1932

Abstract

Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-012822-125828
2022-09-29
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-012822-125828.html?itemId=/content/journals/10.1146/annurev-virology-012822-125828&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Greseth MD, Traktman P. 2022. The life cycle of the vaccinia virus genome. Annu. Rev. Virol. 9: https://doi.org/10.1146/annurev-virology-091919-104752
    [Crossref] [Google Scholar]
  2. 2.
    Charman M, Weitzman MD 2020. Replication compartments of DNA viruses in the nucleus: location, location, location. Viruses 12:151
    [Crossref] [Google Scholar]
  3. 3.
    Kobiler O, Weitzman MD. 2019. Herpes simplex virus replication compartments: from naked release to recombining together. PLOS Pathog 15:e1007714
    [Crossref] [Google Scholar]
  4. 4.
    Schmid M, Speiseder T, Dobner T, Gonzalez RA. 2014. DNA virus replication compartments. J. Virol. 88:1404–20
    [Crossref] [Google Scholar]
  5. 5.
    Baker ML, Jiang W, Rixon FJ, Chiu W. 2005. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol. 79:14967–70
    [Crossref] [Google Scholar]
  6. 6.
    Andrade-Martinez JS, Moreno-Gallego JL, Reyes A 2019. Defining a core genome for the herpesvirales and exploring their evolutionary relationship with the caudovirales. Sci. Rep. 9:11342
    [Crossref] [Google Scholar]
  7. 7.
    Goodpasture E. 1925. The axis-cylinders of peripheral nerves as portals of entry to the central nervous system for the virus of herpes simplex encephalitis in man. Am. J. Pathol. 1:11–28
    [Google Scholar]
  8. 8.
    Crouse HV, Coriell LL, Blank H, McNair Scott TF 1950. Cytochemical studies on the intranuclear inclusions of herpes simplex. J. Immunol. 65:119–28
    [Crossref] [Google Scholar]
  9. 9.
    Itabashi HH, Bass DM, McCulloch JR. 1966. Inclusion body of acute inclusion encephalitis: an electron-microscopic study in a case of suspected herpes simplex encephalitis. Arch. Neurol. 14:493–505
    [Crossref] [Google Scholar]
  10. 10.
    Quinlan MP, Chen LB, Knipe DM. 1984. The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36:857–68
    [Crossref] [Google Scholar]
  11. 11.
    Chang L, Godinez WJ, Kim IH, Tektonidis M, de Lanerolle P et al. 2011. Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA. PNAS 108:E136–44
    [Google Scholar]
  12. 12.
    Everett RD, Sourvinos G, Leiper C, Clements JB, Orr A. 2004. Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J. Virol. 78:1903–17
    [Crossref] [Google Scholar]
  13. 13.
    Taylor TJ, McNamee EE, Day C, Knipe DM. 2003. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology 309:232–47
    [Crossref] [Google Scholar]
  14. 14.
    Cliffe AR, Knipe DM. 2008. Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection. J. Virol. 82:12030–38
    [Crossref] [Google Scholar]
  15. 15.
    Oh J, Fraser NW. 2008. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J. Virol. 82:3530–37
    [Crossref] [Google Scholar]
  16. 16.
    Alandijany T, Roberts APE, Conn KL, Loney C, McFarlane S et al. 2018. Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection. PLOS Pathog 14:e1006769
    [Crossref] [Google Scholar]
  17. 17.
    Cabral JM, Oh HS, Knipe DM 2018. ATRX promotes maintenance of herpes simplex virus heterochromatin during chromatin stress. eLife 7:e40228
    [Crossref] [Google Scholar]
  18. 18.
    Dembowski JA, DeLuca NA. 2018. Temporal viral genome-protein interactions define distinct stages of productive herpesviral infection. mBio 9:e01182–18
    [Crossref] [Google Scholar]
  19. 19.
    Orzalli MH, Conwell SE, Berrios C, DeCaprio JA, Knipe DM. 2013. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. PNAS 110:E4492–501
    [Crossref] [Google Scholar]
  20. 20.
    Cohen C, Corpet A, Roubille S, Maroui MA, Poccardi N et al. 2018. Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/histone H3.3/H3.3 chaperone axis. PLOS Pathog 14:e1007313
    [Crossref] [Google Scholar]
  21. 21.
