1932

Abstract

Dendritic cell (DC) subsets are abundantly present in genital and intestinal mucosal tissue and are among the first innate immune cells that encounter human immunodeficiency virus type 1 (HIV-1) after sexual contact. Although DCs have specific characteristics that greatly enhance HIV-1 transmission, it is becoming evident that most DC subsets also have virus restriction mechanisms that exert selective pressure on the viruses during sexual transmission. In this review we discuss the current concepts of the immediate events following viral exposure at genital mucosal sites that lead to selection of specific HIV-1 variants called transmitted founder (TF) viruses. We highlight the importance of the TF HIV-1 phenotype and the role of different DC subsets in establishing infection. Understanding the biology of HIV-1 transmission will contribute to the design of novel treatment strategies preventing HIV-1 dissemination.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-020520-025625
2020-09-29
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-020520-025625.html?itemId=/content/journals/10.1146/annurev-virology-020520-025625&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    UNAIDS 2019. UNAIDS Data 2019 Geneva, Switz: UNAIDS
  2. 2. 
    Monaco DC, Ende Z, Hunter E 2017. Virus-host gene interactions define HIV-1 disease progression. Current Top. Microbiol. Immunol. 407:31–63
    [Google Scholar]
  3. 3. 
    Shattock RJ, Moore JP. 2003. Inhibiting sexual transmission of HIV-1 infection. Nat. Rev. Microbiol. 1:125–34
    [Google Scholar]
  4. 4. 
    Haase AT. 2010. Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464:217–23
    [Google Scholar]
  5. 5. 
    Lu TX, Hartner J, Lim E, Fabry V, Mingler MK et al. 2009. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Changes 41:915–25
    [Google Scholar]
  6. 6. 
    Nijmeijer BM, Sarrami-Forooshani R, Steba GS, Schreurs RR, Koekkoek SM et al. 2019. HIV-1 exposure and immune activation enhance sexual transmission of Hepatitis C virus by primary Langerhans cells. J. Int. AIDS Soc. 22:3e25268
    [Google Scholar]
  7. 7. 
    Preza GC, Tanner K, Elliott J, Yang OO, Anton PA, Ochoa M-T 2014. Antigen-presenting cell candidates for HIV-1 transmission in human distal colonic mucosa defined by CD207 dendritic cells and CD209 macrophages. AIDS Res. Hum. Retroviruses 30:3241–49
    [Google Scholar]
  8. 8. 
    Patterson BK, Landay A, Siegel JN, Flener Z, Pessis D et al. 2002. Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. Am. J. Pathol. 161:3867–73
    [Google Scholar]
  9. 9. 
    Pena-Cruz V, Agosto LM, Akiyama H, Olson A, Moreau Y et al. 2018. HIV-1 replicates and persists in vaginal epithelial dendritic cells. J. Clin. Invest. 128:83439–44
    [Google Scholar]
  10. 10. 
    Bertram KM, Botting RA, Baharlou H, Rhodes JW, Rana H et al. 2019. Identification of HIV transmitting CD11c+ human epidermal dendritic cells. Nat. Commun. 10:12759
    [Google Scholar]
  11. 11. 
    Collin M, McGovern N, Haniffa M 2013. Human dendritic cell subsets. Immunology 140:122–30
    [Google Scholar]
  12. 12. 
    Engering A, Geijtenbeek TBH, van Vliet SJ, Wijers M, van Liempt E et al. 2002. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. 168:52118–26
    [Google Scholar]
  13. 13. 
    Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TB 2010. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat. Immunol. 11:5419–26
    [Google Scholar]
  14. 14. 
    Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR 2002. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16:1135–44
    [Google Scholar]
  15. 15. 
    Hyun JY, Reuter MA, McDonald D 2008. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLOS Pathog 4:8e1000134
    [Google Scholar]
  16. 16. 
    Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF et al. 2005. HIV-1 trafficking to the dendritic cell–T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:6488–501
    [Google Scholar]
  17. 17. 
    Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392:6673245–52
    [Google Scholar]
  18. 18. 
    Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT et al. 2008. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. PNAS 105:217552–57
    [Google Scholar]
  19. 19. 
    Hoffman I, Chu H, Wood N, Giorgi EE, Karim SA et al. 2009. Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J. Virol. 83:83556–67
    [Google Scholar]
  20. 20. 
    Gottlieb GS, Heath L, Nickle DC, Wong KG, Leach SE et al. 2008. HIV‐1 variation before seroconversion in men who have sex with men: analysis of acute/early HIV infection in the multicenter AIDS cohort study. J. Infect. Dis. 197:71011–15
    [Google Scholar]
  21. 21. 
    Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE et al. 2009. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 206:61273–89
    [Google Scholar]
  22. 22. 
    Joseph SB, Swanstrom R, Kashuba ADM, Cohen MS 2015. Bottlenecks in HIV-1 transmission: insights from the study of founder viruses. Nat. Rev. Microbiol. 13:7414–25
    [Google Scholar]
  23. 23. 
    Hraber PT, Mulenga J, Allen S, Karita E, Hart CE et al. 2011. Role of donor genital tract HIV-1 diversity in the transmission bottleneck. PNAS 108:46E1156–1156
    [Google Scholar]
  24. 24. 
    Gray RH, Wawer MJ, Brookmeyer R, Sewankambo NK, Serwadda D et al. 2001. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357:1149–53
    [Google Scholar]
  25. 25. 
    Jagsi R, Jiang J, Momoh AO, Alderman A, Giordano SH et al. 2018. Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. Mucosal Immunol 263:2219–27
    [Google Scholar]
  26. 26. 
    Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z et al. 2014. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 7:4983–94
    [Google Scholar]
  27. 27. 
    Münch J, Rücker E, Ständker L, Adermann K, Goffinet C et al. 2007. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131:61059–71
    [Google Scholar]
  28. 28. 
    de Jong MAWP, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, Geijtenbeek TBH 2008. TNF-a and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J. Clin. Invest. 118:103440–52
    [Google Scholar]
  29. 29. 
    de Jong MAWP, de Witte L, Taylor ME, Geijtenbeek TBH 2010. Herpes simplex virus type 2 enhances HIV-1 susceptibility by affecting Langerhans cell function. J. Immunol. 185:31633–41
    [Google Scholar]
  30. 30. 
    Galvin SR, Cohen MS. 2004. The role of sexually transmitted diseases in HIV transmission. Nat. Rev. Microbiol. 2:133–42
    [Google Scholar]
  31. 31. 
    Passmore JAS, Jaspan HB, Masson L 2016. Genital inflammation, immune activation and risk of sexual HIV acquisition. Curr. Opin. HIV AIDS 11:2156–62
    [Google Scholar]
  32. 32. 
    Tully DC, Ogilvie CB, Batorsky RE, Bean DJ, Power KA et al. 2016. Differences in the selection bottleneck between modes of sexual transmission influence the genetic composition of the HIV-1 founder virus. PLOS Pathog 12:5e1005619
    [Google Scholar]
  33. 33. 
    Hladik F, McElrath MJ. 2008. Setting the stage: host invasion by HIV. Nat. Rev. Immunol. 8:6447–57
    [Google Scholar]
  34. 34. 
    Quayle AJ, Haimovici F, Anderson DJ 1999. Genital tract immunity against human immunodeficiency virus-1 (HIV-1). Reproductive Immunology SK Gupta 379–86 Dordrecht, Neth.: Springer
    [Google Scholar]
  35. 35. 
    Bagasra O, Farzadegan H, Seshamma T, Oakes JW, Saah A, Pomerantz RJ 1994. Detection of HIV-1 proviral DNA in sperm from HIV-1-infected men. AIDS 8:1669–74
    [Google Scholar]
  36. 36. 
    Quinn T, Wawer MJ, Sewankambo N, Serwadda D, Chuanjun L et al. 2000. Viral load and heterosexual transmission of human immunodeficiency virus type 1. N. Engl. J. Med. 342:13921–29
    [Google Scholar]
  37. 37. 
