Throughout pregnancy, the placenta acts as a physical and immunological barrier against the hematogenous transmission of viruses from mother to fetus. Despite this, very little is known regarding the specific mechanisms by which the placenta shields the developing fetus from viral infections or about the strategies utilized by select viruses to bypass and/or weaken the placental barrier. In this review, we summarize studies regarding virus-host interactions at the placental interface and explore key areas for future investigation. We focus our review on placental trophoblasts, which form the barrier between maternal and fetal circulations and thus govern the cross talk between the maternal and fetal microenvironments.

Keyword(s): autophagyC19MCmiRNAtrophoblastvirus

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Benirschke K, Kaufmann P, Baergen RN. 1.  2006. Pathology of the Human Placenta New York: Springer
  2. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A. 2.  et al. 2013. Human placental trophoblasts confer viral resistance to recipient cells. Proc. Natl. Acad. Sci. USA 110:12048–53 [Google Scholar]
  3. Mor G, Cardenas I. 3.  2010. The immune system in pregnancy: a unique complexity. Am. J. Reprod. Immunol. 63:425–33 [Google Scholar]
  4. Fung KY, Mangan NE, Cumming H, Horvat JC, Mayall JR. 4.  et al. 2013. Interferon-ε protects the female reproductive tract from viral and bacterial infection. Science 339:1088–92 [Google Scholar]
  5. Hermant P, Francius C, Clotman F, Michiels T. 5.  2013. IFN-ε is constitutively expressed by cells of the reproductive tract and is inefficiently secreted by fibroblasts and cell lines. PLoS ONE 8:e71320 [Google Scholar]
  6. Levy O. 6.  2007. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol. 7:379–90 [Google Scholar]
  7. Mor G, Cardenas I, Abrahams V, Guller S. 7.  2011. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 1221:80–87 [Google Scholar]
  8. Aplin JD. 8.  2000. The cell biological basis of human implantation. Best Pract. Res. Clin. Obstet. Gynaecol. 14:757–64 [Google Scholar]
  9. Huppertz B. 9.  2008. The anatomy of the normal placenta. J. Clin. Pathol. 61:1296–302 [Google Scholar]
  10. Khong TY, Pearce JM. 10.  1987. Development and investigation of the placenta and its blood supply. The Human Placenta: Clinical Perspectives JP Lavery 25–33 Rockville, MD: Aspen [Google Scholar]
  11. Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F. 11.  2007. Control of human trophoblast function. Reprod. Biol. Endocrinol. 5:6 [Google Scholar]
  12. Robbins JR, Skrzypczynska KM, Zeldovich VB, Kapidzic M, Bakardjiev AI. 12.  2010. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog. 6:e1000732 [Google Scholar]
  13. Zeldovich VB, Robbins JR, Kapidzic M, Lauer P, Bakardjiev AI. 13.  2011. Invasive extravillous trophoblasts restrict intracellular growth and spread of Listeria monocytogenes. PLoS Pathog. 7:e1002005 [Google Scholar]
  14. Gabbe SG, Niebyl JR, Simpson JL. 14.  2007. Obstetrics: Normal and Problem Pregnancies London: Churchill Livingstone, 5th ed..
