Virology encompasses a broad spectrum of topics touching upon many aspects of our everyday lives. However, appreciation of this impact is too often restricted to those who have specialized training and participate in virology research. The Phage Hunters Integrating Research and Education (PHIRE) program and the () podcast seek to bring virology to new audiences through two different approaches—direct involvement of undergraduates in discovering and genomically characterizing bacteriophages (PHIRE) and clear, accessible, and free discussions among experts of all topics in virology (). Here we discuss these two high-impact programs, the audiences that they serve, their broader impacts, and their future potential.

Keyword(s): bacteriophagePHIREpodcastTWiV

Associated Article

There are media items related to this article:
PHIRE and TWiV: Experiences in Bringing Virology to New Audiences

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Nisbet MC, Scheufele DA, Shanahan J, Moy P, Brossard D, Lewenstein BV. 1.  2002. Knowledge or negativity? Mass media and public perceptions of science. Commun. Res. 29:584–608 [Google Scholar]
  2. Hendrix RW. 2.  2013. Bacteriophages. Fields Virology DM Knipe, PM Howley 2384–417 Philadelphia: Lippincott Williams & Wilkins, 6th ed.. [Google Scholar]
  3. Hennes KP, Suttle CA. 3.  1995. Direct counts of viruses in natural waters and laboratory cultures by epifluo-rescence microscopy. Limnol. Oceanogr. 40:1050–55 [Google Scholar]
  4. Noble RT, Fuhrman JA. 4.  1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14:113–18 [Google Scholar]
  5. Wommack KE, Colwell RR. 5.  2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69–114 [Google Scholar]
  6. Suttle CA. 6.  2005. Viruses in the sea. Nature 437:356–61 [Google Scholar]
  7. Hendrix RW. 7.  2002. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61:471–80 [Google Scholar]
  8. Suttle CA. 8.  2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12 [Google Scholar]
  9. Hatfull GF, Hendrix RW. 9.  2011. Bacteriophages and their genomes. Curr. Opin. Virol. 1:298–303 [Google Scholar]
  10. Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB. 10.  1982. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162:729–73 [Google Scholar]
  11. Snyder LA, Loman N, Pallen MJ, Penn CW. 11.  2009. Next-generation sequencing—the promise and perils of charting the great microbial unknown. Microb. Ecol. 57:1–3 [Google Scholar]
  12. Hatfull GF. 12.  2010. Bacteriophage research: gateway to learning science. Microbe 5:243–50 [Google Scholar]
  13. Hanauer DI, Jacobs-Sera D, Pedulla ML, Cresawn SG, Hendrix RW, Hatfull GF. 13.  2006. Teaching scientific inquiry. Science 314:1880–81 [Google Scholar]
  14. Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A. 14.  et al. 2006. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet. 2:e92 [Google Scholar]
  15. Hatfull GF. 15.  1994. Mycobacteriophage L5: a toolbox for tuberculosis. ASM News 60:255–60 [Google Scholar]
  16. Hatfull GF, Jacobs Jr WR. 16.  1994. Mycobacteriophages: cornerstones of mycobacterial research. Tuberculosis: Pathogenesis, Protection and Control BR Bloom 165–83 Washington: ASM [Google Scholar]
  17. Jacobs WR Jr, Tuckman M, Bloom BR. 17.  1987. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–35 [Google Scholar]
  18. Snapper SB, Lugosi L, Jekkel A, Melton RE, Kieser T. 18.  et al. 1988. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad. Sci. USA 85:6987–91 [Google Scholar]
  19. Hatfull GF, Sarkis GJ. 19.  1993. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7:395–405 [Google Scholar]
  20. Ford ME, Sarkis GJ, Belanger AE, Hendrix RW, Hatfull GF. 20.  1998. Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279:143–64 [Google Scholar]
  21. Ford ME, Stenstrom C, Hendrix RW, Hatfull GF. 21.  1998. Mycobacteriophage TM4: genome structure and gene expression. Tuber. Lung Dis. 79:63–73 [Google Scholar]
  22. Mediavilla J, Jain S, Kriakov J, Ford ME, Duda RL. 22.  et al. 2000. Genome organization and characterization of mycobacteriophage Bxb1. Mol. Microbiol. 38:955–70 [Google Scholar]
  23. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C. 23.  et al. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–82 [Google Scholar]
  24. Lopatto D, Alvarez C, Barnard D, Chandrasekaran C, Chung HM. 24.  et al. 2008. Genomics Education Partnership. Science 322:684–85 [Google Scholar]
