1932

Abstract

Host cell factors are integral to viral replication. Human immunodeficiency virus 1 (HIV-1), the retroviral agent of acquired immune deficiency syndrome, requires several host factors for reverse transcription of the viral genomic RNA (gRNA) into DNA shortly after viral entry. One of these host factors is the RNA lariat debranching enzyme (Dbr1), which cleaves the 2′–5′ bond of branched and lariat RNAs. A recent study has revealed that Dbr1 cleaves HIV-1 gRNA lariats that form early after viral entry. Without Dbr1 activity, HIV-1 reverse transcription stalls, consistent with blockage of viral reverse transcriptase at gRNA branch points. These findings echo an earlier study with the long-terminal-repeat retrotransposon of , Ty1, which is a retrovirus model. Currently, branching and debranching of viral gRNA are not widely recognized as features of HIV-1 replication, and the role of a gRNA lariat is not known. Future studies will determine whether these gRNA dynamics represent fundamental features of retroviral biology and whether they occur for other positive-sense RNA viruses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-012720-094902
2020-09-29
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-012720-094902.html?itemId=/content/journals/10.1146/annurev-virology-012720-094902&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Coffin JM, Hughes SH, Varmus HE 1997. Retroviruses Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  2. 2. 
    Levy JA. 2007. HIV and the Pathogenesis of AIDS Washington, DC: Am. Soc. Microbiol, 3rd ed..
  3. 3. 
    WHO (World Health Organ.) 2016. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection Geneva: WHO
  4. 4. 
    Coffin JM, Hughes SH, Varmus HE 1997. The interactions of retroviruses and their hosts. See Ref. 1 335–41
  5. 5. 
    Goff SP. 2007. Host factors exploited by retroviruses. Nat. Rev. Microbiol. 5:253–63
    [Google Scholar]
  6. 6. 
    Tough RH, McLaren PJ. 2018. Interaction of the host and viral genome and their influence on HIV disease. Front. Genet. 9:720
    [Google Scholar]
  7. 7. 
    Woollard SM, Kanmogne GD. 2015. Maraviroc: a review of its use in HIV infection and beyond. Drug Des. Dev. Ther. 9:5447–68
    [Google Scholar]
  8. 8. 
    Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ et al. 2010. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLOS Pathog 6:e1000863
    [Google Scholar]
  9. 9. 
    Decroly E, Ferron F, Lescar J, Canard B 2011. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 10:51–65
    [Google Scholar]
  10. 10. 
    Chiu YL, Coronel E, Ho CK, Shuman S, Rana TM 2001. HIV-1 Tat protein interacts with mammalian capping enzyme and stimulates capping of TAR RNA. J. Biol. Chem. 276:12959–66
    [Google Scholar]
  11. 11. 
    Chiu YL, Ho CK, Saha N, Schwer B, Shuman S, Rana TM 2002. Tat stimulates cotranscriptional capping of HIV mRNA. Mol. Cell 10:585–97
    [Google Scholar]
  12. 12. 
    Zhou M, Deng L, Kashanchi F, Brady JN, Shatkin AJ, Kumar A 2003. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA. PNAS 100:12666–71
    [Google Scholar]
  13. 13. 
    Goff SP. 2013. Retroviridae. Field's Virology BN Fields, DM Knipe, PM Howley 1424–73 Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins
    [Google Scholar]
  14. 14. 
    Curcio MJ, Lutz S, Lesage P 2015. The Ty1 LTR-retrotransposon of budding yeast. Saccharomyces cerevisiae. Microbiol. Spectr. 3: mdna3-0053-2014
    [Google Scholar]
  15. 15. 
    Chapman KB, Boeke JD. 1991. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65:483–92
    [Google Scholar]
  16. 16. 
    Griffith JL, Coleman LE, Raymond AS, Goodson SG, Pittard WS et al. 2003. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. . Genetics 164:867–79
    [Google Scholar]
  17. 17. 
    Karst SM, Rutz ML, Menees TM 2000. The yeast retrotransposons Ty1 and Ty3 require the RNA lariat debranching enzyme, Dbr1p, for efficient accumulation of reverse transcripts. Biochem. Biophys. Res. Commun. 268:112–17
    [Google Scholar]
  18. 18. 
    Mou Z, Kenny AE, Curcio MJ 2006. Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae. . Genetics 172:2157–67
    [Google Scholar]
  19. 19. 
    El Hage A, Webb S, Kerr A, Tollervey D 2014. Genome-wide distribution of RNA–DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLOS Genet 10:e1004716
    [Google Scholar]
  20. 20. 
    Ooi SL, Dann C 3rd, Nam K, Leahy DJ, Damha MJ, Boeke JD 2001. RNA lariat debranching enzyme. Methods Enzymol 342:233–48
    [Google Scholar]
  21. 21. 
    Ruskin B, Green MR. 1985. An RNA processing activity that debranches RNA lariats. Science 229:135–40
    [Google Scholar]
  22. 22. 
