1932

Abstract

In the nineteenth century, “virus” commonly meant an agent (usually unknown) that caused disease in inoculation experiments. By the 1890s, however, some disease-causing agents were found to pass through filters that retained the common bacteria. Such an agent was called “filterable virus,” the best known being the virus that caused tobacco mosaic disease. By the 1920s there were many examples of filterable viruses, but no clear understanding of their nature. However, by the 1930s, the term “filterable virus” was being abandoned in favor of simply “virus,” meaning an agent other than bacteria. Visualization of viruses by the electron microscope in the late 1930s finally settled their particulate nature. This article describes the ever-changing concept of “virus” and how virologists talked about viruses. These changes reflected their invention and reinvention of the concept of a virus as it was revised in light of new knowledge, new scientific values and interests, and new hegemonic technologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-031413-085432
2014-09-29
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/virology/1/1/annurev-virology-031413-085432.html?itemId=/content/journals/10.1146/annurev-virology-031413-085432&mimeType=html&fmt=ahah

Literature Cited

  1. Vallery-Radot P. 1.  1933. Oeuvres de Pasteur 6 Maladies Virulentes, Virus-Vaccins et Prophylaxie de la Rage Paris: Masson et CieA detailed historical analysis of the Pasteurian tradition in microbiology as it relates to the nature of bacterial viruses. [Google Scholar]
  2. van Helvoort T. 2.  1992. Bacteriological and physiological research styles in the early controversy on the nature of the bacteriophage phenomenon. Med. Hist. 36:243–70 [Google Scholar]
  3. Hughes SS. 3.  1977. The Virus: A History of the Concept New York: Sci. Hist. Publ.The best broad history of virology. [Google Scholar]
  4. Waterson AP, Wilkinson L. 4.  1978. An Introduction to the History of Virology New York: Cambridge Univ. Press [Google Scholar]
  5. Horzinek MC. 5.  1997. The birth of virology. Antonie Van Leeuwenhoek 71:15–20 [Google Scholar]
  6. Levine AJ, Enquist LW. 6.  2007. History of virology. Fields Virology DM Knipe, PM Howley 3–24 Philadelphia: Lippincott, 5th ed.. [Google Scholar]
  7. Aristotle 1984. The Complete Works of Aristotle: The Revised Oxford Translation J Barnes. Princeton, NJ: Princeton Univ. Press [Google Scholar]
  8. Van Regenmortel MHV. 8.  2003. Viruses are real, virus species are man-made, taxonomic constructions. Arch. Virol. 148:2481–88 [Google Scholar]
  9. Lwoff A. 9.  1957. The concept of virus. J. Gen. Microbiol. 17:239–53Classic analysis of the problem by a key historical scientist. [Google Scholar]
  10. Amsterdamska O. 10.  1991. Stabilizing instability: the controversy over cyclogenic theories of bacterial variation during the interwar period. J. Hist. Biol. 24:191–222 [Google Scholar]
  11. Chamberland C. 11.  1884. Sur un filtre donnant l'eau physiologiquement pure. C. R. Acad. Sci. Paris 99:247–48 [Google Scholar]
  12. Loeffler F, Frosch P. 12.  1898. Berichte der Kommission zur Erforschung der Maul- und Klauenseuche bei dem Institut für Infektionskrankheiten in Berlin. Zentralblatt Bakt. 23:371–91 [Google Scholar]
  13. Ivanowski D. 13.  1892. Über Mosaikkranheit der Tobakspflanze. Bull. Acad. Imp. Sci. St.-Pétersbg. 35:67–70 [Google Scholar]
  14. Beijerinck MW. 14.  1898. Over een contagium fluidum vivum als oorzaak van de vlekziekte der tobaksbladen. Versl. Gewone Vergard. Wis. Natuurk. Aft. Kon. Acad. Wetensch. Amsterdam 7:229–35 [Google Scholar]
  15. d'Herelle F. 15.  1917. Sur un microbe invisible antagoniste des bacilles dysenteriques. C. R. Acad. Sci. Paris 165:273–75 [Google Scholar]
  16. Northrop JH. 16.  1939. Crystalline Enzymes: The Chemistry of Pepsin, Trypsin, and Bacteriophage New York: Columbia Univ. Press [Google Scholar]
  17. Scholthof KBG. 17.  2014. Making a virus visible: Francis O. Holmes and a biological assay for tobacco mosaic virus. J. Hist. Biol. 47:107–45 [Google Scholar]
  18. Goodpasture EW, Woodruff AM, Buddingh GJ. 18.  1931. The cultivation of vaccine and other viruses in the chorio-allantoic membrane of chick embryos. Science 74:371–72 [Google Scholar]
  19. Enders JF, Weller TH, Robbins FC. 19.  1949. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109:85–87 [Google Scholar]
  20. Summers WC. 20.  1991. From culture as organism to organism as cell: historical origins of bacterial genetics. J. Hist. Biol. 24:171–90 [Google Scholar]