    Pilcher CD, Joaki G, Hoffman IF, Martinson FEA, Mapanje C et al. 2007. Amplified transmission of HIV-1: comparison of HIV-1 concentrations in semen and blood during acute and chronic infection. AIDS 21:131723–30
    [Google Scholar]
  38. 38. 
    Baeten JM, Kahle E, Lingappa JR, Coombs RW, Sinead D-M et al. 2011. Genital HIV-1 RNA predicts risk of heterosexual HIV-1 transmission. Sci. Transl. Med. 3:7777ra29
    [Google Scholar]
  39. 39. 
    Maher D, Wu X, Schacker T, Horbul J, Southern P 2005. HIV binding, penetration, and primary infection in human cervicovaginal tissue. PNAS 102:3211504–9
    [Google Scholar]
  40. 40. 
    Kim KA, Yolamanova M, Zirafi O, Roan NR, Staendker Let al 2010. Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI. Retrovirology 7:155
    [Google Scholar]
  41. 41. 
    Bouhlal H, Chomont N, Haeffner-Cavaillon N, Kazatchkine MD, Belec L, Hocini H 2002. Opsonization of HIV-1 by semen complement enhances infection of human epithelial cells. J. Immunol. 169:63301–6
    [Google Scholar]
  42. 42. 
    Posch W, Steger M, Knackmuss U, Blatzer M, Baldauf HM et al. 2015. Complement-opsonized HIV-1 overcomes restriction in dendritic cells. PLOS Pathog 11:6e1005005
    [Google Scholar]
  43. 43. 
    Kelley CF, Kraft CS, De Man TJB, Duphare C, Lee HW et al. 2017. The rectal mucosa and condomless receptive anal intercourse in HIV-negative MSM: implications for HIV transmission and prevention. Mucosal Immunol 10:4996–1007
    [Google Scholar]
  44. 44. 
    Rhodes JW, Tong O, Harman AN, Turville SG 2019. Human dendritic cell subsets, ontogeny, and impact on HIV infection. Front. Immunol. 10:1088
    [Google Scholar]
  45. 45. 
    Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J 2014. Estimating per-act HIV transmission risk: a systematic review. AIDS 28:10150919
    [Google Scholar]
  46. 46. 
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G et al. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:4361–67
    [Google Scholar]
  47. 47. 
    Carias AM, McCoombe S, McRaven M, Anderson M, Galloway N et al. 2013. Defining the interaction of HIV-1 with the mucosal barriers of the female reproductive tract. J. Virol. 87:2111388–400
    [Google Scholar]
  48. 48. 
    Bomsel M. 1997. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat. Med. 3:142–47
    [Google Scholar]
  49. 49. 
    Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB 2009. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:3433–44
    [Google Scholar]
  50. 50. 
    Cambi A, Beeren I, Joosten B, Fransen JA, Figdor CG 2009. The C-type lectin DC-SIGN internalizes soluble antigens and HIV-1 virions via a clathrin-dependent mechanism. Eur. J. Immunol. 39:71923–28
    [Google Scholar]
  51. 51. 
    Mfunyi CM, Vaillancourt M, Vitry J, Nsimba Batomene TR, Posvandzic A et al. 2015. Exosome release following activation of the dendritic cell immunoreceptor: a potential role in HIV-1 pathogenesis. Virology 484:103–12
    [Google Scholar]
  52. 52. 
    Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG 2017. Secretome of intestinal bacilli: a natural guard against pathologies. Front. Microbiol. 8:1666
    [Google Scholar]
  53. 53. 
    Dillon SM, Kibbie J, Lee EJ, Guo K, Santiago ML et al. 2017. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. AIDS 31:451121
    [Google Scholar]
  54. 54. 
    Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S et al. 2016. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 9:24–37
    [Google Scholar]
  55. 55. 
    Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ et al. 2010. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLOS Pathog 6:4e1000852
    [Google Scholar]
  56. 56. 
