1932

Abstract

New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-031413-085437
2014-09-29
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/virology/1/1/annurev-virology-031413-085437.html?itemId=/content/journals/10.1146/annurev-virology-031413-085437&mimeType=html&fmt=ahah

Literature Cited

  1. Carrel A. 1.  1912. On the permanent life of tissues outside of the organism. J. Exp. Med. 15:516–28 [Google Scholar]
  2. Carrel A. 2.  1923. A method for the physiological study of tissues in vitro. J. Exp. Med. 38:407–18 [Google Scholar]
  3. Steinhardt L, Israeli C, Lambert RA. 3.  1913. Studies on the cultivation of the virus of vaccinia. J. Infect. Dis. 13:294–300 [Google Scholar]
  4. Haagen E, Theiler M. 4.  1932. Studies of yellow fever virus in tissue culture. Proc. Soc. Exp. Biol. Med. 29:435–36 [Google Scholar]
  5. Enders JF, Weller TH, Robbins FC. 5.  1949. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109:85–87 [Google Scholar]
  6. Gey GO, Coffman WD, Kubicek MT. 6.  1952. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12:264–65 [Google Scholar]
  7. Dvir T, Timko BP, Kohane DS, Langer R. 7.  2011. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6:13–22 [Google Scholar]
  8. Griffith LG, Naughton G. 8.  2002. Tissue engineering—current challenges and expanding opportunities. Science 295:1009–14 [Google Scholar]
  9. Bianco P, Robey PG. 9.  2001. Stem cells in tissue engineering. Nature 414:118–21 [Google Scholar]
  10. Carletti E, Motta A, Migliaresi C. 10.  2011. Scaffolds for tissue engineering and 3D cell culture. Methods Mol. Biol. 695:17–39 [Google Scholar]
  11. Lee K, Silva EA, Mooney DJ. 11.  2011. Growth factor delivery–based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8:153–70 [Google Scholar]
  12. Griffith LG, Swartz MA. 12.  2006. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–24 [Google Scholar]
  13. Khan OF, Sefton MV. 13.  2011. Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol. 29:379–87 [Google Scholar]
  14. Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN. 14.  2011. Humanized mice with ectopic artificial liver tissues. Proc. Natl. Acad. Sci. USA 108:11842–47 [Google Scholar]
  15. Shan J, Stevens KR, Trehan K, Underhill GH, Chen AA, Bhatia SN. 15.  2011. Hepatic tissue engineering. Molecular Pathology of Liver Diseases SPS Monga 321–42 New York: Springer [Google Scholar]
  16. Schmidt CE, Leach JB. 16.  2003. Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5:293–347 [Google Scholar]
  17. Laflamme MA, Murry CE. 17.  2011. Heart regeneration. Nature 473:326–35 [Google Scholar]
  18. Stevens KR, Ungrin MD, Schwartz RE, Ng S, Carvalho B. 18.  et al. 2013. InVERT molding for scalable control of tissue microarchitecture. Nat. Commun. 4:1847 [Google Scholar]
  19. Guvendiren M, Perepelyuk M, Wells RG, Burdick JA. 19.  2013. Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells. J. Mech. Behav. Biomed. Mater. In press. doi: 10.1016/j.jmbbm.2013.11.008 [Google Scholar]
  20. Dickinson LE, Kusuma S, Gerecht S. 20.  2011. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol. Biosci. 11:36–49 [Google Scholar]
  21. Takebe T, Sekine K, Enomura M, Koike H, Kimura M. 21.  et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–84 [Google Scholar]
  22. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS. 22.  et al. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501:373–79 [Google Scholar]
  23. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N. 23.  et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65 [Google Scholar]
  24. Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M. 24.  et al. 2009. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl. Acad. Sci. USA 106:16568–73 [Google Scholar]
  25. Ahmed TAE, Dare EV, Hincke M. 25.  2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. B 14:199–215 [Google Scholar]
  26. Parenteau-Bareil R, Gauvin R, Berthod F. 26.  2010. Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–87 [Google Scholar]
  27. Burdick JA, Prestwich GD. 27.  2011. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23:H41–56 [Google Scholar]
  28. Lee KY, Mooney DJ. 28.  2012. Alginate: properties and biomedical applications. Prog. Polymer Sci. 37:106–26 [Google Scholar]
  29. Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS. 29.  et al. 2007. Engineering tumors with 3D scaffolds. Nat. Methods 4:855–60 [Google Scholar]
  30. Pan Z, Ding JD. 30.  2012. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2:366–77 [Google Scholar]