  21. Muir R, Ritchie J. 21.  1904. Manual of Bacteriology New York: Macmillan. Am. ed. [Google Scholar]
  22. Jordan EO. 22.  1908. A Text-Book of General Bacteriology Philadelphia: Saunders, 8th ed.. [Google Scholar]
  23. Hiss PH Jr, Zinsser H. 23.  1911. A Textbook of Bacteriology New York: Appleton [Google Scholar]
  24. Stitt ER. 24.  1918. Practical Bacteriology, Blood Work and Animal Parasitology Philadelphia: P. Blakiston's Son, 5th ed.. [Google Scholar]
  25. Rivers TM. 25.  1928. Filterable Viruses Baltimore: Williams & Wilkins [Google Scholar]
  26. Topley WWC, Wilson GS. 26.  1929. The Principles of Bacteriology and Immunity New York: William Wood [Google Scholar]
  27. Zinsser H, Bayne-Jones S. 27.  1939. A Textbook of Bacteriology New York: Appleton-Century, 8th ed.. [Google Scholar]
  28. Elford WJ, Andrewes CH. 28.  1932. The sizes of different bacteriophages. Br. J. Exp. Pathol. 13:446–56 [Google Scholar]
  29. Elford WJ, Andrewes CH. 29.  1932. Filtration of vaccinia virus through gradocol membranes. Br. J. Exp. Pathol. 13:36–42 [Google Scholar]
  30. d'Herelle F. 30.  1926. The unicity of the species Protobios bacteriophagus. The Bacteriophage and Its Behavior366–69 Baltimore: Williams & Wilkins [Google Scholar]
  31. Rasmussen N. 31.  1997. Picture Control: The Electron Microscope and the Transformation of Biology in America, 1940–1960 Stanford, CA: Stanford Univ. PressA masterful account of how a key technology shaped the course of molecular biology. [Google Scholar]
  32. Kausche GA, Pfankuch K, Ruska H. 32.  1939. Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 18:192–93 [Google Scholar]
  33. Lavaditi C, Bonét-Maury P. 33.  1942. Les ultravirus: considérés à travers le microscope électronique. Presse Méd. 17:203–7 [Google Scholar]
  34. Stanley WM. 34.  1964. The isolation and properties of crystalline tobacco mosaic virus. Nobel Lecture, December 12, 1946 Nobel Lectures, Chemistry, 1942–1962137–57 Amsterdam: Elsevier [Google Scholar]
  35. Newman BM. 35.  1937. The smooth slide up to life. Sci. Am. 156:304–6 [Google Scholar]
  36. Bordet J. 36.  1931. Croonian lecture: the theories of the bacteriophage. Proc. R. Soc. B 107:398–417 [Google Scholar]
  37. van Iterson G Jr, den Dooren de Jong LE, Kluyver AJ. 37.  1940. Martinus Willem Beijerinck: His Life and His Work The Hague, Neth: Martinus Nijhoff [Google Scholar]
  38. Bronfenbrenner J. 38.  1926. Does bacteriophage respire?. Science 63:51–52 [Google Scholar]
  39. Bronfenbrenner JJ, Reichert P. 39.  1926. Respiration of so-called filterable viruses. Exp. Biol. Med. 24:176–77 [Google Scholar]
  40. Horsfall FL Jr. 40.  1965. Thomas Milton Rivers (1888–1962). Biogr. Mem. Natl. Acad. Sci. USA 38:262–94 [Google Scholar]
  41. Twort FW. 41.  1915. An investigation on the nature of ultra-microscopic viruses. Lancet 186:1241–43 [Google Scholar]
  42. Mackal RP, Werninghaus B, Evans EA Jr. 42.  1964. The formation of λ bacteriophage by λ DNA in disrupted cell preparations. Proc. Natl. Acad. Sci. USA 51:1172–78 [Google Scholar]
  43. d'Herelle F. 43.  1924. Immunity in Natural Infectious Disease, transl. GH Smith. Baltimore, MD: Williams & Wilkins (from French) [Google Scholar]
  44. Bungenberg de Jong HG. 44.  1936. La Coacervation, les Coacervats et Leur Importance en Biologie Paris: Hermann et Cie [Google Scholar]
  45. Muller HJ. 45.  1922. Variation due to change in the individual gene. Am. Nat. 56:48–49 [Google Scholar]
  46. Summers WC. 46.  1993. How bacteriophage came to be used by the phage group. J. Hist. Biol. 26:255–67An inside account of the interplay of physics and biology in defining phage research in the United States. [Google Scholar]
  47. Pirie NW. 47.  1948. Development of ideas on the nature of viruses. Br. Med. Bull 5:329–32 [Google Scholar]
  48. Holmes FO. 48.  1948. Bergey's Manual of Determinative Bacteriology Suppl. 2 The Filterable Viruses. Baltimore MD: Williams & Wilkins, 6th ed.. [Google Scholar]
  49. Kuhn JH, Jahrling PB. 49.  2010. Clarification and guidance on the proper usage of virus and virus species names. Arch. Virol 155:445–53 [Google Scholar]
  50. Condit RC. 50.  2007. Principles of virology. Fields Virology DM Knipe, PM Howley 25–57 Philadelphia: Lippincott, 5th ed.. [Google Scholar]
  51. Luria SE. 51.  1953. General Virology New York: Wiley [Google Scholar]
  52. Luria SE. 52.  1957. Letter from Salvador E. Luria to André Lwoff, November 27 Salvador E. Luria Papers, Am. Philos. Soc., Philadelphia [Google Scholar]
/content/journals/10.1146/annurev-virology-031413-085432
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error