Many arboviral diseases are uncontrolled, and the viruses that cause them are globally emerging or reemerging pathogens that produce significant disease throughout the world. The increased spread and prevalence of disease are occurring during a period of substantial scientific growth in the vector-borne disease research community. This growth has been supported by advances in genomics and proteomics, and by the ability to genetically alter disease vectors. For the first time, researchers are elucidating the molecular details of vector host-seeking behavior, the susceptibility of disease vectors to arboviruses, the immunological control of infection in disease vectors, and the determinants that facilitate transmission of arboviruses from a vector to a host. These discoveries are facilitating the development of novel strategies to combat arboviral disease, including the release of transgenic mosquitoes harboring dominant lethal genes, the introduction of arbovirus-blocking microbes into mosquito populations, and the development of acquisition- and transmission-blocking therapeutics. Understanding the role of the vector in arbovirus transmission has provided critical practical and theoretical tools to control arboviral disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson JR, Rico-Hesse R. 1.  2006. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am. J. Trop. Med. Hyg. 75:886–92 [Google Scholar]
  2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW. 2.  et al. 2013. The global distribution and burden of dengue. Nature 496:504–7 [Google Scholar]
  3. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J. 3.  et al. 2010. Dengue: a continuing global threat. Nat. Rev. Microbiol. 8:S7–16 [Google Scholar]
  4. Kilpatrick AM, Randolph SE. 4.  2012. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380:1946–55 [Google Scholar]
  5. Lindsey NP, Lehman JA, Staples JE, Fischer M. 5.  2013. West Nile virus and other arboviral diseases—United States, 2012. CDC Morb. Mortal. Wkly. Rep. 62:513–17 http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6225a1.htm [Google Scholar]
  6. Petersen LR, Carson PJ, Biggerstaff BJ, Custer B, Borchardt SM, Busch MP. 6.  2012. Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010. Epidemiol. Infect. 141:591–95 [Google Scholar]
  7. Murray KO, Ruktanonchai D, Hesalroad D, Fonken E, Nolan MS. 7.  2013. West Nile virus, Texas, USA, 2012. Emerg. Infect. Dis. 19. doi: 10.3201/eid1911.130768 [Google Scholar]
  8. Murray KO, Rodriguez LF, Herrington E, Kharat V, Vasilakis N. 8.  et al. 2013. Identification of dengue fever cases in Houston, Texas, with evidence of autochthonous transmission between 2003 and 2005. Vector Borne Zoonotic Dis. 13:835–45 [Google Scholar]
  9. Eisen L, Moore CG. 9.  2013. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J. Med. Entomol. 50:467–78 [Google Scholar]
  10. Rezza G. 10.  2012. Aedes albopictus and the reemergence of dengue. BMC Public Health 12:72 [Google Scholar]
  11. Mitchell CJ, Niebylski ML, Smith GC, Karabatsos N, Martin D. 11.  et al. 1992. Isolation of eastern equine encephalitis virus from Aedes albopictus in Florida. Science 257:526–27 [Google Scholar]
  12. Hanson SM, Craig GB Jr. 12.  1995. Aedes albopictus (Diptera: Culicidae) eggs: field survivorship during northern Indiana winters. J. Med. Entomol. 32:599–604 [Google Scholar]
  13. Swanson J, Lancaster M, Anderson J, Crandell M, Haramis L. 13.  et al. 2000. Overwintering and establishment of Aedes albopictus (Diptera: Culicidae) in an urban La Crosse virus enzootic site in Illinois. J. Med. Entomol. 37:454–60 [Google Scholar]
  14. Hawley WA, Pumpuni CB, Brady RH, Craig GB Jr. 14.  1989. Overwintering survival of Aedes albopictus (Diptera: Culicidae) eggs in Indiana. J. Med. Entomol. 26:122–29 [Google Scholar]