  31. Kloxin AM, Kasko AM, Salinas CN, Anseth KS. 31.  2009. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63 [Google Scholar]
  32. Lutolf MP, Hubbell JA. 32.  2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55 [Google Scholar]
  33. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR. 33.  et al. 2013. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:553–56 [Google Scholar]
  34. Anderson DG, Levenberg S, Langer R. 34.  2004. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22:863–66 [Google Scholar]
  35. Lei Y, Schaffer DV. 35.  2013. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl. Acad. Sci. USA 110:E5039–48 [Google Scholar]
  36. Brown AC, Rowe JA, Barker TH. 36.  2011. Guiding epithelial cell phenotypes with engineered integrin-specific recombinant fibronectin fragments. Tissue Eng. A 17:139–50 [Google Scholar]
  37. Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P. 37.  et al. 2012. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33:3824–34 [Google Scholar]
  38. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. 38.  2013. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA 110:4563–68 [Google Scholar]
  39. Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C. 39.  et al. 2010. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA 107:3287–92 [Google Scholar]
  40. Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D. 40.  et al. 2011. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3:100ra89 [Google Scholar]
  41. Yang K, Lee JS, Kim J, Lee YB, Shin H. 41.  et al. 2012. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials 33:6952–64 [Google Scholar]
  42. Yuen WW, Du NR, Chan CH, Silva EA, Mooney DJ. 42.  2010. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl. Acad. Sci. USA 107:17933–38 [Google Scholar]
  43. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP. 43.  et al. 2005. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–6 [Google Scholar]
  44. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. 44.  2010. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–61 [Google Scholar]
  45. Inoguchi H, Tanaka T, Maehara Y, Matsuda T. 45.  2007. The effect of gradually graded shear stress on the morphological integrity of a HUVEC-seeded compliant small-diameter vascular graft. Biomaterials 28:486–95 [Google Scholar]
  46. Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A. 46.  et al. 2002. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78:257–69 [Google Scholar]
  47. Ruiz SA, Chen CS. 47.  2007. Microcontact printing: a tool to pattern. Soft Matter 3:168–77 [Google Scholar]
  48. Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN. 48.  2006. Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3:369–75 [Google Scholar]
  49. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT. 49.  et al. 2012. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–74 [Google Scholar]
  50. Lim SH, Mao HQ. 50.  2009. Electrospun scaffolds for stem cell engineering. Adv. Drug Deliv. Rev. 61:1084–96 [Google Scholar]
  51. Katz JS, Burdick JA. 51.  2010. Light-responsive biomaterials: development and applications. Macromol. Biosci. 10:339–48 [Google Scholar]
  52. Li CY, Wood DK, Hsu CM, Bhatia SN. 52.  2011. DNA-templated assembly of droplet-derived PEG microtissues. Lab Chip 11:2967–75 [Google Scholar]
  53. Yeh J, Ling Y, Karp JM, Gantz J, Chandawarker A. 53.  et al. 2006. Micromolding of shape-controlled, harvestable hydrogels. Biomaterials 27:5391–98 [Google Scholar]
  54. Malda J, Visser J, Melchels FP, Juengst T, Hennink WE. 54.  et al. 2013. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–28 [Google Scholar]
  55. Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B. 55.  et al. 2013. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl. Acad. Sci. USA 110:7586–91 [Google Scholar]
  56. Kim K, Ohashi K, Utoh R, Kano K, Okano T. 56.  2012. Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33:1406–13 [Google Scholar]
  57. Khetani SR, Bhatia SN. 57.  2008. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26:120–26 [Google Scholar]
  58. Zinchenko YS, Schrum LW, Clemens M, Coger RN. 58.  2006. Hepatocyte and Kupffer cells co-cultured on micropatterned surfaces to optimize hepatocyte function. Tissue Eng. 12:751–61 [Google Scholar]
  59. Ganesan LP, Mohanty S, Kim J, Clark KR, Robinson JM, Anderson CL. 59.  2011. Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium. PLoS Pathog. 7:e1002281 [Google Scholar]
  60. Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C. 60.  et al. 2004. L-SIGN (CD209L) and DC-SIGN (0209) mediate transinfection of liver cells by hepatitis C virus. Proc. Natl. Acad. Sci. USA 101:14067–72 [Google Scholar]