    Cabral JM, Cushman CH, Sodroski CN, Knipe DM. 2021. ATRX limits the accessibility of histone H3-occupied HSV genomes during lytic infection. PLOS Pathog 17:e1009567
    [Crossref] [Google Scholar]
  22. 22.
    Merkl PE, Orzalli MH, Knipe DM. 2018. Mechanisms of host IFI16, PML, and Daxx protein restriction of herpes simplex virus 1 replication. J. Virol. 92:e00057–18
    [Crossref] [Google Scholar]
  23. 23.
    Herrera FJ, Triezenberg SJ. 2004. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J. Virol. 78:9689–96
    [Crossref] [Google Scholar]
  24. 24.
    Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM. 2009. Inhibition of the histone demethylase LSD1 blocks α-herpesvirus lytic replication and reactivation from latency. Nat. Med. 15:1312–17
    [Crossref] [Google Scholar]
  25. 25.
    de Bruyn Kops A, Knipe DM 1988. Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell 55:857–68
    [Crossref] [Google Scholar]
  26. 26.
    Silva L, Cliffe A, Chang L, Knipe DM. 2008. Role for A-type lamins in herpesviral DNA targeting and heterochromatin modulation. PLOS Pathog 4:e1000071
    [Crossref] [Google Scholar]
  27. 27.
    Ishov AM, Maul GG. 1996. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J. Cell Biol. 134:815–26
    [Crossref] [Google Scholar]
  28. 28.
    Maul GG, Ishov AM, Everett RD. 1996. Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology 217:67–75
    [Crossref] [Google Scholar]
  29. 29.
    Lukonis CJ, Weller SK. 1996. Characterization of nuclear structures in cells infected with herpes simplex virus type 1 in the absence of viral DNA replication. J. Virol. 70:1751–58
    [Crossref] [Google Scholar]
  30. 30.
    Uprichard SL, Knipe DM. 1997. Assembly of herpes simplex virus replication proteins at two distinct intranuclear sites. Virology 229:113–25
    [Crossref] [Google Scholar]
  31. 31.
    Everett RD, Murray J. 2005. ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J. Virol. 79:5078–89
    [Crossref] [Google Scholar]
  32. 32.
    Silva L, Oh HS, Chang L, Yan Z, Triezenberg SJ, Knipe DM. 2012. Roles of the nuclear lamina in stable nuclear association and assembly of a herpesviral transactivator complex on viral immediate-early genes. mBio 3:e00300–11
    [Crossref] [Google Scholar]
  33. 33.
    Rixon FJ, Atkinson MA, Hay J. 1983. Intranuclear distribution of herpes simplex virus type 2 DNA synthesis: examination by light and electron microscopy. J. Gen. Virol. 64:2087–92
    [Crossref] [Google Scholar]
  34. 34.
    Conley AJ, Knipe DM, Jones PC, Roizman B. 1981. Molecular genetics of herpes simplex virus. VII. Characterization of a temperature-sensitive mutant produced by in vitro mutagenesis and defective in DNA synthesis and accumulation of gamma polypeptides. J. Virol. 37:191–206
    [Crossref] [Google Scholar]
  35. 35.
    de Bruyn Kops A, Uprichard SL, Chen M, Knipe DM 1998. Comparison of the intranuclear distributions of herpes simplex virus proteins involved in different viral functions. Virology 252:162–78
    [Crossref] [Google Scholar]
  36. 36.
    Olivo PD, Nelson NJ, Challberg MD. 1989. Herpes simplex virus type 1 gene products required for DNA replication: identification and overexpression. J. Virol. 63:196–204
    [Crossref] [Google Scholar]
  37. 37.
    Goodrich LD, Schaffer PA, Dorsky DI, Crumpacker CS, Parris DS. 1990. Localization of the herpes simplex virus type 1 65-kilodalton DNA-binding protein and DNA polymerase in the presence and absence of viral DNA synthesis. J. Virol. 64:5738–49
    [Crossref] [Google Scholar]
  38. 38.
    Bush M, Yager DR, Gao M, Weisshart K, Marcy AI et al. 1991. Correct intranuclear localization of herpes simplex virus DNA polymerase requires the viral ICP8 DNA-binding protein. J. Virol. 65:1082–89
    [Crossref] [Google Scholar]
  39. 39.
    Liptak L, Uprichard SL, Knipe DM. 1996. Functional order of assembly of herpes simplex virus DNA replication proteins into prereplicative site structures. J. Virol. 70:1759–67
    [Crossref] [Google Scholar]
  40. 40.