  15. Lambrechts L, Scott TW, Gubler DJ. 15.  2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4:e646 [Google Scholar]
  16. Bargielowski IE, Lounibos LP, Carrasquilla MC. 16.  2013. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl. Acad. Sci. USA 110:2888–92 [Google Scholar]
  17. Tripet F, Lounibos LP, Robbins D, Moran J, Nishimura N, Blosser EM. 17.  2011. Competitive reduction by satyrization? Evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors. Am. J. Trop. Med. Hyg. 85:265–70 [Google Scholar]
  18. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. 18.  2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4:e82 [Google Scholar]
  19. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. 19.  2006. Host heterogeneity dominates West Nile virus transmission. Proc. R. Soc. B 273:2327–33 [Google Scholar]
  20. Khoo CC, Piper J, Sanchez-Vargas I, Olson KE, Franz AW. 20.  2010. The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. BMC Microbiol. 10:130 [Google Scholar]
  21. Kato N, Mueller CR, Fuchs JF, McElroy K, Wessely V. 21.  et al. 2008. Evaluation of the function of a type I peritrophic matrix as a physical barrier for midgut epithelium invasion by mosquito-borne pathogens in Aedes aegypti. Vector Borne Zoonotic Dis. 8:701–12 [Google Scholar]
  22. Brackney DE, Foy BD, Olson KE. 22.  2008. The effects of midgut serine proteases on dengue virus type 2 infectivity of Aedes aegypti. Am. J. Trop. Med. Hyg. 79:267–74 [Google Scholar]
  23. Oliveira JH, Goncalves RL, Lara FA, Dias FA, Gandara AC. 23.  et al. 2011. Blood meal–derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 7:e1001320 [Google Scholar]
  24. Forrester NL, Guerbois M, Seymour RL, Spratt H, Weaver SC. 24.  2012. Vector-borne transmission imposes a severe bottleneck on an RNA virus population. PLoS Pathog. 8:e1002897 [Google Scholar]
  25. Tsetsarkin KA, Weaver SC. 25.  2011. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS Pathog. 7:e1002412 [Google Scholar]
  26. Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G. 26.  et al. 2011. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 7:e1002189 [Google Scholar]
  27. Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. 27.  2012. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS ONE 7:e50512 [Google Scholar]
  28. Luplertlop N, Surasombatpattana P, Patramool S, Dumas E, Wasinpiyamongkol L. 28.  et al. 2011. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog. 7:e1001252 [Google Scholar]
  29. Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K. 29.  et al. 2010. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330:88–90 [Google Scholar]
  30. Souza-Neto JA, Sim S, Dimopoulos G. 30.  2009. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc. Natl. Acad. Sci. USA 106:17841–46 [Google Scholar]
  31. Brackney DE, Beane JE, Ebel GD. 31.  2009. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog. 5:e1000502 [Google Scholar]
  32. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE. 32.  2004. RNA interference acts as a natural antiviral response to o'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Natl. Acad. Sci. USA 101:17240–45 [Google Scholar]
  33. Xu J, Hopkins K, Sabin L, Yasunaga A, Subramanian H. 33.  et al. 2013. ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc. Natl. Acad. Sci. USA 110:15025–30 [Google Scholar]
  34. Girard YA, Klingler KA, Higgs S. 34.  2004. West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus. Vector Borne Zoonotic Dis. 4:109–22 [Google Scholar]
  35. Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ. 35.  2007. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 7:9 [Google Scholar]