  61. Dolganiuc A, Norkina O, Kodys K, Catalano D, Bakis G. 61.  et al. 2007. Viral and host factors induce macrophage activation and loss of Toll-like receptor tolerance in chronic HCV infection. Gastroenterology 133:1627–36 [Google Scholar]
  62. Wu J, Meng Z, Jiang M, Pei R, Trippler M. 62.  et al. 2009. Hepatitis B virus suppresses Toll-like receptor–mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49:1132–40 [Google Scholar]
  63. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. 63.  2007. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6:908–15 [Google Scholar]
  64. Tomei AA, Siegert S, Britschgi MR, Luther SA, Swartz MA. 64.  2009. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183:4273–83 [Google Scholar]
  65. Murphy BR, Whitehead SS. 65.  2011. Immune response to dengue virus and prospects for a vaccine. Annu. Rev. Immunol. 29:587–619 [Google Scholar]
  66. Phillips JE, Burns KL, Le Doux JM, Guldberg RE, Garcia AJ. 66.  2008. Engineering graded tissue interfaces. Proc. Natl. Acad. Sci. USA 105:12170–75 [Google Scholar]
  67. Glorieux S, Bachert C, Favoreel HW, Vandekerckhove AP, Steukers L. 67.  et al. 2011. Herpes simplex virus type 1 penetrates the basement membrane in human nasal respiratory mucosa. PLoS ONE 6:e22160 [Google Scholar]
  68. Hogk I, Rupp S, Burger-Kentischer A. 68.  2013. 3D-tissue model for herpes simplex virus-1 infections. Methods Mol. Biol. 1064:239–51 [Google Scholar]
  69. Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT. 69.  et al. 2006. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J. Virol. 80:7469–80 [Google Scholar]
  70. Ehre C, Worthington EN, Liesman RM, Grubb BR, Barbier D. 70.  et al. 2012. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc. Natl. Acad. Sci. USA 109:16528–33 [Google Scholar]
  71. Wyckoff J, Wang WG, Lin EY, Wang YR, Pixley F. 71.  et al. 2004. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64:7022–29 [Google Scholar]
  72. Kidd ME, Shin S, Shea LD. 72.  2012. Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. J. Controlled Release 157:80–85 [Google Scholar]
  73. Thomas AM, Shea LD. 73.  2013. Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. J. Controlled Release 170:421–29 [Google Scholar]
  74. Castleberry S, Wang M, Hammond PT. 74.  2013. Nanolayered siRNA dressing for sustained localized knockdown. ACS Nano 7:5251–61 [Google Scholar]
  75. Jindal R, Patel SJ, Yarmush ML. 75.  2011. Tissue-engineered model for real-time monitoring of liver inflammation. Tissue Eng. C 17:113–22 [Google Scholar]
  76. Smith LE, Smallwood R, Macneil S. 76.  2010. A comparison of imaging methodologies for 3D tissue engineering. Microsc. Res. Tech. 73:1123–33 [Google Scholar]
  77. Hong CS, Fellows W, Niranjan A, Alber S, Watkins S. 77.  et al. 2010. Ectopic matrix metalloproteinase-9 expression in human brain tumor cells enhances oncolytic HSV vector infection. Gene Ther. 17:1200–5 [Google Scholar]
  78. Valyi-Nagy K, Dosa S, Kovacs SK, Bacsa S, Voros A. 78.  et al. 2010. Identification of virus resistant tumor cell subpopulations in three-dimensional uveal melanoma cultures. Cancer Gene Ther. 17:223–34 [Google Scholar]
  79. Huh D, Hamilton GA, Ingber DE. 79.  2011. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21:745–54 [Google Scholar]
  80. Kim HJ, Huh D, Hamilton G, Ingber DE. 80.  2012. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–74 [Google Scholar]
  81. Nichols JE, Cortiella J, Lee J, Niles JA, Cuddihy M. 81.  et al. 2009. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. Biomaterials 30:1071–79 [Google Scholar]
  82. Hadziyannis SJ, Vassilopoulos D, Hadziyannis E. 82.  2013. The natural course of chronic hepatitis B virus infection and its management. Antivir. Agents 67:247–91 [Google Scholar]
  83. Yamane D, McGivern DR, Masaki T, Lemon SM. 83.  2013. Liver injury and disease pathogenesis in chronic hepatitis C. Curr. Top. Microbiol. Immunol. 369:263–88 [Google Scholar]
  84. Wedemeyer H, Pischke S, Manns MP. 84.  2012. Pathogenesis and treatment of hepatitis E virus infection. Gastroenterology 142:1388–97 [Google Scholar]
  85. Martin A, Lemon SM. 85.  2006. Hepatitis A virus: from discovery to vaccines. Hepatology 43:S164–72 [Google Scholar]
  86. Pavio N, Meng XJ, Renou C. 86.  2010. Zoonotic hepatitis E: animal reservoirs and emerging risks. Vet. Res. 41:46 [Google Scholar]
  87. von Weizsäcker F, Roggendorf M. 87.  2005. Models of Viral Hepatitis Basel: Karger [Google Scholar]
