1932

Abstract

Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-020420-014025
2020-09-29
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-020420-014025.html?itemId=/content/journals/10.1146/annurev-virology-020420-014025&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S 2016. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health 4:e60916
    [Google Scholar]
  2. 2. 
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68:394–424
    [Google Scholar]
  3. 3. 
    Farrell PJ. 2019. Epstein-Barr virus and cancer. Annu. Rev. Pathol. 14:29–53
    [Google Scholar]
  4. 4. 
    Cesarman E. 2014. Gammaherpesviruses and lymphoproliferative disorders. Annu. Rev. Pathol. 9:349–72
    [Google Scholar]
  5. 5. 
    Kutok JL, Wang F. 2006. Spectrum of Epstein-Barr virus–associated diseases. Annu. Rev. Pathol. 1:375–404
    [Google Scholar]
  6. 6. 
    Jha HC, Pei Y, Robertson ES 2016. Epstein-Barr virus: diseases linked to infection and transformation. Front. Microbiol. 7:1602
    [Google Scholar]
  7. 7. 
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J et al. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–69
    [Google Scholar]
  8. 8. 
    Mesri EA, Cesarman E, Boshoff C 2010. Kaposi's sarcoma and its associated herpesvirus. Nat. Rev. Cancer 10:707–19
    [Google Scholar]
  9. 9. 
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM 1995. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332:1186–91
    [Google Scholar]
  10. 10. 
    Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D et al. 1995. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86:1276–80
    [Google Scholar]
  11. 11. 
    Bergbauer M, Kalla M, Schmeinck A, Gobel C, Rothbauer U et al. 2010. CpG-methylation regulates a class of Epstein-Barr virus promoters. PLOS Pathog 6:e1001114
    [Google Scholar]
  12. 12. 
    Masucci MG, Contreras-Salazar B, Ragnar E, Falk K, Minarovits J et al. 1989. 5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt's lymphoma line rael. J. Virol. 63:3135–41
    [Google Scholar]
  13. 13. 
    Hu LF, Minarovits J, Cao SL, Contreras-Salazar B, Rymo L et al. 1991. Variable expression of latent membrane protein in nasopharyngeal carcinoma can be related to methylation status of the Epstein-Barr virus BNLF-1 5′-flanking region. J. Virol. 65:1558–67
    [Google Scholar]
  14. 14. 
    Robertson KD, Ambinder RF. 1997. Methylation of the Epstein-Barr virus genome in normal lymphocytes. Blood 90:4480–84
    [Google Scholar]
  15. 15. 
    Minarovits J, Minarovits-Kormuta S, Ehlin-Henriksson B, Falk K, Klein G, Ernberg I 1991. Host cell phenotype-dependent methylation patterns of Epstein-Barr virus DNA. J. Gen. Virol. 72:Part 71591–99
    [Google Scholar]
  16. 16. 
    Ernberg I, Falk K, Minarovits J, Busson P, Tursz T et al. 1989. The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus. J. Gen. Virol. 70:Part 112989–3002
    [Google Scholar]
  17. 17. 
    Fields BN, Knipe DM, Howley PM 2013. Fields Virology Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins
    [Google Scholar]
  18. 18. 
    Woisetschlaeger M, Yandava CN, Furmanski LA, Strominger JL, Speck SH 1990. Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. PNAS 87:1725–29
    [Google Scholar]
  19. 19. 
    Elliott J, Goodhew EB, Krug LT, Shakhnovsky N, Yoo L, Speck SH 2004. Variable methylation of the Epstein-Barr virus Wp EBNA gene promoter in B-lymphoblastoid cell lines. J. Virol. 78:14062–65
    [Google Scholar]
  20. 20. 
    Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M et al. 2011. Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin's lymphoma. J. Virol. 85:9568–77
    [Google Scholar]
  21. 21. 
    Jansson A, Masucci M, Rymo L 1992. Methylation of discrete sites within the enhancer region regulates the activity of the Epstein-Barr virus BamHI W promoter in Burkitt lymphoma lines. J. Virol. 66:62–69
    [Google Scholar]
  22. 22. 
    Schaefer BC, Strominger JL, Speck SH 1997. Host-cell-determined methylation of specific Epstein-Barr virus promoters regulates the choice between distinct viral latency programs. Mol. Cell. Biol. 17:364–77
    [Google Scholar]
  23. 23. 