  36. Weaver SC, Brault AC, Kang W, Holland JJ. 36.  1999. Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J. Virol. 73:4316–26 [Google Scholar]
  37. Vasilakis N, Deardorff ER, Kenney JL, Rossi SL, Hanley KA, Weaver SC. 37.  2009. Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLoS Pathog. 5:e1000467 [Google Scholar]
  38. Coffey LL, Vasilakis N, Brault AC, Powers AM, Tripet F, Weaver SC. 38.  2008. Arbovirus evolution in vivo is constrained by host alternation. Proc. Natl. Acad. Sci. USA 105:6970–75 [Google Scholar]
  39. Cologna R, Armstrong PM, Rico-Hesse R. 39.  2005. Selection for virulent dengue viruses occurs in humans and mosquitoes. J. Virol. 79:853–59 [Google Scholar]
  40. Greenwalt DE, Goreva YS, Siljeström SM, Rose T, Harbach RE. 40.  2013. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proc. Natl. Acad. Sci. USA In press. doi: 10.1073/pnas.1310885110 [Google Scholar]
  41. Cook S, Moureau G, Harbach RE, Mukwaya L, Goodger K. 41.  et al. 2009. Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J. Gen. Virol. 90:2669–78 [Google Scholar]
  42. Cook S, Moureau G, Kitchen A, Gould EA, de Lamballerie X. 42.  et al. 2012. Molecular evolution of the insect-specific flaviviruses. J. Gen. Virol. 93:223–34 [Google Scholar]
  43. Edman JD, Strickman D, Kittayapong P, Scott TW. 43.  1992. Female Aedes aegypti (Diptera: Culicidae) in Thailand rarely feed on sugar. J. Med. Entomol. 29:1035–38 [Google Scholar]
  44. Foster WA. 44.  1995. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 40:443–74 [Google Scholar]
  45. Vinogradova EB, Karpova SG. 45.  2006. Cultivation of the mosquito Culex pipiens pipiens f. molestus (Diptera, Culicidae) without blood feeding. Parazitologiia 40:306–11 [Google Scholar]
  46. O'Meara GF, Edman JD. 46.  1975. Autogenous egg production in the salt-marsh mosquito, Aedes taeniorhynchus. Biol. Bull. 149:384–96 [Google Scholar]
  47. Foster WA, Hancock RG. 47.  1994. Nectar-related olfactory and visual attractants for mosquitoes. J. Am. Mosq. Control Assoc. 10:288–96 [Google Scholar]
  48. DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ. 48.  et al. 2013. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498:487–91 [Google Scholar]
  49. Dormont L, Bessiere JM, McKey D, Cohuet A. 49.  2013. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J. Exp. Biol. 216:2783–88 [Google Scholar]
  50. Verhulst NO, Beijleveld H, Knols BG, Takken W, Schraa G. 50.  et al. 2009. Cultured skin microbiota attracts malaria mosquitoes. Malar. J. 8:302 [Google Scholar]
  51. Smallegange RC, Knols BG, Takken W. 51.  2010. Effectiveness of synthetic versus natural human volatiles as attractants for Anopheles gambiae (Diptera: Culicidae) sensu stricto. J. Med. Entomol. 47:338–44 [Google Scholar]
  52. Bohbot JD, Durand NF, Vinyard BT, Dickens JC. 52.  2013. Functional development of the octenol response in Aedes aegypti. Front. Physiol. 4:39 [Google Scholar]
  53. Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A. 53.  2013. Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–79 [Google Scholar]
  54. Turell MJ, Tammariello RF, Spielman A. 54.  1995. Nonvascular delivery of St. Louis encephalitis and Venezuelan equine encephalitis viruses by infected mosquitoes (Diptera: Culicidae) feeding on a vertebrate host. J. Med. Entomol. 32:563–68 [Google Scholar]
  55. Turell MJ, Spielman A. 55.  1992. Nonvascular delivery of Rift Valley fever virus by infected mosquitoes. Am. J. Trop. Med. Hyg. 47:190–94 [Google Scholar]
  56. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA. 56.  2007. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 3:1262–70 [Google Scholar]