    Wilkinson DE, Weller SK. 2004. Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J. Virol. 78:4783–96
    [Crossref] [Google Scholar]
  41. 41.
    Wilcock D, Lane DP. 1991. Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature 349:429–31
    [Crossref] [Google Scholar]
  42. 42.
    Taylor TJ, Knipe DM. 2004. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J. Virol. 78:5856–66
    [Crossref] [Google Scholar]
  43. 43.
    Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD. 2005. DNA repair proteins affect the lifecycle of herpes simplex virus 1. PNAS 102:5844–49
    [Crossref] [Google Scholar]
  44. 44.
    Mertens ME, Knipe DM. 2021. Herpes simplex virus 1 manipulates host cell antiviral and proviral DNA damage responses. mBio 12:e03552–20
    [Crossref] [Google Scholar]
  45. 45.
    Knipe DM, Heldwein EE, Mohr IJ, Sodroski CN 2021. Herpes simplex viruses: mechanisms of lytic and latent infection. Fields Virology PM Howley, DM Knipe, BA Damania, JI Cohen 235–96 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  46. 46.
    Seyffert M, Georgi F, Tobler K, Bourqui L, Anfossi M et al. 2021. The HSV-1 transcription factor ICP4 confers liquid-like properties to viral replication compartments. Int. J. Mol. Sci. 22:4447
    [Crossref] [Google Scholar]
  47. 47.
    McSwiggen DT, Hansen AS, Teves SS, Marie-Nelly H, Hao Y et al. 2019. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife 8:e47098
    [Crossref] [Google Scholar]
  48. 48.
    de Bruyn Kops A, Knipe DM. 1994. Preexisting nuclear architecture defines the intranuclear location of herpesvirus DNA replication structures. J. Virol. 68:3512–26
    [Crossref] [Google Scholar]
  49. 49.
    Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW. 2010. Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat. Commun. 1:146
    [Crossref] [Google Scholar]
  50. 50.
    Phelan A, Dunlop J, Patel AH, Stow ND, Clements JB. 1997. Nuclear sites of herpes simplex virus type 1 DNA replication and transcription colocalize at early times postinfection and are largely distinct from RNA processing factors. J. Virol. 71:1124–32
    [Crossref] [Google Scholar]
  51. 51.
    Tomer E, Cohen EM, Drayman N, Afriat A, Weitzman MD et al. 2019. Coalescing replication compartments provide the opportunity for recombination between coinfecting herpesviruses. FASEB J 33:9388–403
    [Crossref] [Google Scholar]
  52. 52.
    Monier K, Armas JC, Etteldorf S, Ghazal P, Sullivan KF. 2000. Annexation of the interchromosomal space during viral infection. Nat. Cell Biol. 2:661–65
    [Crossref] [Google Scholar]
  53. 53.
    Merkl PE, Knipe DM. 2019. Role for a filamentous nuclear assembly of IFI16, DNA, and host factors in restriction of herpesviral infection. mBio 10:e02621–18
    [Crossref] [Google Scholar]
  54. 54.
    Knipe DM, Senechek D, SA Rice, Smith JL. 1987. Stages in the nuclear association of the herpes simplex virus transcriptional activator protein ICP4. J. Virol. 61:276–84
    [Crossref] [Google Scholar]
  55. 55.
    Randall RE, Dinwoodie N. 1986. Intranuclear localization of herpes simplex virus immediate-early and delayed-early proteins: evidence that ICP 4 is associated with progeny virus DNA. J. Gen. Virol. 67:2163–77
    [Crossref] [Google Scholar]
  56. 56.
    Rice SA, Long MC, Lam V, Spencer CA. 1994. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J. Virol. 68:988–1001
    [Crossref] [Google Scholar]
  57. 57.
    Jean S, LeVan KM, Song B, Levine M, Knipe DM. 2001. Herpes simplex virus 1 ICP27 is required for transcription of two viral late (γ2) genes in infected cells. Virology 283:273–84
    [Crossref] [Google Scholar]
  58. 58.
    Zhou C, Knipe DM. 2002. Association of herpes simplex virus type 1 ICP8 and ICP27 proteins with cellular RNA polymerase II holoenzyme. J. Virol. 76:5893–904
    [Crossref] [Google Scholar]
  59. 59.
    Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. 2006. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J. Virol. 80:3567–81
    [Crossref] [Google Scholar]
  60. 60.