    Minarovits J, Hu LF, Minarovits-Kormuta S, Klein G, Ernberg I 1994. Sequence-specific methylation inhibits the activity of the Epstein-Barr virus LMP 1 and BCR2 enhancer-promoter regions. Virology 200:661–67
    [Google Scholar]
  24. 24. 
    Robertson KD, Hayward SD, Ling PD, Samid D, Ambinder RF 1995. Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol. Cell. Biol. 15:6150–59
    [Google Scholar]
  25. 25. 
    Robertson KD, Manns A, Swinnen LJ, Zong JC, Gulley ML, Ambinder RF 1996. CpG methylation of the major Epstein-Barr virus latency promoter in Burkitt's lymphoma and Hodgkin's disease. Blood 88:3129–36
    [Google Scholar]
  26. 26. 
    Schaefer BC, Woisetschlaeger M, Strominger JL, Speck SH 1991. Exclusive expression of Epstein-Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used in latently infected lymphocytes. PNAS 88:6550–54
    [Google Scholar]
  27. 27. 
    Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF 1998. The Epstein-Barr virus major latent promoter Qp is constitutively active, hypomethylated, and methylation sensitive. J. Virol. 72:7075–83
    [Google Scholar]
  28. 28. 
    Paulson EJ, Speck SH. 1999. Differential methylation of Epstein-Barr virus latency promoters facilitates viral persistence in healthy seropositive individuals. J. Virol. 73:9959–68
    [Google Scholar]
  29. 29. 
    Salamon D, Takacs M, Ujvari D, Uhlig J, Wolf H et al. 2001. Protein-DNA binding and CpG methylation at nucleotide resolution of latency-associated promoters Qp, Cp, and LMP1p of Epstein-Barr virus. J. Virol. 75:2584–96
    [Google Scholar]
  30. 30. 
    Salamon D, Takacs M, Schwarzmann F, Wolf H, Minarovits J, Niller HH 2003. High-resolution meth-ylation analysis and in vivo protein-DNA binding at the promoter of the viral oncogene LMP2A in B cell lines carrying latent Epstein-Barr virus genomes. Virus Genes 27:57–66
    [Google Scholar]
  31. 31. 
    Minarovits J, Hu LF, Marcsek Z, Minarovits-Kormuta S, Klein G, Ernberg I 1992. RNA polymerase III-transcribed EBER 1 and 2 transcription units are expressed and hypomethylated in the major Epstein-Barr virus-carrying cell types. J. Gen. Virol. 73:Part 71687–92
    [Google Scholar]
  32. 32. 
    Hsieh CL. 1999. Evidence that protein binding specifies sites of DNA demethylation. Mol. Cell. Biol. 19:46–56
    [Google Scholar]
  33. 33. 
    Feederle R, Kost M, Baumann M, Janz A, Drouet E et al. 2000. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–89
    [Google Scholar]
  34. 34. 
    Bhende PM, Seaman WT, Delecluse HJ, Kenney SC 2004. The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat. Genet. 36:1099–104
    [Google Scholar]
  35. 35. 
    Woellmer A, Arteaga-Salas JM, Hammerschmidt W 2012. BZLF1 governs CpG-methylated chromatin of Epstein-Barr virus reversing epigenetic repression. PLOS Pathog 8:e1002902
    [Google Scholar]
  36. 36. 
    Bhende PM, Seaman WT, Delecluse HJ, Kenney SC 2005. BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J. Virol. 79:7338–48
    [Google Scholar]
  37. 37. 
    Dickerson SJ, Xing Y, Robinson AR, Seaman WT, Gruffat H, Kenney SC 2009. Methylation-dependent binding of the Epstein-Barr virus BZLF1 protein to viral promoters. PLOS Pathog 5:e1000356
    [Google Scholar]
  38. 38. 
    Flower K, Thomas D, Heather J, Ramasubramanyan S, Jones S, Sinclair AJ 2011. Epigenetic control of viral life-cycle by a DNA-methylation dependent transcription factor. PLOS ONE 6:e25922
    [Google Scholar]
  39. 39. 
    Kalla M, Schmeinck A, Bergbauer M, Pich D, Hammerschmidt W 2010. AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. PNAS 107:850–55
    [Google Scholar]
  40. 40. 
    Wille CK, Nawandar DM, Panfil AR, Ko MM, Hagemeier SR, Kenney SC 2013. Viral genome meth-ylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J. Virol. 87:935–50
    [Google Scholar]
  41. 41. 