  15. Mi S, Lee X, Li X, Veldman GM, Finnerty H. 15.  et al. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–89 [Google Scholar]
  16. Schaiff WT, Barak Y, Sadovsky Y. 16.  2006. The pleiotropic function of PPARγ in the placenta. Mol. Cell. Endocrinol 249:10–15 [Google Scholar]
  17. Schaiff WT, Carlson MG, Smith SD, Levy R, Nelson DM, Sadovsky Y. 17.  2000. Peroxisome proliferator-activated receptor-γ modulates differentiation of human trophoblast in a ligand-specific manner. J. Clin. Endocrinol. Metab 85:3874–81 [Google Scholar]
  18. Huppertz B, Gauster M. 18.  2011. Trophoblast fusion. Adv. Exp. Med. Biol 713:81–95 [Google Scholar]
  19. Chan G, Hemmings DG, Yurochko AD, Guilbert LJ. 19.  2002. Human cytomegalovirus-caused damage to placental trophoblasts mediated by immediate-early gene-induced tumor necrosis factor-α. Am. J. Pathol. 161:1371–81 [Google Scholar]
  20. Fisher S, Genbacev O, Maidji E, Pereira L. 20.  2000. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J. Virol. 74:6808–20 [Google Scholar]
  21. Maidji E, Percivalle E, Gerna G, Fisher S, Pereira L. 21.  2002. Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating/invasive placental cytotrophoblasts. Virology 304:53–69 [Google Scholar]
  22. Maidji E, Genbacev O, Chang HT, Pereira L. 22.  2007. Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta. J. Virol. 81:4701–12 [Google Scholar]
  23. Robbins JR, Zeldovich VB, Poukchanski A, Boothroyd JC, Bakardjiev AI. 23.  2012. Tissue barriers of the human placenta to infection with Toxoplasma gondii. Infect. Immun. 80:418–28 [Google Scholar]
  24. Nahmias AJ, Josey WE, Naib ZM, Freeman MG, Fernandez RJ, Wheeler JH. 24.  1971. Perinatal risk associated with maternal genital herpes simplex virus infection. Am. J. Obstet. Gynecol. 110:825–37 [Google Scholar]
  25. Kinney JS, Kumar ML. 25.  1988. Should we expand the TORCH complex? A description of clinical and diagnostic aspects of selected old and new agents. Clin. Perinatol. 15:727–44 [Google Scholar]
  26. Kaur R, Gupta N, Nair D, Kakkar M, Mathur MD. 26.  1999. Screening for TORCH infections in pregnant women: a report from Delhi. Southeast Asian J. Trop. Med. Public Health 30:284–86 [Google Scholar]
  27. Stegmann BJ, Carey JC. 27.  2002. TORCH infections. Toxoplasmosis, other (syphilis, varicella-zoster, parvovirus B19), rubella, cytomegalovirus (CMV), and herpes infections. Curr. Women's Health Rep. 2:253–58 [Google Scholar]
  28. Brumback RA. 28.  1976. TORCHES. Pediatrics 58:916 [Google Scholar]
  29. Univ. Chicago 2013. TORCH infections. Pediatrics Clerkship J Schwab, L Alkureishi Chicago: Univ. Chicago http://pedclerk.bsd.uchicago.edu/page/torch-infections [Google Scholar]
  30. Cent. Dis. Control Prev. (CDC) 2013. Parasites—Toxoplasmosis (Toxoplasma Infection) Atlanta: CDC http://www.cdc.gov/parasites/toxoplasmosis/ [Google Scholar]
  31. Janakiraman V. 31.  2008. Listeriosis in pregnancy: diagnosis, treatment, and prevention. Rev. Obstet. Gynecol. 1:179–85 [Google Scholar]
  32. Cent. Dis. Control Prev. (CDC) 2009. Rubella (German Measles, Three-Day Measles) Atlanta: CDC http://www.cdc.gov/rubella/ [Google Scholar]
  33. Caserta MT. 33.  2009. Congenital rubella. The Merck Manual Online RS Porter, JL Kaplan Whitehouse Station, NJ: Merck Sharp & Dohme http://www.merckmanuals.com/professional/pediatrics/infections_in_neonates/congenital_rubella.html [Google Scholar]
  34. Cent. Dis. Control Prev. (CDC) 2012. Cytomegalovirus (CMV) and Pregnancy Atlanta: CDC http://www.cdc.gov/pregnancy/cmv/index.html [Google Scholar]
  35. Schleiss MR. 35.  2008. Congenital cytomegalovirus infection: update on management strategies. Curr. Treat. Options Neurol. 10:186–92 [Google Scholar]
  36. Nigro G, Adler SP, La Torre R, Best AM. 36.  2005. Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med. 353:1350–62 [Google Scholar]
  37. Hemmings DG, Kilani R, Nykiforuk C, Preiksaitis J, Guilbert LJ. 37.  1998. Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts. J. Virol. 72:4970–79 [Google Scholar]
  38. Pereira L, Maidji E, McDonagh S, Tabata T. 38.  2005. Insights into viral transmission at the uterine-placental interface. Trends Microbiol. 13:164–74 [Google Scholar]
  39. Anzivino E, Fioriti D, Mischitelli M, Bellizzi A, Barucca V. 39.  et al. 2009. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol. J. 6:40 [Google Scholar]
  40. Norskov-Lauritsen N, Aboagye-Mathisen G, Juhl CB, Petersen PM, Zachar V, Ebbesen P. 40.  1992. Herpes simplex virus infection of cultured human term trophoblast. J. Med. Virol. 36:162–66 [Google Scholar]