  88. Jopling CL, Yi MK, Lancaster AM, Lemon SM, Sarnow P. 88.  2005. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–81 [Google Scholar]
  89. Tang H, McLachlan A. 89.  2001. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc. Natl. Acad. Sci. USA 98:1841–46 [Google Scholar]
  90. Konduru K, Kaplan GG. 90.  2006. Stable growth of wild-type hepatitis A virus in cell culture. J. Virol. 80:1352–60 [Google Scholar]
  91. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL. 91.  et al. 2005. Complete replication of hepatitis C virus in cell culture. Science 309:623–26 [Google Scholar]
  92. Gottwein JM, Bukh J. 92.  2008. Cutting the Gordian knot—development and biological relevance of hepatitis C virus cell culture systems. Adv. Virus Res. 71:51–133 [Google Scholar]
  93. Lohmann V, Korner F, Koch JO, Herian U, Theilmann L, Bartenschlager R. 93.  1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–13 [Google Scholar]
  94. Saeed M, Scheel TKH, Gottwein JM, Marukian S, Dustin LB. 94.  et al. 2012. Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. Antimicrob. Agents Chemother. 56:5365–73 [Google Scholar]
  95. Bartosch B, Dubuisson J, Cosset FL. 95.  2003. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J. Exp. Med. 197:633–42 [Google Scholar]
  96. Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S. 96.  et al. 2006. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl. Acad. Sci. USA 103:7408–13 [Google Scholar]
  97. Tanaka T, Takahashi M, Kusano E, Okamoto H. 97.  2007. Development and evaluation of an efficient cell-culture system for hepatitis E virus. J. Gen. Virol. 88:903–11 [Google Scholar]
  98. Tanaka T, Takahashi M, Takahashi H, Ichiyama K, Hoshino Y. 98.  et al. 2009. Development and characterization of a genotype 4 hepatitis E virus cell culture system using a HE-JF5/15F strain recovered from a fulminant hepatitis patient. J. Clin. Microbiol. 47:1906–10 [Google Scholar]
  99. Emerson SU, Zhang M, Meng XJ, Nguyen H, St Claire M. 99.  et al. 2001. Recombinant hepatitis E virus genomes infectious for primates: importance of capping and discovery of a cis-reactive element. Proc. Natl. Acad. Sci. USA 98:15270–75 [Google Scholar]
  100. Huang YW, Haqshenas G, Kasorndorkbua C, Halbur PG, Emerson SU, Meng XJ. 100.  2005. Capped RNA transcripts of full-length cDNA clones of swine hepatitis E virus are replication competent when transfected into Huh7 cells and infectious when intrahepatically inoculated into pigs. J. Virol. 79:1552–58 [Google Scholar]
  101. Sells MA, Chen ML, Acs G. 101.  1987. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc. Natl. Acad. Sci. USA 84:1005–9 [Google Scholar]
  102. Paran N, Geiger B, Shaul Y. 102.  2001. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J. 20:4443–53 [Google Scholar]
  103. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV. 103.  et al. 2009. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401 [Google Scholar]
  104. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D. 104.  et al. 2009. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–801 [Google Scholar]
  105. Aizaki H, Nagamori S, Matsuda M, Kawakami H, Hashimoto O. 105.  et al. 2003. Production and release of infectious hepatitis C virus from human liver cell cultures in the three-dimensional radial-flow bioreactor. Virology 314:16–25 [Google Scholar]
  106. Aly HH, Shimotohno K, Hijikata M. 106.  2009. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV. Biochem. Biophys. Res. Commun. 379:330–34 [Google Scholar]
  107. Aly HH, Qi Y, Atsuzawa K, Usuda N, Takada Y. 107.  et al. 2009. Strain-dependent viral dynamics and virus-cell interactions in a novel in vitro system supporting the life cycle of blood-borne hepatitis C virus. Hepatology 50:689–96 [Google Scholar]
  108. Mizumoto H, Ishihara K, Nakazawa K, Ijima H, Funatsu K, Kajiwara T. 108.  2008. New culture technique for hepatocyte organoid formation and long-term maintenance of liver-specific functions. Tissue Eng. C 14:167–75 [Google Scholar]
  109. Ndongo-Thiam N, Berthillon P, Errazuriz E, Bordes I, De Sequeira S. 109.  et al. 2011. Long-term propagation of serum hepatitis C virus (HCV) with production of enveloped HCV particles in human HepaRG hepatocytes. Hepatology 54:406–17 [Google Scholar]
  110. Narbus CM, Israelow B, Sourisseau M, Michta ML, Hopcraft SE. 110.  et al. 2011. HepG2 Cells expressing microRNA miR-122 support the entire hepatitis C virus life cycle. J. Virol. 85:12087–92 [Google Scholar]
  111. Sainz B Jr, TenCate V, Uprichard SL. 111.  2009. Three-dimensional Huh7 cell culture system for the study of hepatitis C virus infection. Virol. J. 6:103 [Google Scholar]