    Allam O, Samarani S, Mehraj V, Jenabian MA, Tremblay C et al. 2018. HIV induces production of IL-18 from intestinal epithelial cells that increases intestinal permeability and microbial translocation. PLOS ONE 13:3e0194185
    [Google Scholar]
  57. 57. 
    Zussman A, Lara L, Lara HH, Bentwich Z, Borkow G 2003. Blocking of cell-free and cell-associated HIV-1 transmission through human cervix organ culture with UC781. AIDS 17:5653–61
    [Google Scholar]
  58. 58. 
    Jolly C, Kashefi K, Hollinshead M, Sattentau QJ 2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199:2283–93
    [Google Scholar]
  59. 59. 
    Mesman AW, Geijtenbeek TB. 2012. Pattern recognition receptors in HIV transmission. Front. Immunol. 3:59
    [Google Scholar]
  60. 60. 
    Martin-Gayo E, Yu XG. 2019. Role of dendritic cells in natural immune control of HIV-1 infection. Front. Immunol. 10:1306
    [Google Scholar]
  61. 61. 
    Akira S, Takeda K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:7499–511
    [Google Scholar]
  62. 62. 
    Dong C, Janas AM, Wang J-H, Olson WJ, Wu L 2007. Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J. Virol. 81:2011352–62
    [Google Scholar]
  63. 63. 
    Bracq L, Xie M, Benichou S, Bouchet J 2018. Mechanisms for cell-to-cell transmission of HIV-1. Front. Immunol. 9:260
    [Google Scholar]
  64. 64. 
    Rodriguez-Plata MT, Puigdomènech I, Izquierdo-Useros N, Puertas MC, Carrillo J et al. 2013. The infectious synapse formed between mature dendritic cells and CD4+ T cells is independent of the presence of the HIV-1 envelope glycoprotein. Retrovirology 10:142
    [Google Scholar]
  65. 65. 
    Geijtenbeek TBH, Torensma R, van Vliet SJ, van Duijnhoven GCF, Adema GJ et al. 2000. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:5575–85
    [Google Scholar]
  66. 66. 
    Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC et al. 2000. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:5587–97
    [Google Scholar]
  67. 67. 
    Wu L, KewalRamani VN. 2006. Dendritic-cell interactions with HIV, infection and viral dissemination. Nat. Rev. Immunol. 6:11859–68
    [Google Scholar]
  68. 68. 
    Fehres CM, Van Beelen AJ, Bruijns SCM, Ambrosini M, Kalay H et al. 2015. In-situ delivery of antigen to DC-SIGN+ CD14+ dermal dendritic cells results in enhanced CD8+ T-cell responses. J. Invest. Dermatol. 135:92228–36
    [Google Scholar]
  69. 69. 
    Shen R, Kappes JC, Smythies LE, Richter HE, Novak L, Smith PD 2014. Vaginal myeloid dendritic cells transmit founder HIV-1. J. Virol. 88:137683–88
    [Google Scholar]
  70. 70. 
    Rodriguez-Garcia M, Shen Z, Barr FD, Boesch AW, Ackerman ME et al. 2017. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV. Mucosal Immunol 10:2531–44
    [Google Scholar]
  71. 71. 
    Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N et al. 2012. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLOS Biol 10:12e1001448
    [Google Scholar]
  72. 72. 
    Ruffin N, Gea-Mallorquí E, Brouiller F, Jouve M, Silvin A et al. 2019. Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. PNAS 116:4321685–93
    [Google Scholar]
  73. 73. 
    Perez-Zsolt D, Cantero-Pérez J, Erkizia I, Benet S, Pino M et al. 2019. Dendritic cells from the cervical mucosa capture and transfer HIV-1 via Siglec-1. Front. Immunol. 10:825
    [Google Scholar]
  74. 74. 
    Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu X et al. 2013. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLOS Pathog 9:4e1003291
    [Google Scholar]
  75. 75. 
    Bobardt MD, Saphire ACS, Hung HC, Yu X, Van Der Schueren B et al. 2003. Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity 18:127–39
    [Google Scholar]
  76. 76. 