    Wille CK, Nawandar DM, Henning AN, Ma S, Oetting KM et al. 2015. 5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. PNAS 112:E7257–7257
    [Google Scholar]
  42. 42. 
    Gunther T, Grundhoff A. 2010. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLOS Pathog 6:e1000935
    [Google Scholar]
  43. 43. 
    Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C et al. 2001. Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. PNAS 98:4119–24
    [Google Scholar]
  44. 44. 
    Esteller M. 2007. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8:286–98
    [Google Scholar]
  45. 45. 
    Murata T, Tsurumi T. 2013. Epigenetic modification of the Epstein-Barr virus BZLF1 promoter regulates viral reactivation from latency. Front. Genet. 4:53
    [Google Scholar]
  46. 46. 
    Fejer G, Koroknai A, Banati F, Gyory I, Salamon D et al. 2008. Latency type-specific distribution of epigenetic marks at the alternative promoters Cp and Qp of Epstein-Barr virus. J. Gen. Virol. 89:1364–70
    [Google Scholar]
  47. 47. 
    Tempera I, Wiedmer A, Dheekollu J, Lieberman PM 2010. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLOS Pathog 6:e1001048
    [Google Scholar]
  48. 48. 
    Day L, Chau CM, Nebozhyn M, Rennekamp AJ, Showe M, Lieberman PM 2007. Chromatin profiling of Epstein-Barr virus latency control region. J. Virol. 81:6389–401
    [Google Scholar]
  49. 49. 
    Gerle B, Koroknai A, Fejer G, Bakos A, Banati F et al. 2007. Acetylated histone H3 and H4 mark the upregulated LMP2A promoter of Epstein-Barr virus in lymphoid cells. J. Virol. 81:13242–47
    [Google Scholar]
  50. 50. 
    Jha HC, Prasad MAJ, Saha A, Banerjee S, Lu J, Robertson ES 2014. Epstein-Barr virus essential antigen EBNA3C attenuates H2AX expression. J. Virol. 88:3776–88
    [Google Scholar]
  51. 51. 
    Kudoh A, Fujita M, Zhang L, Shirata N, Daikoku T et al. 2005. Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J. Biol. Chem. 280:8156–63
    [Google Scholar]
  52. 52. 
    Murata T, Kondo Y, Sugimoto A, Kawashima D, Saito S et al. 2012. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J. Virol. 86:4752–61
    [Google Scholar]
  53. 53. 
    Ramasubramanyan S, Osborn K, Flower K, Sinclair AJ 2012. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome. J. Virol. 86:1809–19
    [Google Scholar]
  54. 54. 
    Countryman JK, Gradoville L, Miller G 2008. Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J. Virol. 82:4706–19
    [Google Scholar]
  55. 55. 
    Chang LK, Liu ST. 2000. Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28:3918–25
    [Google Scholar]
  56. 56. 
    Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY et al. 2010. Epigenetic analysis of KSHV latent and lytic genomes. PLOS Pathog 6:e1001013
    [Google Scholar]
  57. 57. 
    Gunther T, Frohlich J, Herrde C, Ohno S, Burkhardt L et al. 2019. A comparative epigenome analysis of gammaherpesviruses suggests cis-acting sequence features as critical mediators of rapid polycomb recruitment. PLOS Pathog 15:e1007838
    [Google Scholar]
  58. 58. 
    Sun R, Tan X, Wang X, Wang X, Yang L et al. 2017. Epigenetic landscape of Kaposi's sarcoma-associated herpesvirus genome in classic Kaposi's sarcoma tissues. PLOS Pathog 13:e1006167
    [Google Scholar]
  59. 59. 
    Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM 2003. Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J. Virol. 77:11425–35
    [Google Scholar]
  60. 60. 
    Strahan RC, McDowell-Sargent M, Uppal T, Purushothaman P, Verma SC 2017. KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation. PLOS Pathog 13:e1006482
    [Google Scholar]
  61. 61. 
    Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC et al. 2006. The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 311:856–61
    [Google Scholar]
  62. 62. 
    De Leo A, Deng Z, Vladimirova O, Chen HS, Dheekollu J et al. 2019. LANA oligomeric architecture is essential for KSHV nuclear body formation and viral genome maintenance during latency. PLOS Pathog 15:e1007489
    [Google Scholar]
  63. 63. 