  112. Sainz B Jr, Chisari FV. 112.  2006. Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma–derived cells. J. Virol. 80:10253–57 [Google Scholar]
  113. Murakami K, Ishii K, Ishihara Y, Yoshizaki S, Tanaka K. 113.  et al. 2006. Production of infectious hepatitis C virus particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b. Virology 351:381–92 [Google Scholar]
  114. Molina-Jimenez F, Benedicto I, Dao Thi VL, Gondar V, Lavillette D. 114.  et al. 2012. Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology 425:31–39 [Google Scholar]
  115. Cho NJ, Elazar M, Xiong AM, Lee W, Chiao E. 115.  et al. 2009. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel. Biomed. Mater. 4:011001 [Google Scholar]
  116. Rumin S, Berthillon P, Tanaka E, Kiyosawa K, Trabaud MA. 116.  et al. 1999. Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro. J. Gen. Virol. 80:3007–18 [Google Scholar]
  117. Steenbergen RHG, Joyce MA, Thomas BS, Jones D, Law J. 117.  et al. 2013. Human serum leads to differentiation of human hepatoma cells, restoration of very-low-density lipoprotein secretion, and a 1000-fold increase in HCV Japanese fulminant hepatitis type 1 titers. Hepatology 58:1907–17 [Google Scholar]
  118. Berto A, Van der Poel WHM, Hakze-van der Honing R, Martelli F, La Ragione RM. 118.  et al. 2013. Replication of hepatitis E virus in three-dimensional cell culture. J. Virol. Methods 187:327–32 [Google Scholar]
  119. Rogée S, Talbot N, Caperna T, Bouquet J, Barnaud E, Pavio N. 119.  2013. New models of hepatitis E virus replication in human and porcine hepatocyte cell lines. J. Gen. Virol. 94:549–58 [Google Scholar]
  120. Blank CA, Anderson DA, Beard M, Lemon SM. 120.  2000. Infection of polarized cultures of human intestinal epithelial cells with hepatitis A virus: vectorial release of progeny virions through apical cellular membranes. J. Virol. 74:6476–84 [Google Scholar]
  121. Snooks MJ, Bhat P, Mackenzie J, Counihan NA, Vaughan N, Anderson DA. 121.  2008. Vectorial entry and release of hepatitis A virus in polarized human hepatocytes. J. Virol. 82:8733–42 [Google Scholar]
  122. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M. 122.  et al. 2007. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–5 [Google Scholar]
  123. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H. 123.  et al. 2009. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–86 [Google Scholar]
  124. Sourisseau M, Michta ML, Zony C, Israelow B, Hopcraft SE. 124.  et al. 2013. Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies. PLoS Pathog. 9:e1003244 [Google Scholar]
  125. Schulze A, Mills K, Weiss TS, Urban S. 125.  2012. Hepatocyte polarization is essential for the productive entry of the hepatitis B virus. Hepatology 55:373–83 [Google Scholar]
  126. Mee CJ, Grove J, Harris HJ, Hu K, Balfe P, McKeating JA. 126.  2008. Effect of cell polarization on hepatitis C virus entry. J. Virol. 82:461–70 [Google Scholar]
  127. Mee CJ, Farquhar MJ, Harris HJ, Hu K, Ramma W. 127.  et al. 2010. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor–dependent manner. Gastroenterology 138:1134–42 [Google Scholar]
  128. Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ. 128.  et al. 2008. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47:17–24 [Google Scholar]
  129. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D. 129.  et al. 2002. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 99:15655–60 [Google Scholar]
  130. Yan H, Zhong G, Xu G, He W, Jing Z. 130.  et al. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1:e00049 [Google Scholar]
  131. Yi N, Lempp FA, Mehrle S, Nkongolo S, Kaufman C. 131.  et al. 2013. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146:1070–83 [Google Scholar]
  132. Quasdorff M, Hoesel M, Odenthal M, Zedler U, Bohne F. 132.  et al. 2008. A concerted action of HNF4α and HNF1α links hepatitis B virus replication to hepatocyte differentiation. Cell. Microbiol. 10:1478–90 [Google Scholar]
  133. Bhatia SN, Balis UJ, Yarmush ML, Toner M. 133.  1999. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13:1883–900 [Google Scholar]
  134. Iacovacci S, Manzin A, Barca S, Sargiacomo M, Serafino A. 134.  et al. 1997. Molecular characterization and dynamics of hepatitis C virus replication in human fetal hepatocytes infected in vitro. Hepatology 26:1328–37 [Google Scholar]
  135. Lin M, Chen Q, Yang LY, Li WY, Cao XB. 135.  et al. 2007. Hepatitis B virus infection and replication in primarily cultured human fetal hepatocytes. World J. Gastroenterol. 13:1027–31 [Google Scholar]