    Olesky M, McNamee EE, Zhou C, Taylor TJ, Knipe DM. 2005. Evidence for a direct interaction between HSV-1 ICP27 and ICP8 proteins. Virology 331:94–105
    [Crossref] [Google Scholar]
  61. 61.
    Gewurz BE, Longnecker RM, Cohen JI 2021. Epstein-Barr virus. Fields Virology PM Howley, DM Knipe, BA Damania, JI Cohen 324–88 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  62. 62.
    Goodrum F, Britt W, Mocarski ES 2021. Cytomegalovirus. Fields Virology PM Howley, DM Knipe, BA Damania, JI Cohen 389–444 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  63. 63.
    Arvin AM, Abendroth A 2021. Varicella-zoster virus. Fields Virology PM Howley, DM Knipe, BA Damania, JI Cohen 445–88 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  64. 64.
    Mori Y, Zerr DM, Flamand L, Pellett PE 2021. Human herpesviruses 6A, 6B, and 7. Fields Virology PM Howley, DM Knipe, BA Damania, JI Cohen 489–512 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  65. 65.
    Damania B, Cesarman E 2021. Kaposi's sarcoma herpesvirus. Fields Virology PM Howley, DM Knipe, BA Damania, JI Cohen 513–72 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  66. 66.
    Charman M, Herrmann C, Weitzman MD. 2019. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett 593:3531–50
    [Crossref] [Google Scholar]
  67. 67.
    Hidalgo P, Gonzalez RA. 2019. Formation of adenovirus DNA replication compartments. FEBS Lett 593:3518–30
    [Crossref] [Google Scholar]
  68. 68.
    Hidalgo P, Anzures L, Hernandez-Mendoza A, Guerrero A, Wood CD et al. 2016. Morphological, biochemical, and functional study of viral replication compartments isolated from adenovirus-infected cells. J. Virol. 90:3411–27
    [Crossref] [Google Scholar]
  69. 69.
    Puvion-Dutilleul F, Puvion E 1991. Sites of transcription of adenovirus type 5 genomes in relation to early viral DNA replication in infected HeLa cells. A high resolution in situ hybridization and autoradiographical study. Biol. Cell 71:13547
    [Crossref] [Google Scholar]
  70. 70.
    Pombo A, Ferreira J, Bridge E, Carmo-Fonseca M. 1994. Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J 13:5075–85
    [Crossref] [Google Scholar]
  71. 71.
    Condezo GN, San Martin C 2017. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center. PLOS Pathog 13:e1006320
    [Crossref] [Google Scholar]
  72. 72.
    Komatsu T, Robinson DR, Hisaoka M, Ueshima S, Okuwaki M et al. 2016. Tracking adenovirus genomes identifies morphologically distinct late DNA replication compartments. Traffic 17:1168–80
    [Crossref] [Google Scholar]
  73. 73.
    Genoveso MJ, Hisaoka M, Komatsu T, Wodrich H, Nagata K, Okuwaki M. 2020. Formation of adenovirus DNA replication compartments and viral DNA accumulation sites by host chromatin regulatory proteins including NPM1. FEBS J 287:205–17
    [Crossref] [Google Scholar]
  74. 74.
    Fraefel C, Bittermann AG, Bueler H, Heid I, Bachi T, Ackermann M. 2004. Spatial and temporal organization of adeno-associated virus DNA replication in live cells. J. Virol. 78:389–98
    [Crossref] [Google Scholar]
  75. 75.
    Ni TH, McDonald WF, Zolotukhin I, Melendy T, Waga S et al. 1998. Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection. J. Virol. 72:2777–87
    [Crossref] [Google Scholar]
  76. 76.
    Weitzman MD, Fisher KJ, Wilson JM. 1996. Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers. J. Virol. 70:1845–54
    [Crossref] [Google Scholar]
  77. 77.
    Cziepluch C, Lampel S, Grewenig A, Grund C, Lichter P, Rommelaere J. 2000. H-1 parvovirus-associated replication bodies: a distinct virus-induced nuclear structure. J. Virol. 74:4807–15
    [Crossref] [Google Scholar]
  78. 78.
    Majumder K, Wang J, Boftsi M, Fuller MS, Rede JE et al. 2018. Parvovirus minute virus of mice interacts with sites of cellular DNA damage to establish and amplify its lytic infection. eLife 7:37750
    [Crossref] [Google Scholar]
  79. 79.