  57. Thangamani S, Higgs S, Ziegler S, Vanlandingham D, Tesh R, Wikel S. 57.  2010. Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus. PLoS ONE 5:e12137 [Google Scholar]
  58. Ader DB, Celluzzi C, Bisbing J, Gilmore L, Gunther V. 58.  et al. 2004. Modulation of dengue virus infection of dendritic cells by Aedes aegypti saliva. Viral Immunol. 17:252–65 [Google Scholar]
  59. Schneider BS, Soong L, Zeidner NS, Higgs S. 59.  2004. Aedes aegypti salivary gland extracts modulate anti-viral and TH1/TH2 cytokine responses to Sindbis virus infection. Viral Immunol. 17:565–73 [Google Scholar]
  60. Schneider BS, Soong L, Girard YA, Campbell G, Mason P, Higgs S. 60.  2006. Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol. 19:74–82 [Google Scholar]
  61. Styer LM, Lim PY, Louie KL, Albright RG, Kramer LD, Bernard KA. 61.  2011. Mosquito saliva causes enhancement of West Nile virus infection in mice. J. Virol. 85:1517–27 [Google Scholar]
  62. Surasombatpattana P, Ekchariyawat P, Hamel R, Patramool S, Thongrungkiat S. 62.  et al. 2013. Aedes aegypti saliva contains a prominent 34-kDa protein that strongly enhances dengue virus replication in human keratinocytes. J. Investig. Dermatol. 134:281–84 [Google Scholar]
  63. Conway MJ, Watson AM, Colpitts TM, Dragovic SM, Li Z. 63.  et al. 2014. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J. Virol. 88164–75 [Google Scholar]
  64. Coupanec A, Babin D, Fiette L, Jouvion G, Ave P. 64.  Le et al. 2013. Aedes mosquito saliva modulates Rift Valley fever virus pathogenicity. PLoS Negl. Trop. Dis. 7:e2237 [Google Scholar]
  65. Limesand KH, Higgs S, Pearson LD, Beaty BJ. 65.  2000. Potentiation of vesicular stomatitis New Jersey virus infection in mice by mosquito saliva. Parasite Immunol. 22:461–67 [Google Scholar]
  66. Osorio JE, Godsey MS, Defoliart GR, Yuill TM. 66.  1996. La Crosse viremias in white-tailed deer and chipmunks exposed by injection or mosquito bite. Am. J. Trop. Med. Hyg. 54:338–42 [Google Scholar]
  67. Reisen WK, Chiles RE, Kramer LD, Martinez VM, Eldridge BF. 67.  2000. Method of infection does not alter response of chicks and house finches to western equine encephalomyelitis and St. Louis encephalitis viruses. J. Med. Entomol. 37:250–58 [Google Scholar]
  68. Schneider BS, Higgs S. 68.  2008. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans. R. Soc. Trop. Med. Hyg. 102:400–8 [Google Scholar]
  69. Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R. 69.  2012. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J. Virol. 86:7637–49 [Google Scholar]
  70. Christofferson RC, McCracken MK, Johnson AM, Chisenhall DM, Mores CN. 70.  2013. Development of a transmission model for dengue virus. Virol. J. 10:127 [Google Scholar]
  71. McCracken MK, Christofferson RC, Chisenhall DM, Mores CN. 71.  2014. Analysis of early dengue viral infection in mice as modulated by Aedes aegypti probing. J. Virol. 88:1881–89 [Google Scholar]
  72. Schneider BS, McGee CE, Jordan JM, Stevenson HL, Soong L, Higgs S. 72.  2007. Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection. PLoS ONE 2:e1171 [Google Scholar]
  73. Limesand KH, Higgs S, Pearson LD, Beaty BJ. 73.  2003. Effect of mosquito salivary gland treatment on vesicular stomatitis New Jersey virus replication and interferon α/β expression in vitro. J. Med. Entomol. 40:199–205 [Google Scholar]
  74. Surasombatpattana P, Patramool S, Luplertlop N, Yssel H, Misse D. 74.  2012. Aedes aegypti saliva enhances dengue virus infection of human keratinocytes by suppressing innate immune responses. J. Investig. Dermatol. 132:2103–5 [Google Scholar]
  75. Edwards JF, Higgs S, Beaty BJ. 75.  1998. Mosquito feeding–induced enhancement of Cache Valley virus (Bunyaviridae) infection in mice. J. Med. Entomol. 35:261–65 [Google Scholar]