  41. Koi H, Zhang J, Makrigiannakis A, Getsios S, MacCalman CD. 41.  et al. 2002. Syncytiotrophoblast is a barrier to maternal-fetal transmission of herpes simplex virus. Biol. Reprod. 67:1572–79 [Google Scholar]
  42. Flint SJ, Enquist LW, Racaniello VR, Akalka AM. 42.  2009. Principles of Virology Washington, DC: ASM
  43. Mok J, Pembrey L, Tovo PA, Newell ML. 43.  2005. When does mother to child transmission of hepatitis C virus occur?. Arch. Dis. Child. Fetal Neonatal 90:F156–60 [Google Scholar]
  44. Granovsky MO, Minkoff HL, Tess BH, Waters D, Hatzakis A. 44.  et al. 1998. Hepatitis C virus infection in the Mothers and Infants Cohort Study. Pediatrics 102:355–59 [Google Scholar]
  45. Giacchino R, Tasso L, Timitilli A, Castagnola E, Cristina E. 45.  et al. 1998. Vertical transmission of hepatitis C virus infection: usefulness of viremia detection in HIV-seronegative hepatitis C virus–seropositive mothers. J. Pediatr. 132:167–69 [Google Scholar]
  46. Steininger C, Kundi M, Jatzko G, Kiss H, Lischka A, Holzmann H. 46.  2003. Increased risk of mother-to-infant transmission of hepatitis C virus by intrapartum infantile exposure to maternal blood. J. Infect. Dis. 187:345–51 [Google Scholar]
  47. Nie QH, Gao LH, Cheng YQ, Huang XF, Zhang YF. 47.  et al. 2012. Hepatitis C virus infection of human cytotrophoblasts cultured in vitro. J. Med. Virol. 84:1586–92 [Google Scholar]
  48. Muesing MA, Smith DH, Cabradilla CD, Benton CV, Lasky LA, Capon DJ. 48.  1985. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 313:450–58 [Google Scholar]
  49. Kourtis AP, Lee FK, Abrams EJ, Jamieson DJ, Bulterys M. 49.  2006. Mother-to-child transmission of HIV-1: timing and implications for prevention. Lancet Infect. Dis. 6:726–32 [Google Scholar]
  50. Zachar V, Norskov-Lauritsen N, Juhl C, Spire B, Chermann JC, Ebbesen P. 50.  1991. Susceptibility of cultured human trophoblasts to infection with human immunodeficiency virus type 1. J. Gen. Virol. 72:1253–60 [Google Scholar]
  51. Arias RA, Muñoz LD, Muñoz-Fernández MA. 51.  2003. Transmission of HIV-1 infection between trophoblast placental cells and T-cells take place via an LFA-1-mediated cell to cell contact. Virology 307:266–77 [Google Scholar]
  52. Pallansch MA, Roos RP. 52.  2001. Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and Newer Enteroviruses Philadelphia: Lippincott Williams & Wilkins
  53. Huber S, Ramsingh AI. 53.  2004. Coxsackievirus-induced pancreatitis. Viral Immunol. 17:358–69 [Google Scholar]
  54. Delorme-Axford E, Sadovsky Y, Coyne CB. 54.  2013. Lipid raft– and SRC family kinase–dependent entry of coxsackievirus B into human placental trophoblasts. J. Virol. 87:8569–81 [Google Scholar]
  55. Koga K, Mor G. 55.  2010. Toll-like receptors at the maternal-fetal interface in normal pregnancy and pregnancy disorders. Am. J. Reprod. Immunol. 63:587–600 [Google Scholar]
  56. Erlebacher A. 56.  2013. Immunology of the maternal-fetal interface. Annu. Rev. Immunol. 31:387–411 [Google Scholar]
  57. Arck PC, Hecher K. 57.  2013. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat. Med. 19:548–56 [Google Scholar]
  58. Erlebacher A. 58.  2013. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat. Rev. Immunol. 13:23–33 [Google Scholar]
  59. Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. 59.  2002. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J. Immunol. 168:2356–64 [Google Scholar]
  60. Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. 60.  2013. Placenta-specific microRNAs in exosomes: Good things come in nano-packages. Placenta 35:S69–73 [Google Scholar]
  61. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. 61.  2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–59 [Google Scholar]
  62. Simpson RJ, Jensen SS, Lim JW. 62.  2008. Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–99 [Google Scholar]
  63. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L. 63.  et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10:1470–76 [Google Scholar]
  64. Thery C, Ostrowski M, Segura E. 64.  2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9:581–93 [Google Scholar]
  65. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV. 65.  et al. 1996. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183:1161–72 [Google Scholar]
  66. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. 66.  2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29:341–45 [Google Scholar]
  67. Eldh M, Ekstrom K, Valadi H, Sjostrand M, Olsson B. 67.  et al. 2010. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS ONE 5:e15353 [Google Scholar]