    Stedman W, Deng Z, Lu F, Lieberman PM 2004. ORC, MCM, and histone hyperacetylation at the Kaposi's sarcoma-associated herpesvirus latent replication origin. J. Virol. 78:12566–75
    [Google Scholar]
  64. 64. 
    Lu F, Stedman W, Yousef M, Renne R, Lieberman PM 2010. Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J. Virol. 84:2697–706
    [Google Scholar]
  65. 65. 
    Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS 2002. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. PNAS 99:10084–89
    [Google Scholar]
  66. 66. 
    Seo SY, Kim EO, Jang KL 2008. Epstein-Barr virus latent membrane protein 1 suppresses the growth-inhibitory effect of retinoic acid by inhibiting retinoic acid receptor-β2 expression via DNA methylation. Cancer Lett 270:66–76
    [Google Scholar]
  67. 67. 
    Tsai CL, Li HP, Lu YJ, Hsueh C, Liang Y et al. 2006. Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH2-terminal kinase signaling. Cancer Res 66:11668–76
    [Google Scholar]
  68. 68. 
    Tong JH, Tsang RK, Lo KW, Woo JK, Kwong J et al. 2002. Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin. Cancer Res. 8:2612–19
    [Google Scholar]
  69. 69. 
    Zhang S, Pei Y, Lang F, Sun K, Singh RK et al. 2019. EBNA3C facilitates RASSF1A downregulation through ubiquitin-mediated degradation and promoter hypermethylation to drive B-cell proliferation. PLOS Pathog 15:e1007514
    [Google Scholar]
  70. 70. 
    Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A et al. 2009. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 69:2766–74
    [Google Scholar]
  71. 71. 
    Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K et al. 2006. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin. Cancer Res. 12:2995–3002
    [Google Scholar]
  72. 72. 
    Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ 2009. Epstein-Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. . PLOS Pathog 5:e1000492
    [Google Scholar]
  73. 73. 
    Wang L, Grossman SR, Kieff E 2000. Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. PNAS 97:430–35
    [Google Scholar]
  74. 74. 
    Shamay M, Krithivas A, Zhang J, Hayward SD 2006. Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi's sarcoma-associated herpesvirus LANA. PNAS 103:14554–59
    [Google Scholar]
  75. 75. 
    Sun F, Xiao Y, Qu Z 2015. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. J. Biol. Chem. 290:7362–68
    [Google Scholar]
  76. 76. 
    Di Bartolo DL, Cannon M, Liu YF, Renne R, Chadburn A et al. 2008. KSHV LANA inhibits TGF-β signaling through epigenetic silencing of the TGF-β type II receptor. Blood 111:4731–40
    [Google Scholar]
  77. 77. 
    Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E et al. 2004. Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi's sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J. Virol. 78:7299–310
    [Google Scholar]
  78. 78. 
    Toth Z, Papp B, Brulois K, Choi YJ, Gao SJ, Jung JU 2016. LANA-mediated recruitment of host polycomb repressive complexes onto the KSHV genome during de novo infection. PLOS Pathog 12:e1005878
    [Google Scholar]
  79. 79. 
    Sauvageau M, Sauvageau G. 2010. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7:299–313
    [Google Scholar]
  80. 80. 
    He M, Zhang W, Bakken T, Schutten M, Toth Z et al. 2012. Cancer angiogenesis induced by Kaposi sarcoma-associated herpesvirus is mediated by EZH2. Cancer Res 72:3582–92
    [Google Scholar]
  81. 81. 
    Wu J, Xu Y, Mo D, Huang P, Sun R et al. 2014. Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 promotes cell proliferation and migration by upregulating DNMT1 via STAT3 activation. PLOS ONE 9:e93478
    [Google Scholar]
  82. 82. 
    Platt G, Carbone A, Mittnacht S 2002. p16INK4a loss and sensitivity in KSHV associated primary effusion lymphoma. Oncogene 21:1823–31
    [Google Scholar]
  83. 83. 
    Journo G, Tushinsky C, Shterngas A, Avital N, Eran Y et al. 2018. Modulation of cellular CpG DNA methylation by Kaposi's sarcoma-associated herpesvirus. J. Virol. 92:e00008-18
    [Google Scholar]
  84. 84. 
    Lim C, Sohn H, Lee D, Gwack Y, Choe J 2002. Functional dissection of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus involved in latent DNA replication and transcription of terminal repeats of the viral genome. J. Virol. 76:10320–31
    [Google Scholar]
  85. 85. 
    Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES 2019. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLOS Pathog 15:e1007796
    [Google Scholar]
  86. 86. 
    Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20
    [Google Scholar]
  87. 87. 
    Tan B, Liu H, Zhang S, da Silva SR, Zhang L et al. 2018. Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat. Microbiol. 3:108–20
    [Google Scholar]
  88. 88. 
    Kutluay SB, Triezenberg SJ. 2009. Role of chromatin during herpesvirus infections. Biochim. Biophys. Acta 1790:456–66
    [Google Scholar]
  89. 89. 
    Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273–304
    [Google Scholar]
  90. 90. 
    Chau CM, Spindler M-P, Schepers A, Shiekhattar R, Zhou J et al. 2005. Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J 24:1406–17
    [Google Scholar]
  91. 91. 
    Schaeffner M, Mrozek-Gorska P, Buschle A, Woellmer A, Tagawa T et al. 2019. BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Sci. Alliance 2:e201800108
    [Google Scholar]
  92. 92. 
    Su M-T, Wang Y-T, Chen Y-J, Lin S-F, Tsai C-H, Chen M-R 2017. The SWI/SNF chromatin regulator BRG1 modulates the transcriptional regulatory activity of the Epstein-Barr virus DNA polymerase processivity factor BMRF1. J. Virol. 91:e02114-16
    [Google Scholar]
  93. 93. 
    Kwiatkowski B, Chen SYJ, Schubach WH 2004. CKII site in Epstein-Barr virus nuclear protein 2 controls binding to hSNF5/Ini1 and is important for growth transformation. J. Virol. 78:6067–72
    [Google Scholar]
  94. 94. 
    Wu DY, Krumm A, Schubach WH 2000. Promoter-specific targeting of human SWI-SNF complex by Epstein-Barr virus nuclear protein 2. J. Virol. 74:8893–903
    [Google Scholar]
  95. 95. 
    Dennis K, Fan T, Geiman T, Yan Q, Muegge K 2001. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15:2940–44
    [Google Scholar]
  96. 96. 
    He X, Yan B, Liu S, Jia J, Lai W et al. 2016. Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase. Cancer Res 76:5743–55
    [Google Scholar]
  97. 97. 
    Ouyang C, Deng Z, Zhou J, Fu C, Liu S et al. 2019. Chromatin remodeling factor lymphoid-specific helicase links with Epstein-Barr virus associated the follicular germinal center B cell lymphomas. J. Cancer Res. Ther. 15:350–57
    [Google Scholar]
  98. 98. 
    Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M et al. 2003. Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol. Cell. Biol. 23:2055–67
    [Google Scholar]
  99. 99. 
    Hopcraft SE, Pattenden SG, James LI, Frye S, Dittmer DP, Damania B 2018. Chromatin remodeling controls Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLOS Pathog 14:e1007267
    [Google Scholar]
  100. 100. 
    Splinter D, Heath H, Kooren J, Palstra R-J, Klous P et al. 2006. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev 20:2349–54
    [Google Scholar]
  101. 101. 
    Arvey A, Tempera I, Tsai K, Chen H-S, Tikhmyanova N et al. 2012. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 12:233–45
    [Google Scholar]
  102. 102. 
    Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM et al. 2013. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J. Virol. 88:1703–13
    [Google Scholar]
  103. 103. 
    Tempera I, Klichinsky M, Lieberman PM 2011. EBV latency types adopt alternative chromatin conformations. PLOS Pathog 7:e1002180
    [Google Scholar]
  104. 104. 
    Chau CM, Zhang XY, McMahon SB, Lieberman PM 2006. Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF. J. Virol. 80:5723–32
    [Google Scholar]
  105. 105. 
    Salamon D, Banati F, Koroknai A, Ravasz M, Szenthe K et al. 2009. Binding of CCCTC-binding factor in vivo to the region located between Rep* and the C promoter of Epstein-Barr virus is unaffected by CpG methylation and does not correlate with Cp activity. J. Gen. Virol. 90:1183–89
    [Google Scholar]
  106. 106. 
    Hughes DJ, Marendy EM, Dickerson CA, Yetming KD, Sample CE, Sample JT 2012. Contributions of CTCF and DNA methyltransferases DNMT1 and DNMT3B to Epstein-Barr virus restricted latency. J. Virol. 86:1034–45
    [Google Scholar]
  107. 107. 
    Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM 2008. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 27:654–66
    [Google Scholar]
  108. 108. 