  76. Ribeiro JM, Arca B, Lombardo F, Calvo E, Phan VM. 76.  et al. 2007. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomics 8:6 [Google Scholar]
  77. Calvo E, Sanchez-Vargas I, Favreau AJ, Barbian KD, Pham VM. 77.  et al. 2010. An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis. BMC Genomics 11:51 [Google Scholar]
  78. Reagan KL, Machain-Williams C, Wang T, Blair CD. 78.  2012. Immunization of mice with recombinant mosquito salivary protein D7 enhances mortality from subsequent West Nile virus infection via mosquito bite. PLoS Negl. Trop. Dis. 6:e1935 [Google Scholar]
  79. Jacobs JJ, Lehe CL, Hasegawa H, Elliott GR, Das PK. 79.  2006. Skin irritants and contact sensitizers induce Langerhans cell migration and maturation at irritant concentration. Exp. Dermatol. 15:432–40 [Google Scholar]
  80. Ouwehand K, Oosterhoff D, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. 80.  2011. Irritant-induced migration of Langerhans cells coincides with an IL-10-dependent switch to a macrophage-like phenotype. J. Investig. Dermatol. 131:418–25 [Google Scholar]
  81. Price AA, Cumberbatch M, Kimber I, Ager A. 81.  1997. α6 integrins are required for Langerhans cell migration from the epidermis. J. Exp. Med. 186:1725–35 [Google Scholar]
  82. Hammad H, Lambrecht BN. 82.  2008. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat. Rev. Immunol. 8:193–204 [Google Scholar]
  83. Zeidner NS, Higgs S, Happ CM, Beaty BJ, Miller BR. 83.  1999. Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: an effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice. Parasite Immunol. 21:35–44 [Google Scholar]
  84. Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E. 84.  et al. 2000. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6:816–20 [Google Scholar]
  85. Fink K, Ng C, Nkenfou C, Vasudevan SG, van Rooijen N, Schul W. 85.  2009. Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control. Eur. J. Immunol. 39:2809–21 [Google Scholar]
  86. Farrance CE, Chichester JA, Musiychuk K, Shamloul M, Rhee A. 86.  et al. 2011. Antibodies to plant-produced Plasmodium falciparum sexual stage protein Pfs25 exhibit transmission blocking activity. Hum. Vaccines 7:Suppl.191–98 [Google Scholar]
  87. Mathias DK, Plieskatt JL, Armistead JS, Bethony JM, Abdul-Majid KB. 87.  et al. 2012. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine. Infect. Immun. 80:1606–14 [Google Scholar]
  88. Miyata T, Harakuni T, Sugawa H, Sattabongkot J, Kato A. 88.  et al. 2011. Adenovirus-vectored Plasmodium vivax ookinete surface protein, Pvs25, as a potential transmission-blocking vaccine. Vaccine 29:2720–26 [Google Scholar]
  89. Williams AR, Zakutansky SE, Miura K, Dicks MD, Churcher TS. 89.  et al. 2013. Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes. Int. J. Parasitol. 43:869–74 [Google Scholar]
  90. Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG. 90.  et al. 2004. A role for insect galectins in parasite survival. Cell 119:329–41 [Google Scholar]
  91. Gomes R, Oliveira F, Teixeira C, Meneses C, Gilmore DC. 91.  et al. 2012. Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J. Investig. Dermatol. 132:2735–43 [Google Scholar]
  92. Gomes R, Teixeira C, Teixeira MJ, Oliveira F, Menezes MJ. 92.  et al. 2008. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc. Natl. Acad. Sci. USA 105:7845–50 [Google Scholar]
  93. Jones PL, Pask GM, Rinker DC, Zwiebel LJ. 93.  2011. Functional agonism of insect odorant receptor ion channels. Proc. Natl. Acad. Sci. USA 108:8821–25 [Google Scholar]
  94. Taylor RW, Romaine IM, Liu C, Murthi P, Jones PL. 94.  et al. 2012. Structure-activity relationship of a broad-spectrum insect odorant receptor agonist. ACS Chem. Biol. 7:1647–52 [Google Scholar]