  68. Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB. 68.  et al. 2012. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol. Hum. Reprod. 18:417–24 [Google Scholar]
  69. Mouillet JF, Chu T, Hubel CA, Nelson DM, Parks WT, Sadovsky Y. 69.  2010. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta 31:781–84 [Google Scholar]
  70. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A. 70.  et al. 2009. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 81:717–29 [Google Scholar]
  71. He C, Klionsky DJ. 71.  2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67–93 [Google Scholar]
  72. Sumpter R Jr, Levine B. 72.  2011. Selective autophagy and viruses. Autophagy 7:260–65 [Google Scholar]
  73. Kroemer G, Marino G, Levine B. 73.  2010. Autophagy and the integrated stress response. Mol. Cell 40:280–93 [Google Scholar]
  74. Mizushima N, Levine B. 74.  2010. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12:823–30 [Google Scholar]
  75. Tallóczy Z, Virgin HW IV, Levine B. 75.  2006. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2:24–29 [Google Scholar]
  76. Orvedahl A, Sumpter R Jr, Xiao G, Ng A, Zou Z. 76.  et al. 2011. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480:113–17 [Google Scholar]
  77. Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. 77.  2009. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:588–98 [Google Scholar]
  78. Moy RH, Gold B, Molleston JM, Schad V, Yanger K. 78.  et al. 2014. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity 40:51–65 [Google Scholar]
  79. Orvedahl A, MacPherson S, Sumpter R Jr, Tallóczy Z, Zou Z, Levine B. 79.  2010. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–27 [Google Scholar]
  80. Nakamoto M, Moy RH, Xu J, Bambina S, Yasunaga A. 80.  et al. 2012. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity 36:658–67 [Google Scholar]
  81. Shi CS, Kehrl JH. 81.  2008. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283:33175–82 [Google Scholar]
  82. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. 82.  2008. Toll-like receptors control autophagy. EMBO J. 27:1110–21 [Google Scholar]
  83. Deretic V, Saitoh T, Akira S. 83.  2013. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13:722–37 [Google Scholar]
  84. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. 84.  2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–401 [Google Scholar]
  85. Law AH, Lee DC, Yuen KY, Peiris M, Lau AS. 85.  2010. Cellular response to influenza virus infection: a potential role for autophagy in CXCL10 and interferon-α induction. Cell. Mol. Immunol. 7:263–70 [Google Scholar]
  86. Manuse MJ, Briggs CM, Parks GD. 86.  2010. Replication-independent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 requires TLR7 and autophagy pathways. Virology 405:383–89 [Google Scholar]
  87. Zhou D, Kang KH, Spector SA. 87.  2012. Production of interferon α by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy. J. Infect. Dis. 205:1258–67 [Google Scholar]
  88. Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL. 88.  2013. Autophagy in the human placenta throughout gestation. PLoS ONE 8:e83475 [Google Scholar]
  89. Delorme-Axford E, Bayer A, Sadovsky Y, Coyne CB. 89.  2013. Autophagy as a mechanism of antiviral defense at the maternal-fetal interface. Autophagy 9:2173–74 [Google Scholar]
  90. Signorelli P, Avagliano L, Virgili E, Gagliostro V, Doi P. 90.  et al. 2011. Autophagy in term normal human placentas. Placenta 32:482–85 [Google Scholar]
  91. Saito S, Nakashima A. 91.  2013. The role of autophagy in extravillous trophoblast function under hypoxia. Placenta 34:S79–84 [Google Scholar]
  92. Kalkat M, Garcia J, Ebrahimi J, Melland-Smith M, Todros T. 92.  et al. 2013. Placental autophagy regulation by the BOK-MCL1 rheostat. Autophagy 9:2140–53 [Google Scholar]
  93. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H. 93.  et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032–36 [Google Scholar]
  94. Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H. 94.  et al. 2013. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493679–83
  95. Schiaffino S, Mammucari C, Sandri M. 95.  2008. The role of autophagy in neonatal tissues: just a response to amino acid starvation?. Autophagy 4:727–30 [Google Scholar]
  96. Bildirici I, Longtine MS, Chen B, Nelson DM. 96.  2012. Survival by self-destruction: a role for autophagy in the placenta?. Placenta 33:591–98 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error