  25. Brewer C, Smith D. 25.  2011. Vision and Change in Undergraduate Biology Education: A Call to Action Washington, DC: AAAS
  26. Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. 26.  2013. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol. Cell 49:237–48 [Google Scholar]
  27. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA. 27.  et al. 2010. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J. Mol. Biol. 397:119–43 [Google Scholar]
  28. Morris P, Marinelli LJ, Jacobs-Sera D, Hendrix RW, Hatfull GF. 28.  2008. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J. Bacteriol. 190:2172–82 [Google Scholar]
  29. Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. 29.  2007. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology 153:2711–23 [Google Scholar]
  30. Sampson T, Broussard GW, Marinelli LJ, Jacobs-Sera D, Ray M. 30.  et al. 2009. Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. Microbiology 155:2962–77 [Google Scholar]
  31. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K. 31.  et al. 2014. A broadly implementable research course for first-year undergraduate students. mBio 5:e01051–13 [Google Scholar]
  32. Harrison M, Dunbar D, Ratmansky L, Boyd K, Lopatto D. 32.  2011. Classroom-based science research at the introductory level: changes in career choices and attitude. CBE Life Sci. Educ. 10:279–86 [Google Scholar]
  33. Caruso SM, Sandoz J, Kelsey J. 33.  2009. Non-STEM undergraduates become enthusiastic phage-hunters. CBE Life Sci. Educ. 8:278–82 [Google Scholar]
  34. Pope WH, Ferreira CM, Jacobs-Sera D, Benjamin RC, Davis AJ. 34.  et al. 2011. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PLoS ONE 6:e26750 [Google Scholar]
  35. Pope WH, Jacobs-Sera D, Best AA, Broussard GW, Connerly PL. 35.  et al. 2013. Cluster J mycobacteriophages: intron splicing in capsid and tail genes. PLoS ONE 8:e69273 [Google Scholar]
  36. Pope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z. 36.  et al. 2011. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS ONE 6:e16329 [Google Scholar]
  37. Mageeney C, Pope WH, Harrison M, Moran D, Cross T. 37.  et al. 2012. Mycobacteriophage Marvin: a new singleton phage with an unusual genome organization. J. Virol. 86:4762–75 [Google Scholar]
  38. Hatfull GF. 38.  Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Program, KwaZulu-Natal Research Institute for Tuberculosis and HIV Mycobacterial Genetics Course Students, Phage Hunters Integrating Research and Education Program 2012. Complete genome sequences of 138 mycobacteriophages. J. Virol. 86:2382–84 [Google Scholar]
  39. Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Guerrero Bustamante C. 39.  et al. 2012. On the nature of mycobacteriophage diversity and host preference. Virology 434:187–201 [Google Scholar]
  40. Lorenz L, Lins B, Barrett J, Montgomery A, Trapani S. 40.  et al. 2013. Genomic characterization of six novel Bacillus pumilus bacteriophages. Virology 444:374–83 [Google Scholar]
  41. Moran D, Cross T, Brown LM, Colligan RM, Dunbar D. 41.  2013. Data-independent acquisition (MSE) with ion mobility provides a systematic method for analysis of a bacteriophage structural proteome. J. Virol. Methods 195:9–17 [Google Scholar]
  42. Smith KC, Castro-Nallar E, Fisher JN, Breakwell DP, Grose JH, Burnett SH. 42.  2013. Phage cluster relationships identified through single gene analysis. BMC Genomics 14:410 [Google Scholar]
  43. Pope WH, Anders KR, Baird M, Bowman CA, Boyle MM. 43.  et al. 2014. Cluster M mycobacteriophages Bongo, PegLeg, and Rey with unusually large repertoires of tRNA isotypes. J. Virol. 882461–80
  44. Hatfull GF. 44.  Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Program, KwaZulu-Natal Research Institute for Tuberculosis and HIV Mycobacterial Genetics Course, University of California–Los Angeles Research Immersion Laboratory in Virology et al. 2013. Complete genome sequences of 63 mycobacteriophages. Genome Announc. 1e00847–13 [Google Scholar]
  45. Fouchier RA, Kawaoka Y, Cardona C, Compans RW, Garcia-Sastre A. 45.  et al. 2013. Gain-of-function experiments on H7N9. Science 341:612–13 [Google Scholar]

Data & Media loading...

Supplemental Material

An introduction to the topic from author Graham F. Hatfull.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error