  95. Laven H. 95.  1967. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216:383–84 [Google Scholar]
  96. Dobson SL, Fox CW, Jiggins FM. 96.  2002. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc. R. Soc. B 269:437–45 [Google Scholar]
  97. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB. 97.  2012. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl. Trop. Dis. 6:e1989 [Google Scholar]
  98. Glaser RL, Meola MA. 98.  2010. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5:e11977 [Google Scholar]
  99. Blagrove MS, Arias-Goeta C, Di Genua C, Failloux AB, Sinkins SP. 99.  2013. A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl. Trop. Dis. 7:e2152 [Google Scholar]
  100. Xi Z, Khoo CC, Dobson SL. 100.  2005. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–28 [Google Scholar]
  101. McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M. 101.  et al. 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–44 [Google Scholar]
  102. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD. 102.  et al. 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–53 [Google Scholar]
  103. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT. 103.  et al. 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139:1268–78 [Google Scholar]
  104. Bian G, Xu Y, Lu P, Xie Y, Xi Z. 104.  2010. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 6:e1000833 [Google Scholar]
  105. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH. 105.  et al. 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–57 [Google Scholar]
  106. Burivong P, Pattanakitsakul SN, Thongrungkiat S, Malasit P, Flegel TW. 106.  2004. Markedly reduced severity of dengue virus infection in mosquito cell cultures persistently infected with Aedes albopictus densovirus (AalDNV). Virology 329:261–69 [Google Scholar]
  107. Hirunkanokpun S, Carlson JO, Kittayapong P. 107.  2008. Evaluation of mosquito densoviruses for controlling Aedes aegypti (Diptera: Culicidae): variation in efficiency due to virus strain and geographic origin of mosquitoes. Am. J. Trop. Med. Hyg. 78:784–90 [Google Scholar]
  108. Afanasiev BN, Kozlov YV, Carlson JO, Beaty BJ. 108.  1994. Densovirus of Aedes aegypti as an expression vector in mosquito cells. Exp. Parasitol. 79:322–39 [Google Scholar]
  109. Fu G, Lees RS, Nimmo D, Aw D, Jin L. 109.  et al. 2010. Female-specific flightless phenotype for mosquito control. Proc. Natl. Acad. Sci. USA 107:4550–54 [Google Scholar]
  110. Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ. 110.  et al. 2007. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 5:11 [Google Scholar]
  111. Bargielowski I, Nimmo D, Alphey L, Koella JC. 111.  2011. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS ONE 6:e20699 [Google Scholar]
  112. Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I. 112.  et al. 2012. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat. Biotechnol. 30:828–30 [Google Scholar]
  113. Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ. 113.  et al. 2006. Engineering RNA interference–based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc. Natl. Acad. Sci. USA 103:4198–203 [Google Scholar]
  114. Deredec A, Godfray HC, Burt A. 114.  2011. Requirements for effective malaria control with homing endonuclease genes. Proc. Natl. Acad. Sci. USA 108:E874–80 [Google Scholar]
  115. Traver BE, Anderson MA, Adelman ZN. 115.  2009. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti. Insect. Mol. Biol. 18:623–33 [Google Scholar]
  116. Cheng G, Cox J, Wang P, Krishnan MN, Dai J. 116.  et al. 2010. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142:714–25 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error