  136. Fournier C, Sureau C, Coste J, Ducos J, Pageaux G. 136.  et al. 1998. In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus. J. Gen. Virol. 79:2367–74 [Google Scholar]
  137. Schulze-Bergkamen H, Untergasser A, Dax A, Vogel H, Buchler P. 137.  et al. 2003. Primary human hepatocytes—a valuable tool for investigation of apoptosis and hepatitis B virus infection. J. Hepatol. 38:736–44 [Google Scholar]
  138. Lanford RE, Sureau C, Jacob JR, White R, Fuerst TR. 138.  1994. Demonstration of in vitro infection of chimpanzee hepatocytes with hepatitis C virus using strand-specific RT/PCR. Virology 202:606–14 [Google Scholar]
  139. Tam AW, White R, Yarbough PO, Murphy BJ, McAtee CP. 139.  et al. 1997. In vitro infection and replication of hepatitis E virus in primary cynomolgus macaque hepatocytes. Virology 238:94–102 [Google Scholar]
  140. Zhao XP, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H. 140.  et al. 2002. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J. Clin. Investig. 109:221–32 [Google Scholar]
  141. von Weizsäcker F, Kock J, MacNelly S, Ren S, Blum HE, Nassal M. 141.  2004. The tupaia model for the study of hepatitis B virus: direct infection and HBV genome transduction of primary tupaia hepatocytes. Methods Mol. Med. 96:153–61 [Google Scholar]
  142. Gripon P, Diot C, Theze N, Fourel I, Loreal O. 142.  et al. 1988. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J. Virol. 62:4136–43 [Google Scholar]
  143. Buck M. 143.  2008. Direct infection and replication of naturally occurring hepatitis C virus genotypes 1, 2, 3 and 4 in normal human hepatocyte cultures. PLoS ONE 3:e2660 [Google Scholar]
  144. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. 144.  1999. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 96:12766–71 [Google Scholar]
  145. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I. 145.  et al. 2011. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med. 17:589–95 [Google Scholar]
  146. Nahmias Y, Casali M, Barbe L, Berthiaume F, Yarmush ML. 146.  2006. Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology 43:257–65 [Google Scholar]
  147. Banaudha K, Orenstein JM, Korolnek T, St Laurent GC III, Wakita T, Kumar A. 147.  2010. Primary hepatocyte culture supports hepatitis C virus replication: a model for infection-associated hepatocarcinogenesis. Hepatology 51:1922–32 [Google Scholar]
  148. Zhou M, Zhao F, Li J, Cheng Z, Tian X. 148.  et al. 2014. Long-term maintenance of human fetal hepatocytes and prolonged susceptibility to HBV infection by co-culture with non-parenchymal cells. J. Virol. Methods 195:185–93 [Google Scholar]
  149. Harding MJ, Lepus CM, Gibson TF, Shepherd BR, Gerber SA. 149.  et al. 2010. An implantable vascularized protein gel construct that supports human fetal hepatoblast survival and infection by hepatitis C virus in mice. PLoS ONE 5:e9987 [Google Scholar]
  150. Ploss A, Khetani SR, Jones CT, Syder AJ, Trehan K. 150.  et al. 2010. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc. Natl. Acad. Sci. USA 107:3141–45 [Google Scholar]
  151. Jones CT, Catanese MT, Law LMJ, Khetani SR, Syder AJ. 151.  et al. 2010. Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat. Biotechnol. 28:167–71 [Google Scholar]
  152. March S, Ng S, Velmurugan S, Galstian A, Shan J. 152.  et al. 2013. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 14:104–15 [Google Scholar]
  153. Farkas D, Tannenbaum SR. 153.  2005. In vitro methods to study chemically induced hepatotoxicity: a literature review. Curr. Drug Metab. 6:111–25 [Google Scholar]
  154. Lagaye S, Shen H, Saunier B, Nascimbeni M, Gaston J. 154.  et al. 2012. Efficient replication of primary or culture hepatitis C virus isolates in human liver slices: a relevant ex vivo model of liver infection. Hepatology 56:861–72 [Google Scholar]
  155. Yoshida T, Takayama K, Kondoh M, Sakurai F, Tani H. 155.  et al. 2011. Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem. Biophys. Res. Commun. 416:119–24 [Google Scholar]
  156. Wu X, Robotham JM, Lee E, Dalton S, Kneteman NM. 156.  et al. 2012. Productive hepatitis C virus infection of stem cell–derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog. 8:e1002617 [Google Scholar]
  157. Schwartz RE, Trehan K, Andrus L, Sheahan TP, Ploss A. 157.  et al. 2012. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 109:2544–48 [Google Scholar]
  158. Roelandt P, Obeid S, Paeshuyse J, Vanhove J, Van Lommel A. 158.  et al. 2012. Human pluripotent stem cell–derived hepatocytes support complete replication of hepatitis C virus. J. Hepatol. 57:246–51 [Google Scholar]