    Li D-J, Verma D, Mosbruger T, Swaminathan S 2014. CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription. PLOS Pathog 10:e1003880
    [Google Scholar]
  109. 109. 
    Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM 2011. Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLOS Pathog 7:e1002140
    [Google Scholar]
  110. 110. 
    Kang H, Cho H, Sung G-H, Lieberman PM 2013. CTCF regulates Kaposi's sarcoma-associated herpesvirus latency transcription by nucleosome displacement and RNA polymerase programming. J. Virol. 87:1789–99
    [Google Scholar]
  111. 111. 
    Hancock MH, Skalsky RL. 2018. Roles of non-coding RNAs during herpesvirus infection. Curr. Top. Microbiol. Immunol. 419:243–80
    [Google Scholar]
  112. 112. 
    Tycowski KT, Guo YE, Lee N, Moss WN, Vallery TK et al. 2015. Viral noncoding RNAs: more surprises. Genes Dev 29:567–84
    [Google Scholar]
  113. 113. 
    Lee N, Moss WN, Yario TA, Steitz JA 2015. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 160:607–18
    [Google Scholar]
  114. 114. 
    Lee N, Yario TA, Gao JS, Steitz JA 2016. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. PNAS 113:3221–26
    [Google Scholar]
  115. 115. 
    Vereide DT, Seto E, Chiu YF, Hayes M, Tagawa T et al. 2014. Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene 33:1258–64
    [Google Scholar]
  116. 116. 
    Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D et al. 2016. Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. PNAS 113:E6467–6467
    [Google Scholar]
  117. 117. 
    Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J et al. 2016. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J. Exp. Med. 213:2065–80
    [Google Scholar]
  118. 118. 
    Murer A, Ruhl J, Zbinden A, Capaul R, Hammerschmidt W et al. 2019. MicroRNAs of Epstein-Barr virus attenuate T-cell-mediated immune control in vivo. . mBio 10:e01941-18
    [Google Scholar]
  119. 119. 
    Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D et al. 2012. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J. Immunol. 189:3795–99
    [Google Scholar]
  120. 120. 
    Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O 2009. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5:376–85
    [Google Scholar]
  121. 121. 
    Xia T, O'Hara A, Araujo I, Barreto J, Carvalho E et al. 2008. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res 68:1436–42
    [Google Scholar]
  122. 122. 
    Feederle R, Linnstaedt SD, Bannert H, Lips H, Bencun M et al. 2011. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLOS Pathog 7:e1001294
    [Google Scholar]
  123. 123. 
    Seto E, Moosmann A, Gromminger S, Walz N, Grundhoff A, Hammerschmidt W 2010. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLOS Pathog 6:e1001063
    [Google Scholar]
  124. 124. 
    Chen Y, Fachko D, Ivanov NS, Skinner CM, Skalsky RL 2019. Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation. PLOS Pathog 15:e1007535
    [Google Scholar]
  125. 125. 
    Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM et al. 2008. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 205:2551–60
    [Google Scholar]
  126. 126. 
    Hutzinger R, Feederle R, Mrazek J, Schiefermeier N, Balwierz PJ et al. 2009. Expression and processing of a small nucleolar RNA from the Epstein-Barr virus genome. PLOS Pathog 5:e1000547
    [Google Scholar]
  127. 127. 
    Barrett SP, Salzman J. 2016. Circular RNAs: analysis, expression and potential functions. Development 143:1838–47
    [Google Scholar]
  128. 128. 
    Toptan T, Abere B, Nalesnik MA, Swerdlow SH, Ranganathan S et al. 2018. Circular DNA tumor viruses make circular RNAs. PNAS 115:E8737–8737
    [Google Scholar]
  129. 129. 
    Ungerleider N, Concha M, Lin Z, Roberts C, Wang X et al. 2018. The Epstein Barr virus circRNAome. PLOS Pathog 14:e1007206
    [Google Scholar]
  130. 130. 
    Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M et al. 2011. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10:515–26
    [Google Scholar]
  131. 131. 
    Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R et al. 2010. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLOS Pathog 6:e1000742
    [Google Scholar]
  132. 132. 
    Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A et al. 2007. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81:12836–45
    [Google Scholar]
  133. 133. 
    Liang D, Gao Y, Lin X, He Z, Zhao Q et al. 2011. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKε. Cell Res 21:793–806
    [Google Scholar]
  134. 134. 