    Bashir T, Horlein R, Rommelaere J, Willwand K. 2000. Cyclin A activates the DNA polymerase δ-dependent elongation machinery in vitro: a parvovirus DNA replication model. PNAS 97:5522–27
    [Crossref] [Google Scholar]
  80. 80.
    Schwartz RA, Carson CT, Schuberth C, Weitzman MD. 2009. Adeno-associated virus replication induces a DNA damage response coordinated by DNA-dependent protein kinase. J. Virol. 83:6269–78
    [Crossref] [Google Scholar]
  81. 81.
    Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M. 2009. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLOS Pathog 5:e1000397
    [Crossref] [Google Scholar]
  82. 82.
    Stepp WH, Stamos JD, Khurana S, Warburton A, McBride AA. 2017. Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle. PLOS Pathog 13:e1006660
    [Crossref] [Google Scholar]
  83. 83.
    Swindle CS, Zou N, Van Tine BA, Shaw GM, Engler JA, Chow LT. 1999. Human papillomavirus DNA replication compartments in a transient DNA replication system. J. Virol. 73:1001–9
    [Crossref] [Google Scholar]
  84. 84.
    Day PM, Roden RB, Lowy DR, Schiller JT. 1998. The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J. Virol. 72:142–50
    [Crossref] [Google Scholar]
  85. 85.
    Florin L, Sapp C, Streeck RE, Sapp M. 2002. Assembly and translocation of papillomavirus capsid proteins. J. Virol. 76:10009–14
    [Crossref] [Google Scholar]
  86. 86.
    Guion L, Bienkowska-Haba M, DiGiuseppe S, Florin L, Sapp M. 2019. PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery. PLOS Pathog 15:e1007590
    [Crossref] [Google Scholar]
  87. 87.
    Dollard SC, Wilson JL, Demeter LM, Bonnez W, Reichman RC et al. 1992. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. Genes Dev 6:1131–42
    [Crossref] [Google Scholar]
  88. 88.
    Meyers C, Frattini MG, Hudson JB, Laimins LA. 1992. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257:971–73
    [Crossref] [Google Scholar]
  89. 89.
    Bienkowska-Haba M, Luszczek W, Keiffer TR, Guion LGM, DiGiuseppe S et al. 2017. Incoming human papillomavirus 16 genome is lost in PML protein-deficient HaCaT keratinocytes. Cell Microbiol 19:e12708
    [Crossref] [Google Scholar]
  90. 90.
    Day PM, Baker CC, Lowy DR, Schiller JT. 2004. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. PNAS 101:14252–57
    [Crossref] [Google Scholar]
  91. 91.
    Florin L, Schafer F, Sotlar K, Streeck RE, Sapp M. 2002. Reorganization of nuclear domain 10 induced by papillomavirus capsid protein L2. Virology 295:97–107
    [Crossref] [Google Scholar]
  92. 92.
    Moody CA, Laimins LA. 2009. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLOS Pathog 5:e1000605
    [Crossref] [Google Scholar]
  93. 93.
    Gillespie KA, Mehta KP, Laimins LA, Moody CA. 2012. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J. Virol. 86:9520–26
    [Crossref] [Google Scholar]
  94. 94.
    Tang Q, Bell P, Tegtmeyer P, Maul GG. 2000. Replication but not transcription of simian virus 40 DNA is dependent on nuclear domain 10. J. Virol. 74:9694–700
    [Crossref] [Google Scholar]
  95. 95.
    Peters DK, Erickson KD, Garcea RL 2020. Live cell microscopy of murine polyomavirus subnuclear replication centers. Viruses 12:1123
    [Crossref] [Google Scholar]
  96. 96.
    Peters DK, Garcea RL. 2020. Murine polyomavirus DNA transitions through spatially distinct nuclear replication subdomains during infection. PLOS Pathog 16:e1008403
    [Crossref] [Google Scholar]
  97. 97.
    Gasparovic ML, Maginnis MS, O'Hara BA, Dugan AS, Atwood WJ. 2009. Modulation of PML protein expression regulates JCV infection. Virology 390:279–88
    [Crossref] [Google Scholar]
  98. 98.
    Jiang M, Entezami P, Gamez M, Stamminger T, Imperiale MJ 2011. Functional reorganization of promyelocytic leukemia nuclear bodies during BK virus infection. mBio 2:e00281–10
    [Crossref] [Google Scholar]
  99. 99.
