of bacteriophage cocktails for control of Escherichia coli O157. Front. Microbiol. 12:616712
    [Google Scholar]
  69. 69.
    Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L. 2011. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLOS ONE 6:2e16963
    [Google Scholar]
  70. 70.
    Borin JM, Avrani S, Barrick JE, Petrie KL, Meyer JR. 2021. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. PNAS 118:23e2104592118
    [Google Scholar]
  71. 71.
    Friman VP, Soanes-Brown D, Sierocinski P, Molin S, Johansen HK et al. 2016. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J. Evol. Biol. 29:1188–98
    [Google Scholar]
  72. 72.
    Ujmajuridze A, Chanishvili N, Goderdzishvili M, Leitner L, Mehnert U et al. 2018. Adapted bacteriophages for treating urinary tract infections. Front. Microbiol. 9:1832
    [Google Scholar]
  73. 73.
    Sáez Moreno D, Visram Z, Mutti M, Restrepo-Córdoba M, Hartmann S et al. 2021. ε2-Phages are naturally bred and have a vastly improved host range in Staphylococcus aureus over wild type phages. Pharmaceuticals 14:4325
    [Google Scholar]
  74. 74.
    Poullain V, Gandon S, Brockhurst MA, Buckling A, Hochberg ME. 2008. The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution 62:11–11
    [Google Scholar]
  75. 75.
    Zhang QG, Chu XL, Buckling A. 2021. Overcoming the growth–infectivity trade-off in a bacteriophage slows bacterial resistance evolution. Evol. Appl. 14:82055–63
    [Google Scholar]
  76. 76.
    Bono LM, Draghi JA, Turner PE. 2020. Evolvability costs of niche expansion. Trends Genet. 36:114–23
    [Google Scholar]
  77. 77.
    Betts A, Kaltz O, Hochberg ME. 2014. Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. PNAS 111:3011109–14
    [Google Scholar]
  78. 78.
    Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. 2016. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev. 80:3523–43
    [Google Scholar]
  79. 79.
    Guan J, Oromí-Bosch A, Mendoza SD, Karambelkar S, Berry JD, Bondy-Denomy J. 2022. Bacteriophage genome engineering with CRISPR–Cas13a. Nat. Microbiol. 7:121956–66
    [Google Scholar]
  80. 80.
    Adler BA, Hessler T, Cress BF, Lahiri A, Mutalik VK et al. 2022. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nat. Microbiol. 7:121967–79
    [Google Scholar]
  81. 81.
    Kilcher S, Loessner MJ. 2019. Engineering bacteriophages as versatile biologics. Trends Microbiol. 27:4355–67
    [Google Scholar]
  82. 82.
    Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S. 2021. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 68:151–59
    [Google Scholar]
  83. 83.
    Azam AH, Tan XE, Veeranarayanan S, Kiga K, Cui L. 2021. Bacteriophage technology and modern medicine. Antibiotics 10:8999
    [Google Scholar]
  84. 84.
    Yehl K, Lemire S, Yang AC, Ando H, Mimee M et al. 2019. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179:2459–69.e9
    [Google Scholar]
  85. 85.
    Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. PNAS 104:2711197–202
    [Google Scholar]
  86. 86.
    Pei R, Lamas-Samanamud GR. 2014. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl. Environ. Microbiol. 80:175340–48
    [Google Scholar]
  87. 87.
    Mangalea MR, Duerkop BA. 2020. Fitness trade-offs resulting from bacteriophage resistance potentiate synergistic antibacterial strategies. Infect. Immunity 88:7e00926–19
    [Google Scholar]
  88. 88.
    León M, Bastías R. 2015. Virulence reduction in bacteriophage resistant bacteria. Front. Microbiol. 6:343
    [Google Scholar]
  89. 89.
    Bohannan BJM, Lenski RE. 2000. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3:4362–77
    [Google Scholar]
  90. 90.
    Garland T, Downs CJ, Ives AR. 2022. Trade-offs (and constraints) in organismal biology. Physiol. Biochem. Zool. 95:182–112
    [Google Scholar]
  91. 91.
    McQueen A, Kempenaers B, Dale J, Valcu M, Emery ZTet al 2019. Evolutionary drivers of seasonal plumage colours: Colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecol. Lett 22:111838–49
    [Google Scholar]
  92. 92.
    Lenski RE. 1988. Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42:3425–32
    [Google Scholar]
  93. 93.
    Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM et al. 2018. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16:9523–39
    [Google Scholar]
  94. 94.
    Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. 2016. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6:126717
    [Google Scholar]
  95. 95.
    Gurney J, Pradier L, Griffin JS, Gougat-Barbera C, Chan BK et al. 2020. Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas aeruginosa. Evol. Med. Public Health 2020:1148–57
    [Google Scholar]
  96. 96.
    Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. 2018. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018:160–66
    [Google Scholar]
  97. 97.
    Le S, Yao X, Lu S, Tan Y, Rao X et al. 2014. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Sci. Rep. 4:14738
    [Google Scholar]
  98. 98.