    Liu Y, Sun R, Lin X, Liang D, Deng Q, Lan K 2012. Kaposi's sarcoma-associated herpesvirus-encoded microRNA miR-K12-11 attenuates transforming growth factor beta signaling through suppression of SMAD5. J. Virol. 86:1372–81
    [Google Scholar]
  135. 135. 
    Boss IW, Nadeau PE, Abbott JR, Yang Y, Mergia A, Renne R 2011. A Kaposi's sarcoma-associated herpesvirus-encoded ortholog of microRNA miR-155 induces human splenic B-cell expansion in NOD/LtSz-scid IL2Rγnull mice. J. Virol. 85:9877–86
    [Google Scholar]
  136. 136. 
    Plaisance-Bonstaff K, Choi HS, Beals T, Krueger BJ, Boss IW et al. 2014. KSHV miRNAs decrease expression of lytic genes in latently infected PEL and endothelial cells by targeting host transcription factors. Viruses 6:4005–23
    [Google Scholar]
  137. 137. 
    Suffert G, Malterer G, Hausser J, Viiliainen J, Fender A et al. 2011. Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLOS Pathog 7:e1002405
    [Google Scholar]
  138. 138. 
    Liu X, Happel C, Ziegelbauer JM 2017. Kaposi's sarcoma-associated herpesvirus microRNAs target GADD45B to protect infected cells from cell cycle arrest and apoptosis. J. Virol. 91:e02045-16
    [Google Scholar]
  139. 139. 
    Lei X, Bai Z, Ye F, Xie J, Kim CG et al. 2010. Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA. Nat. Cell Biol. 12:193–99
    [Google Scholar]
  140. 140. 
    Happel C, Ramalingam D, Ziegelbauer JM 2016. Virus-mediated alterations in miRNA factors and degradation of viral miRNAs by MCPIP1. PLOS Biol 14:e2000998
    [Google Scholar]
  141. 141. 
    Forte E, Raja AN, Shamulailatpam P, Manzano M, Schipma MJ et al. 2015. MicroRNA-mediated transformation by the Kaposi's sarcoma-associated herpesvirus Kaposin locus. J. Virol. 89:2333–41
    [Google Scholar]
  142. 142. 
    Ramalingam D, Happel C, Ziegelbauer JM 2015. Kaposi's sarcoma-associated herpesvirus microRNAs repress breakpoint cluster region protein expression, enhance Rac1 activity, and increase in vitro angiogenesis. J. Virol. 89:4249–61
    [Google Scholar]
  143. 143. 
    Hu M, Wang C, Li W, Lu W, Bai Z et al. 2015. A KSHV microRNA directly targets G protein-coupled receptor kinase 2 to promote the migration and invasion of endothelial cells by inducing CXCR2 and activating AKT signaling. PLOS Pathog 11:e1005171
    [Google Scholar]
  144. 144. 
    Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC et al. 2007. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLOS Pathog 3:e65
    [Google Scholar]
  145. 145. 
    Li W, Yan Q, Ding X, Shen C, Hu M et al. 2016. The SH3BGR/STAT3 pathway regulates cell migration and angiogenesis induced by a gammaherpesvirus microRNA. PLOS Pathog 12:e1005605
    [Google Scholar]
  146. 146. 
    Hansen A, Henderson S, Lagos D, Nikitenko L, Coulter E et al. 2010. KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev 24:195–205
    [Google Scholar]
  147. 147. 
    Li W, Wang Q, Feng Q, Wang F, Yan Q et al. 2019. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLOS Pathog 15:e1007578
    [Google Scholar]
  148. 148. 
    Sun R, Lin SF, Gradoville L, Miller G 1996. Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. PNAS 93:11883–88
    [Google Scholar]
  149. 149. 
    Withers JB, Li ES, Vallery TK, Yario TA, Steitz JA 2018. Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci. PLOS Pathog 14:e1007389
    [Google Scholar]
  150. 150. 
    Tagawa T, Gao S, Koparde VN, Gonzalez M, Spouge JL et al. 2018. Discovery of Kaposi's sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. PNAS 115:12805–10
    [Google Scholar]
  151. 151. 
    Shema E, Bernstein BE, Buenrostro JD 2019. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat. Genet. 51:19–25
    [Google Scholar]
/content/journals/10.1146/annurev-virology-020420-014025
Loading
/content/journals/10.1146/annurev-virology-020420-014025
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error