    Erickson KD, Bouchet-Marquis C, Heiser K, Szomolanyi-Tsuda E, Mishra R et al. 2012. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLOS Pathog 8:e1002630
    [Crossref] [Google Scholar]
  100. 100.
    Boichuk S, Hu L, Hein J, Gjoerup OV. 2010. Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen. J. Virol. 84:8007–20
    [Crossref] [Google Scholar]
  101. 101.
    Sowd GA, Li NY, Fanning E. 2013. ATM and ATR activities maintain replication fork integrity during SV40 chromatin replication. PLOS Pathog 9:e1003283
    [Crossref] [Google Scholar]
  102. 102.
    Zhao X, Madden-Fuentes RJ, Lou BX, Pipas JM, Gerhardt J et al. 2008. Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 subunits in simian virus 40-infected primate cells. J. Virol. 82:5316–28
    [Crossref] [Google Scholar]
  103. 103.
    Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML et al. 2017. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355:194–97
    [Crossref] [Google Scholar]
  104. 104.
    Kraemer JA, Erb ML, Waddling CA, Montabana EA, Zehr EA et al. 2012. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 149:1488–99
    [Crossref] [Google Scholar]
  105. 105.
    Chaikeeratisak V, Nguyen K, Egan ME, Erb ML, Vavilina A, Pogliano J. 2017. The phage nucleus and tubulin spindle are conserved among large Pseudomonas phages. Cell Rep 20:1563–71
    [Crossref] [Google Scholar]
  106. 106.
    Danilova YA, Belousova VV, Moiseenko AV, Vishnyakov IE, Yakunina MV, Sokolova OS 2020. Maturation of pseudo-nucleus compartment in P. aeruginosa, infected with giant phiKZ phage. Viruses 12:1197
    [Crossref] [Google Scholar]
  107. 107.
    Erb ML, Kraemer JA, Coker JK, Chaikeeratisak V, Nonejuie P et al. 2014. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife 3:e03197
    [Crossref] [Google Scholar]
  108. 108.
    Thomas JA, Rolando MR, Carroll CA, Shen PS, Belnap DM et al. 2008. Characterization of Pseudomonas chlororaphis myovirus 201ϕ2-1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology 376:330–38
    [Crossref] [Google Scholar]
  109. 109.
    Monson R, Foulds I, Foweraker J, Welch M, Salmond GPC. 2011. The Pseudomonas aeruginosa generalized transducing phage φPA3 is a new member of the φKZ-like group of ‘jumbo’ phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients. Microbiology 157:859–67
    [Crossref] [Google Scholar]
  110. 110.
    Thomas JA, Weintraub ST, Wu W, Winkler DC, Cheng N et al. 2012. Extensive proteolysis of head and inner body proteins by a morphogenetic protease in the giant Pseudomonas aeruginosa phage φKZ. Mol. Microbiol. 84:324–39
    [Crossref] [Google Scholar]
  111. 111.
    Krylov V, Bourkaltseva M, Pleteneva E, Shaburova O, Krylov S et al. 2021. Phage phiKZ—the first of giants. Viruses 13:149
    [Crossref] [Google Scholar]
  112. 112.
    Yakunina M, Artamonova T, Borukhov S, Makarova KS, Severinov K, Minakhin L. 2015. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nucleic Acids Res 43:10411–20
    [Google Scholar]
  113. 113.
    Orekhova M, Koreshova A, Artamonova T, Khodorkovskii M, Yakunina M. 2019. The study of the phiKZ phage non-canonical non-virion RNA polymerase. Biochem. Biophys. Res. Commun. 511:759–64
    [Crossref] [Google Scholar]
  114. 114.
    Ceyssens PJ, Minakhin L, Van den Bossche A, Yakunina M, Klimuk E et al. 2014. Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J. Virol. 88:10501–10
    [Crossref] [Google Scholar]
  115. 115.
    Laughlin TG, Deep A, Prichard AM, Seitz C, Gu Y et al. 2022. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. bioRxiv 2022.02.14.480162. https://doi.org/10.1101/2022.02.14.480162
    [Crossref]
  116. 116.
    Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP et al. 2020. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5:48–55
    [Crossref] [Google Scholar]
  117. 117.
    Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD et al. 2020. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577:244–48
    [Crossref] [Google Scholar]
  118. 118.
    Nguyen KT, Sugie J, Khanna K, Egan ME, Birkholz EA et al. 2021. Selective transport of fluorescent proteins into the phage nucleus. PLOS ONE 16:e0251429
    [Crossref] [Google Scholar]
  119. 119.