    David G, Geijtenbeek TBH, de Witte L, Bobardt M, Chatterji U et al. 2007. Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. PNAS 104:4919464–69
    [Google Scholar]
  77. 77. 
    Saphire ACS, Bobardt MD, Zhang Z, Gallay PA, Zhang ZHE, David G 2001. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J. Virol. 75:199187–200
    [Google Scholar]
  78. 78. 
    Cavrois M, Neidleman J, Kreisberg JF, Greene WC 2007. In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions. PLOS Pathog 3:1e4
    [Google Scholar]
  79. 79. 
    Ménager MM, Littman DR. 2016. Actin dynamics regulates dendritic cell-mediated transfer of HIV-1 to T cells. Cell 164:4695–709
    [Google Scholar]
  80. 80. 
    Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M et al. 2000. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:171–81
    [Google Scholar]
  81. 81. 
    Klechevsky E, Morita R, Liu M, Cao Y, Coquery S et al. 2008. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29:3497–510
    [Google Scholar]
  82. 82. 
    Nasr N, Lai J, Botting RA, Mercier SK, Harman AN et al. 2014. Inhibition of two temporal phases of HIV-1 transfer from primary Langerhans cells to T cells: the role of langerin. J. Immunol. 193:52554–64
    [Google Scholar]
  83. 83. 
    Ganor Y, Zhou Z, Tudor D, Schmitt A, Gibault L et al. 2010. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans–T cell conjugates. Mucosal Immunol 3:5506–22
    [Google Scholar]
  84. 84. 
    Sarrami-Forooshani R, Mesman AW, van Teijlingen NH, Sprokholt JK, van der Vlist M et al. 2014. Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission. Retrovirology 11:152
    [Google Scholar]
  85. 85. 
    Ballweber L, Robinson B, Kreger A, Fialkow M, Lentz G et al. 2011. Vaginal Langerhans cells nonproductively transporting HIV-1 mediate infection of T cells. J. Virol. 85:2413443–47
    [Google Scholar]
  86. 86. 
    de Witte L, Nabatov, A Pion M, Fluitsma D, de Jong MAWP et al. 2007. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med. 13:3367–71
    [Google Scholar]
  87. 87. 
    Ribeiro CMS, Sarrami-Forooshani R, Setiawan LC, Zijlstra-Willems EM, Van Hamme JL et al. 2016. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature 540:448–52
    [Google Scholar]
  88. 88. 
    Iyer SS, Bibollet-Ruche F, Sherrill-Mix S, Learn GH, Plenderleith L et al. 2017. Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness. PNAS 114:4590–99
    [Google Scholar]
  89. 89. 
    Fenton-May AE, Dibben O, Emmerich T, Ding H, Pfafferott K et al. 2013. Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 10:1146
    [Google Scholar]
  90. 90. 
    Hertoghs N, Nijmeijer BM, van Teijlingen NH, Fenton-May AE, Kaptein TM et al. 2019. Sexually transmitted founder HIV-1 viruses are relatively resistant to Langerhans cell-mediated restriction. PLOS ONE 14:12e0226651
    [Google Scholar]
  91. 91. 
    Introini A, Vanpouille C, Lisco A, Grivel JC, Margolis L 2013. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLOS Pathog 9:2e1003148
    [Google Scholar]
  92. 92. 
    Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD 1998. How cells respond to interferon. Annu. Rev. Biochem. 67:227–64
    [Google Scholar]
  93. 93. 
    Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR 2010. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:7312214–17
    [Google Scholar]
  94. 94. 
    Gringhuis SI, Hertoghs N, Kaptein TM, Zijlstra-Willems EM, Sarrami-Fooroshani R et al. 2017. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat. Immunol. 18:2225–35
    [Google Scholar]
  95. 95. 
    Colomer-Lluch M, Ruiz A, Moris A, Prado JG 2018. Restriction factors: from intrinsic viral restriction to shaping cellular immunity against HIV-1. Front. Immunol. 9:2876
    [Google Scholar]
  96. 96. 