    Nakamura K, Fujiki J, Nakamura T, Furusawa T, Gondaira S et al. 2021. Fluctuating bacteriophage-induced galU deficiency region is involved in trade-off effects on the phage and fluoroquinolone sensitivity in Pseudomonas aeruginosa. Virus Res. 306:198596
    [Google Scholar]
  99. 99.
    Gordillo Altamirano FL, Kostoulias X, Subedi D, Korneev D, Peleg AY, Barr JJ. 2022. Phage-antibiotic combination is a superior treatment against Acinetobacter baumannii in a preclinical study. EBioMedicine 80:104045
    [Google Scholar]
  100. 100.
    Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M et al. 2021. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat. Microbiol. 6:2157–61
    [Google Scholar]
  101. 101.
    Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M et al. 2011. Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. PNAS 108:249963–68
    [Google Scholar]
  102. 102.
    Samuel ADT, Pitta TP, Ryu WS, Danese PN, Leung ECW, Berg HC. 1999. Flagellar determinants of bacterial sensitivity to χ-phage. PNAS 96:179863–66
    [Google Scholar]
  103. 103.
    Esteves NC, Scharf BE. 2022. Flagellotropic bacteriophages: opportunities and challenges for antimicrobial applications. Int. J. Mol. Sci. 23:137084
    [Google Scholar]
  104. 104.
    McCutcheon JG, Peters DL, Dennis JJ. 2018. Identification and characterization of type IV pili as the cellular receptor of broad host range Stenotrophomonas maltophilia bacteriophages DLP1 and DLP2. Viruses 10:6338
    [Google Scholar]
  105. 105.
    Chibeu A, Ceyssens PJ, Hertveldt K, Volckaert G, Cornelis P et al. 2009. The adsorption of Pseudomonas aeruginosa bacteriophage ϕKMV is dependent on expression regulation of type IV pili genes. FEMS Microbiol. Lett. 296:2210–18
    [Google Scholar]
  106. 106.
    Holland SJ, Sanz C, Perham RN. 2006. Identification and specificity of pilus adsorption proteins of filamentous bacteriophages infecting Pseudomonas aeruginosa. Virology 345:2540–48
    [Google Scholar]
  107. 107.
    Gutierrez-Rodarte M, Kolappan S, Burrell BA, Craig L. 2019. The Vibrio cholerae minor pilin TcpB mediates uptake of the cholera toxin phage CTXϕ. J. Biol. Chem. 294:4315698–710
    [Google Scholar]
  108. 108.
    Liu M, Hernandez-Morales A, Clark J, Le T, Biswas B et al. 2022. Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy. Nat. Commun. 13:13776
    [Google Scholar]
  109. 109.
    Sumrall ET, Shen Y, Keller AP, Rismondo J, Pavlou M et al. 2019. Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLOS Pathog. 15:10e1008032
    [Google Scholar]
  110. 110.
    Chatterjee A, Johnson CN, Luong P, Hullahalli K, McBride SW et al. 2019. Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infect. Immunity 87:6e00085–19
    [Google Scholar]
  111. 111.
    Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB et al. 2014. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol. Microbiol. 92:147–60
    [Google Scholar]
  112. 112.
    Cai R, Wang G, Le S, Wu M, Cheng M et al. 2019. Three capsular polysaccharide synthesis-related glucosyltransferases, GT-1, GT-2 and WcaJ, are associated with virulence and phage sensitivity of Klebsiella pneumoniae. Front. Microbiol. 10:1189
    [Google Scholar]
  113. 113.
    World Health Organ 2017. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics Geneva: World Health Organ.
  114. 114.
    Burmeister AR, Turner PE. 2020. Trading-off and trading-up in the world of bacteria–phage evolution. Curr. Biol. 30:19R1120–24
    [Google Scholar]
  115. 115.
    Igler C. 2022. Phenotypic flux: the role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 8:2veac086
    [Google Scholar]
  116. 116.
    Castledine M, Padfield D, Sierocinski P, Soria Pascual J, Hughes A et al. 2022. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 11:e73679
    [Google Scholar]
  117. 117.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:6379eaar4120
    [Google Scholar]
  118. 118.
    Cury J, Bernheim A. 2022. CRISPR-Cas and restriction–modification team up to achieve long-term immunity. Trends Microbiol. 30:6513–14
    [Google Scholar]
  119. 119.
    Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF et al. 2015. Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 526:7571136–39
    [Google Scholar]
  120. 120.
    Natterson-Horowitz B, Aktipis A, Fox M, Gluckman PD, Low FM et al. 2023. The future of evolutionary medicine: sparking innovation in biomedicine and public health. Front. Sci. 1:997136
    [Google Scholar]
  121. 121.
    Rodriguez-Gonzalez RA, Leung CY, Chan BK, Turner PE, Weitz JS. 2020. Quantitative models of phage-antibiotic combination therapy. mSystems 5:1e00756–19
    [Google Scholar]
/content/journals/10.1146/annurev-virology-012423-110530
Loading
/content/journals/10.1146/annurev-virology-012423-110530
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error