    Aylett CH, Izore T, Amos LA, Lowe J. 2013. Structure of the tubulin/FtsZ-like protein TubZ from Pseudomonas bacteriophage ΦKZ. J. Mol. Biol. 425:2164–73
    [Crossref] [Google Scholar]
  120. 119a.
    Zehr EA, Kraemer JA, Erb ML, Coker JKC, Montabana EAet al 2014. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA. Structure 22:453948
    [Crossref] [Google Scholar]
  121. 120.
    Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME et al. 2019. Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell 177:1771–80.e12
    [Crossref] [Google Scholar]
  122. 121.
    Drew KR, Pogliano J. 2011. Dynamic instability-driven centering/segregating mechanism in bacteria. PNAS 108:11075–80
    [Crossref] [Google Scholar]
  123. 122.
    Greber UF, Way M. 2006. A superhighway to virus infection. Cell 124:741–54
    [Crossref] [Google Scholar]
  124. 123.
    Birkholz EA, Laughlin TG, Suslov S, Armbruster E, Lee J et al. 2022. A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in E. coli. bioRxiv 2021.10.25.465362. https://doi.org/10.1101/2021.10.25.465362
    [Crossref]
  125. 123a.
    Guan J, Bosch AO, Mendoza SD, Karambelkar S, Berry J, Bondy-Denomy J 2022. RNA targeting with CRISPR-Cas13a facilitates bacteriophage genome engineering. bioRxiv 2022.02.14.480438. https://doi.org/10.1101/2022.02.14.480438
    [Crossref]
  126. 124.
    Nieweglowska ES, Brilot AF, Méndez-Moran M, Baek M, Li J et al. 2022. The φPA3 phage nucleus is enclosed by a self-assembling. 2D crystalline lattice. bioRxiv 2022.04.06.487387. https://doi.org/10.1101/2022.04.06.487387
    [Crossref]
  127. 125.
    Chaikeeratisak V, Khanna K, Nguyen KT, Egan ME, Enustun E et al. 2022. Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage. Sci. Adv 818eabj9670
    [Google Scholar]
  128. 126.
    Trinh JT, Shao Q, Guan J, Zeng L. 2020. Emerging heterogeneous compartments by viruses in single bacterial cells. Nat. Commun. 11:3813
    [Crossref] [Google Scholar]
  129. 127.
    Labarde A, Jakutyte L, Billaudeau C, Fauler B, Lopez-Sanz M et al. 2021. Temporal compartmentalization of viral infection in bacterial cells. PNAS 118:e2018297118
    [Crossref] [Google Scholar]
  130. 128.
    Munoz-Espin D, Daniel R, Kawai Y, Carballido-Lopez R, Castilla-Llorente V et al. 2009. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. PNAS 106:13347–52
    [Crossref] [Google Scholar]
  131. 129.
    Munoz-Espin D, Holguera I, Ballesteros-Plaza D, Carballido-Lopez R, Salas M 2010. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid. PNAS 107:16548–53
    [Crossref] [Google Scholar]
  132. 130.
    Chaikeeratisak V, Birkholz EA, Prichard AM, Egan ME, Mylvara A et al. 2021. Viral speciation through subcellular genetic isolation and virogenesis incompatibility. Nat. Commun. 12:342
    [Crossref] [Google Scholar]
  133. 131.
    Kieser Q, Noyce RS, Shenouda M, Lin YJ, Evans DH. 2020. Cytoplasmic factories, virus assembly, and DNA replication kinetics collectively constrain the formation of poxvirus recombinants. PLOS ONE 15:e0228028
    [Crossref] [Google Scholar]
  134. 132.
    Frank SA. 2001. Multiplicity of infection and the evolution of hybrid incompatibility in segmented viruses. Heredity 87:522–29
    [Crossref] [Google Scholar]
  135. 133.
    Baker SF, Nogales A, Finch C, Tuffy KM, Domm W et al. 2014. Influenza A and B virus intertypic reassortment through compatible viral packaging signals. J. Virol. 88:10778–91
    [Crossref] [Google Scholar]
  136. 134.
    White MC, Lowen AC. 2018. Implications of segment mismatch for influenza A virus evolution. J. Gen. Virol. 99:3–16
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-012822-125828
Loading
/content/journals/10.1146/annurev-virology-012822-125828
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error