  159. Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. 159.  2014. Pluripotent stem cell–derived hepatocyte-like cells. Biotechnol. Adv. 32:504–13 [Google Scholar]
  160. Shan J, Schwartz RE, Ross NT, Logan DJ, Duncan SA. 160.  et al. 2013. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat. Chem. Biol. 9:514–20 [Google Scholar]
  161. Vallier L. 161.  2014. Heps with pep: direct reprogramming into human hepatocytes. Cell Stem Cell 3:267–69 [Google Scholar]
  162. Zhu S, Rezyani M, Harbell J, Mattis AN, Wolfe AR. 162.  et al. 2014. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 508:93–97 [Google Scholar]
  163. Legrand N, Ploss A, Balling R, Becker PD, Borsotti C. 163.  et al. 2009. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 6:5–9 [Google Scholar]
  164. Bukh J. 164.  2012. Animal models for the study of hepatitis C virus infection and related liver disease. Gastroenterology 142:1279–87 [Google Scholar]
  165. Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q. 165.  et al. 2011. A genetically humanized mouse model for hepatitis C virus infection. Nature 474:208–11 [Google Scholar]
  166. Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC. 166.  et al. 2013. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501:237–41 [Google Scholar]
  167. Bitzegeio J, Bankwitz D, Hueging K, Haid S, Brohm C. 167.  et al. 2010. Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog. 6:e1000978 [Google Scholar]
  168. Flaim CJ, Chien S, Bhatia SN. 168.  2005. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods 2:119–25 [Google Scholar]
  169. Flaim CJ, Teng D, Chien S, Bhatia SN. 169.  2008. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev. 17:29–39 [Google Scholar]
  170. Lee MY, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS. 170.  2008. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl. Acad. Sci. USA 105:59–63 [Google Scholar]
  171. Deiss F, Mazzeo A, Hong E, Ingber DE, Derda R, Whitesides GM. 171.  2013. Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures. Anal. Chem. 85:8085–94 [Google Scholar]
  172. Mali P, Yang L, Esvelt KM, Aach J, Guell M. 172.  et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26 [Google Scholar]
  173. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q. 173.  et al. 2011. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29:731–34 [Google Scholar]
  174. Patel SJ, King KR, Casali M, Yarmush ML. 174.  2009. DNA-triggered innate immune responses are propagated by gap junction communication. Proc. Natl. Acad. Sci. USA 106:12867–72 [Google Scholar]
  175. Kwong GA, von Maltzahn G, Murugappan G, Abudayyeh O, Mo S. 175.  et al. 2013. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31:63–70 [Google Scholar]
  176. Miyata T, Uragami T, Nakamae K. 176.  2002. Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev. 54:79–98 [Google Scholar]
  177. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang ZP. 177.  et al. 1996. Laser capture microdissection. Science 274:998–1001 [Google Scholar]
  178. Kalantari M, Garcia-Carranca A, Morales-Vazquez CD, Zuna R, Perez Montiel D. 178.  et al. 2009. Laser capture microdissection of cervical human papillomavirus infections: copy number of the virus in cancerous and normal tissue and heterogeneous DNA methylation. Virology 390:261–67 [Google Scholar]
  179. Lovatt D, Ruble BK, Lee J, Dueck H, Kim TK. 179.  et al. 2014. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 11:190–96 [Google Scholar]
  180. Kloxin AM, Tibbitt MW, Anseth KS. 180.  2010. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5:1867–87 [Google Scholar]
  181. Li CY, Wood DK, Huang JH, Bhatia SN. 181.  2013. Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments. Lab Chip 13:1969–78 [Google Scholar]
  182. Tan JKH, Watanabe T. 182.  2010. Artificial engineering of secondary lymphoid organs. Adv. Immunol. 105:131–57 [Google Scholar]
  183. Breiner KM, Schaller H, Knolle PA. 183.  2001. Endothelial cell–mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology 34:803–8 [Google Scholar]
  184. Dalrymple NA, Mackow ER. 184.  2012. Endothelial cells elicit immune-enhancing responses to dengue virus infection. J. Virol. 86:6408–15 [Google Scholar]
  185. Gardner JP, Durso RJ, Arrigale RR, Donovan GP, Maddon PJ. 185.  et al. 2003. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc. Natl. Acad. Sci. USA 100:4498–503 [Google Scholar]