    Sheehy AM, Gaddis NC, Choi JD, Malim MH 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–50
    [Google Scholar]
  97. 97. 
    Laguette N, Sobhian B, Chable-Bessia C, Ségéral E, Yatim A et al. 2011. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:7353654–57
    [Google Scholar]
  98. 98. 
    Hertoghs N, van der Aar AMG, Setiawan LC, Kootstra NA, Gringhuis SI, Geijtenbeek TBH 2015. SAMHD1 degradation enhances active suppression of dendritic cell maturation by HIV-1. J. Immunol. 194:94431–37
    [Google Scholar]
  99. 99. 
    Ryoo J, Choi J, Oh C, Kim S, Seo M et al. 2014. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 20:893641
    [Google Scholar]
  100. 100. 
    Doyle T, Goujon C, Malim MH 2015. HIV-1 and interferons: Who's interfering with whom. ? Nat. Rev. Microbiol. 13:7403–13
    [Google Scholar]
  101. 101. 
    Kirchhoff F. 2010. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8:155–67
    [Google Scholar]
  102. 102. 
    Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H et al. 1999. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5:8919–23
    [Google Scholar]
  103. 103. 
    Larsson M, Beignon A-S, McKenna K, Dasilva I, Amara A et al. 2004. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J. Virol. 78:105223–32
    [Google Scholar]
  104. 104. 
    Keele BF, Norgren RB Jr., Levin D, Silvestri G, Darko S et al. 2014. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 511:7511601–5
    [Google Scholar]
  105. 105. 
    Swain SL, McKinstry KK, Strutt TM 2012. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12:2136–48
    [Google Scholar]
  106. 106. 
    Li G, Cheng M, Nunoya J, Cheng L, Guo H et al. 2014. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLOS Pathog 10:7e1004291
    [Google Scholar]
  107. 107. 
    Chohan B, Lang D, Sagar M, Korber B, Lavreys L et al. 2005. Selection for human immunodeficiency virus type 1 envelope glycosylation variants with shorter V1-V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels. J. Virol. 79:106528–31
    [Google Scholar]
  108. 108. 
    Ping L-H, Joseph SB, Anderson JA, Abrahams M-R, Salazar-Gonzalez JF et al. 2013. Comparison of viral Env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design. J. Virol. 87:137218–33
    [Google Scholar]
  109. 109. 
    Coakley E, Petropoulos CJ, Whitcomb JM 2005. Assessing chemokine co-receptor usage in HIV. Curr. Opin. Infect. Dis. 18:9–15
    [Google Scholar]
  110. 110. 
    Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D et al. 2003. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:6584661–66
    [Google Scholar]
  111. 111. 
    Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ et al. 2013. Phenotypic properties of transmitted founder HIV-1. PNAS 110:176626–33
    [Google Scholar]
  112. 112. 
    Song H, Hora B, Giorgi EE, Kumar A, Cai F et al. 2016. Transmission of multiple HIV-1 subtype C transmitted/founder viruses into the same recipients was not determined by modest phenotypic differences. Sci. Rep. 6:38130
    [Google Scholar]
  113. 113. 
    OhAinle M, Helms L, Vermeire J, Roesch F, Humes D et al. 2018. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. eLife 7:e39823
    [Google Scholar]
  114. 114. 
    Foster TL, Wilson H, Iyer SS, Coss K, Doores K et al. 2016. Resistance of transmitted founder HIV-1 to IFITM-mediated restriction. Cell Host Microbe 20:4429–42
    [Google Scholar]
  115. 115. 
    Schwartz JA, Zhang H, Ende Z, Deymier MJ, Lee T et al. 2018. Characterization of the plasmacytoid dendritic cell response to transmitted/founder and nontransmitted variants of HIV-1. J. Virol. 92:19e00157-18
    [Google Scholar]
/content/journals/10.1146/annurev-virology-020520-025625
Loading
/content/journals/10.1146/annurev-virology-020520-025625
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error