    UniProt Consort 2018. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–506
    [Google Scholar]
  23. 23. 
    Awan AR, Manfredo A, Pleiss JA 2013. Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. PNAS 110:12762–67
    [Google Scholar]
  24. 24. 
    Bitton DA, Rallis C, Jeffares DC, Smith GC, Chen YY et al. 2014. LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Res 24:1169–79
    [Google Scholar]
  25. 25. 
    Gould GM, Paggi JM, Guo Y, Phizicky DV, Zinshteyn B et al. 2016. Identification of new branch points and unconventional introns in Saccharomyces cerevisiae. . RNA 22:1522–34
    [Google Scholar]
  26. 26. 
    Juneau K, Palm C, Miranda M, Davis RW 2007. High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. PNAS 104:1522–27
    [Google Scholar]
  27. 27. 
    Spingola M, Grate L, Haussler D, Ares M Jr 1999. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. . RNA 5:221–34
    [Google Scholar]
  28. 28. 
    Zhang Z, Hesselberth JR, Fields S 2007. Genome-wide identification of spliced introns using a tiling microarray. Genome Res 17:503–9
    [Google Scholar]
  29. 29. 
    Cheng Z, Menees TM. 2011. RNA splicing and debranching viewed through analysis of RNA lariats. Mol. Genet. Genom. 286:395–410
    [Google Scholar]
  30. 30. 
    Kiss T. 2006. SnoRNP biogenesis meets pre-mRNA splicing. Mol. Cell 23:775–76
    [Google Scholar]
  31. 31. 
    Ooi SL, Samarsky DA, Fournier MJ, Boeke JD 1998. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA 4:1096–110
    [Google Scholar]
  32. 32. 
    Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC 2007. Mammalian mirtron genes. Mol. Cell 28:328–36
    [Google Scholar]
  33. 33. 
    Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC 2007. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. . Cell 130:89–100
    [Google Scholar]
  34. 34. 
    Ruby JG, Jan CH, Bartel DP 2007. Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86
    [Google Scholar]
  35. 35. 
    Nam K, Lee G, Trambley J, Devine SE, Boeke JD 1997. Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol. Cell Biol. 17:809–18
    [Google Scholar]
  36. 36. 
    Wang H, Hill K, Perry SE 2004. An Arabidopsis RNA lariat debranching enzyme is essential for embryogenesis. J. Biol. Chem. 279:1468–73
    [Google Scholar]
  37. 37. 
    Kim JW, Kim HC, Kim GM, Yang JM, Boeke JD, Nam K 2000. Human RNA lariat debranching enzyme cDNA complements the phenotypes of Saccharomyces cerevisiae dbr1 and Schizosaccharomyces pombe dbr1 mutants. Nucleic Acids Res 28:3666–73
    [Google Scholar]
  38. 38. 
    Cheng Z, Menees TM. 2004. RNA branching and debranching in the yeast retrovirus-like element Ty1. Science 303:240–43
    [Google Scholar]
  39. 39. 
    Coombes CE, Boeke JD. 2005. An evaluation of detection methods for large lariat RNAs. RNA 11:323–31
    [Google Scholar]
  40. 40. 
    Maruyama K, Sugano S. 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138:171–74
    [Google Scholar]
  41. 41. 
    Schaefer BC. 1995. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal. Biochem. 227:255–73
    [Google Scholar]
  42. 42. 
    Volloch V, Schweitzer B, Rits S 1994. Ligation-mediated amplification of RNA from murine erythroid cells reveals a novel class of β globin mRNA with an extended 5′-untranslated region. Nucleic Acids Res 22:2507–11
    [Google Scholar]
  43. 43. 
    Ghosh A, Lima CD. 2010. Enzymology of RNA cap synthesis. Wiley Interdiscip. Rev. RNA 1:152–72
    [Google Scholar]
  44. 44. 
    Ye Y, De Leon J, Yokoyama N, Naidu Y, Camerini D 2005. DBR1 siRNA inhibition of HIV-1 replication. Retrovirology 2:63
    [Google Scholar]
  45. 45. 
    Bushman FD, Malani N, Fernandes J, D'Orso I, Cagney G et al. 2009. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLOS Pathog 5:e1000437
    [Google Scholar]
  46. 46. 
    Galvis AE, Fisher HE, Nitta T, Fan H, Camerini D 2014. Impairment of HIV-1 cDNA synthesis by DBR1 knockdown. J. Virol. 88:7054–69
    [Google Scholar]
  47. 47. 
    Mamede JI, Cianci GC, Anderson MR, Hope TJ 2017. Early cytoplasmic uncoating is associated with infectivity of HIV-1. PNAS 114:E7169–7169
    [Google Scholar]
  48. 48. 