  186. Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM. 186.  et al. 2005. Normal and cystic fibrosis airway surface liquid homeostasis—the effects of phasic shear stress and viral infections. J. Biol. Chem. 280:35751–59 [Google Scholar]
  187. Shi ZD, Tarbell JM. 187.  2011. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 39:1608–19 [Google Scholar]
  188. DuRose JB, Li J, Chien S, Spector DH. 188.  2012. Infection of vascular endothelial cells with human cytomegalovirus under fluid shear stress reveals preferential entry and spread of virus in flow conditions simulating atheroprone regions of the artery. J. Virol. 86:13745–55 [Google Scholar]
  189. Mueller AJ, Filipe-Santos O, Eberl G, Aebischer T, Spaeth GF, Bousso P. 189.  2012. CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37:147–57 [Google Scholar]
  190. Xu N, Zhang ZF, Wang L, Gao B, Pang DW. 190.  et al. 2012. A microfluidic platform for real-time and in situ monitoring of virus infection process. Biomicrofluidics 6:34122 [Google Scholar]
  191. Zhu Y, Warrick JW, Haubert K, Beebe DJ, Yin J. 191.  2009. Infection on a chip: a microscale platform for simple and sensitive cell-based virus assays. Biomed. Microdevices 11:565–70 [Google Scholar]
  192. Akin D, Li HB, Bashir R. 192.  2004. Real-time virus trapping and fluorescent imaging in microfluidic devices. Nano Lett. 4:257–59 [Google Scholar]
  193. Costello DA, Millet JK, Hsia CY, Whittaker GR, Daniel S. 193.  2013. Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers. Biomaterials 34:7895–904 [Google Scholar]
  194. Schudel BR, Harmon B, Abhyankar VV, Pruitt BW, Negrete OA, Singh AK. 194.  2013. Microfluidic platforms for RNA interference screening of virus-host interactions. Lab Chip 13:811–17 [Google Scholar]
  195. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB. 195.  et al. 2011. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 22:825–58 [Google Scholar]
  196. Gregory A, Stenzel MH. 196.  2012. Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature's building blocks. Prog. Polymer Sci. 37:38–105 [Google Scholar]
  197. Wang WW, Khetani SR, Krzyzewski S, Duignan DB, Obach RS. 197.  2010. Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites. Drug Metab. Dispos. 38:1900–5 [Google Scholar]
  198. Ungrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW. 198.  2008. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 3:e 1565 [Google Scholar]
  199. Lovett M, Lee K, Edwards A, Kaplan DL. 199.  2009. Vascularization strategies for tissue engineering. Tissue Eng. B 15:353–70 [Google Scholar]
  200. Morinet F, Casetti L, Francois JH, Capron C, Pillet S. 200.  2013. Oxygen tension level and human viral infections. Virology 444:31–36 [Google Scholar]
  201. Hanjaya-Putra D, Bose V, Shen YI, Yee J, Khetan S. 201.  et al. 2011. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:804–15 [Google Scholar]
  202. Samuel R, Daheron L, Liao S, Vardam T, Kamoun WS. 202.  et al. 2013. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 110:12774–79 [Google Scholar]
  203. Wu W, Hansen CJ, Aragon AM, Geubelle PH, White SR, Lewis JA. 203.  2010. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6:739–42 [Google Scholar]
  204. Koutsoudakis G, Kaul A, Steinmann E, Kallis S, Lohmann V. 204.  et al. 2006. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J. Virol. 80:5308–20 [Google Scholar]
  205. Schoggins JW, Dorner M, Feulner M, Imanaka N, Murphy MY. 205.  et al. 2012. Dengue reporter viruses reveal viral dynamics in interferon receptor–deficient mice and sensitivity to interferon effectors in vitro. Proc. Natl. Acad. Sci. USA 109:14610–15 [Google Scholar]
  206. Tanimizu N, Miyajima A, Mostov KE. 206.  2007. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol. Biol. Cell 18:1472–79 [Google Scholar]
  207. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA. 207.  et al. 2010. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305 [Google Scholar]
  208. Goldman O, Han S, Sourrisseau M, Dziedzic N, Hamou W. 208.  et al. 2013. KDR identifies a conserved human and murine hepatic progenitor and instructs early liver development. Cell Stem Cell 12:748–60 [Google Scholar]
  209. Discher DE, Mooney DJ, Zandstra PW. 209.  2009. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–77 [Google Scholar]
  210. Fernandes TG, Kwon SJ, Bale SS, Lee MY, Diogo MM. 210.  et al. 2010. Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol. Bioeng. 106:106–18 [Google Scholar]
/content/journals/10.1146/annurev-virology-031413-085437
Loading
/content/journals/10.1146/annurev-virology-031413-085437
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error