    Rawle DJ, Harrich D. 2018. Toward the “unravelling” of HIV: host cell factors involved in HIV-1 core uncoating. PLOS Pathog 14:e1007270
    [Google Scholar]
  49. 49. 
    Yamashita M, Engelman AN. 2017. Capsid-dependent host factors in HIV-1 infection. Trends Microbiol 25:741–55
    [Google Scholar]
  50. 50. 
    Zila V, Müller TG, Laketa V, Müller B, Kräusslich H-G 2019. Analysis of CA content and CPSF6 dependence of early HIV-1 replication complexes in SupT1-R5 cells. mBio 10:e02501
    [Google Scholar]
  51. 51. 
    Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K et al. 2020. HIV-1 uncoats in the nucleus near sites of integration. PNAS 117:5486–93
    [Google Scholar]
  52. 52. 
    Galvis AE, Fisher HE, Fan H, Camerini D 2017. Conformational changes in the 5′ end of the HIV-1 genome dependent on the debranching enzyme DBR1 during early stages of infection. J. Virol. 91:e01377
    [Google Scholar]
  53. 53. 
    Masuda T, Sato Y, Huang YL, Koi S, Takahata T et al. 2015. Fate of HIV-1 cDNA intermediates during reverse transcription is dictated by transcription initiation site of virus genomic RNA. Sci. Rep. 5:17680
    [Google Scholar]
  54. 54. 
    Kharytonchyk S, Monti S, Smaldino PJ, Van V, Bolden NC et al. 2016. Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome. PNAS 113:13378–83
    [Google Scholar]
  55. 55. 
    Chiu YL, Ho CK, Saha N, Schwer B, Shuman S, Rana TM 2002. Tat stimulates cotranscriptional capping of HIV mRNA. Mol. Cell 10:585–97
    [Google Scholar]
  56. 56. 
    Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A 2006. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63
    [Google Scholar]
  57. 57. 
    Coombes CE, Boeke JD. 2005. An evaluation of detection methods for large lariat RNAs. RNA 11:323–31
    [Google Scholar]
  58. 58. 
    Norkin LC. 2010. Virology: Molecular Biology and Pathogenesis Washington, DC: Am. Soc. Microbiol.
  59. 59. 
    Rawle DJ, Li D, Swedberg JE, Wang L, Soares DC, Harrich D 2018. HIV-1 uncoating and reverse transcription require eEF1A binding to surface-exposed acidic residues of the reverse transcriptase thumb domain. mBio 9:e00316
    [Google Scholar]
  60. 60. 
    Hirzmann J, Luo D, Hahnen J, Hobom G 1993. Determination of messenger RNA 5′-ends by reverse transcription of the cap structure. Nucleic Acids Res 21:3597–98
    [Google Scholar]
  61. 61. 
    Volloch VZ, Schweitzer B, Rits S 1995. Transcription of the 5′-terminal cap nucleotide by RNA-dependent DNA polymerase: possible involvement in retroviral reverse transcription. DNA Cell Biol 14:991–96
    [Google Scholar]
  62. 62. 
    Menees TM, Müller B, Kräusslich HG 2007. The major 5′ end of HIV type 1 RNA corresponds to G456. AIDS Res. Hum. Retroviruses 23:1042–48
    [Google Scholar]
  63. 63. 
    Cristofari G, Bampi C, Wilhelm M, Wilhelm FX, Darlix JL 2002. A 5′–3′ long-range interaction in Ty1 RNA controls its reverse transcription and retrotransposition. EMBO J 21:4368–79
    [Google Scholar]
  64. 64. 
    Beerens N, Kjems J. 2010. Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription. RNA 16:1226–35
    [Google Scholar]
  65. 65. 
    Ooms M, Abbink TE, Pham C, Berkhout B 2007. Circularization of the HIV-1 RNA genome. Nucleic Acids Res 35:5253–61
    [Google Scholar]
  66. 66. 
    Domdey H, Apostol B, Lin RJ, Newman A, Brody E, Abelson J 1984. Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell 39:611–21
    [Google Scholar]
  67. 67. 
    Ruskin B, Krainer AR, Maniatis T, Green MR 1984. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38:317–31
    [Google Scholar]
  68. 68. 
    Irwin B, Aye M, Baldi P, Beliakova-Bethell N, Cheng H et al. 2005. Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome Res 15:641–54
    [Google Scholar]
  69. 69. 
    Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, Ahlquist P 2003. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. PNAS 100:15764–69
    [Google Scholar]
  70. 70. 
    Kao CC, Sivakumaran K. 2000. Brome mosaic virus, good for an RNA virologist's basic needs. Mol. Plant Pathol. 1:91–97
    [Google Scholar]
  71. 71. 
    Zhang SY, Clark NE, Freije CA, Pauwels E, Taggart AJ et al. 2018. Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell 172:952–65
    [Google Scholar]
/content/journals/10.1146/annurev-virology-012720-094902
Loading
/content/journals/10.1146/annurev-virology-012720-094902
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error