1932

Abstract

Despite antiretroviral therapy (ART), people living with human immunodeficiency virus (HIV) (PLWH) continue to experience chronic inflammation and immune dysfunction, which drives the persistence of latent HIV and prevalence of clinical comorbidities. Elucidating the mechanisms that lead to suboptimal immunity is necessary for developing therapeutics that improve the quality of life of PLWH. Although previous studies have found associations between gut dysbiosis and immune dysfunction, the cellular/molecular cascades implicated in the manifestation of aberrant immune responses downstream of microbial perturbations in PLWH are incompletely understood. Recent literature has highlighted that two abundant metabolite families, short-chain fatty acids (SCFAs) and bile acids (BAs), play a crucial role in shaping immunity. These metabolites can be produced and/or modified by bacterial species that make up the gut microbiota and may serve as the causal link between changes to the gut microbiome, chronic inflammation, and immune dysfunction in PLWH. In this review, we discuss our current understanding of the role of the microbiome on HIV acquisition and latent HIV persistence despite ART. Further, we describe cellular/molecular cascades downstream of SCFAs and BAs that drive innate or adaptive immune responses responsible for promoting latent HIV persistence in PLWH. This knowledge can be used to advance HIV cure efforts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-040323-082822
2023-09-29
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-040323-082822.html?itemId=/content/journals/10.1146/annurev-virology-040323-082822&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Volberding P, Deeks S. 2010. Antiretroviral therapy and management of HIV infection. Lancet 376:49–62
    [Google Scholar]
  2. 2.
    Phillips A, Neaton J, Lundgren J. 2008. The role of HIV in serious diseases other than AIDS. AIDS 22:182409
    [Google Scholar]
  3. 3.
    Kelley CF, Kitchen CM, Hunt PW, Rodriguez B, Hecht FM et al. 2009. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin. Infect. Dis. 48:787–94
    [Google Scholar]
  4. 4.
    Massanella M, Fromentin R, Chomont N. 2016. Residual inflammation and viral reservoirs: alliance against an HIV cure. Curr. Opin. HIV AIDS 11:234
    [Google Scholar]
  5. 5.
    Cai C, Sereti I. 2021. Residual immune dysfunction under antiretroviral therapy. Sem. Immunol. 51:101471
    [Google Scholar]
  6. 6.
    Lozupone C, Stombaugh J, Gordon J, Jansson J, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489:220–30
    [Google Scholar]
  7. 7.
    Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103
    [Google Scholar]
  8. 8.
    Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D et al. 2022. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7:135
    [Google Scholar]
  9. 9.
    Pryor R, Martinez-Martinez D, Quintaneiro L, Cabreiro F. 2020. The role of the microbiome in drug response. Annu. Rev. Pharmacol. Toxicol. 60:417–35
    [Google Scholar]
  10. 10.
    Cheu RK, Gustin AT, Lee C, Schifanella L, Miller CJ et al. 2020. Impact of vaginal microbiome communities on HIV antiretroviral-based pre-exposure prophylaxis (PrEP) drug metabolism. PLOS Pathog. 16:e1009024
    [Google Scholar]
  11. 11.
    Libertucci J, Young V. 2019. The role of the microbiota in infectious diseases. Nat. Microbiol. 4:35–45
    [Google Scholar]
  12. 12.
    Koay W, Siems L, Persaud D. 2018. The microbiome and HIV persistence: implications for viral remission and cure. Curr. Opin. HIV AIDS 13:61
    [Google Scholar]
  13. 13.
    Nganou-Makamdop K, Talla A, Sharma AA, Darko S, Ransier A et al. 2021. Translocated microbiome composition determines immunological outcome in treated HIV infection. Cell 184:3899–914
    [Google Scholar]
  14. 14.
    Lavelle A, Sokol H. 2020. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17:223–37
    [Google Scholar]
  15. 15.
    Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. 2019. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int. J. Mol. Sci. 20:1214
    [Google Scholar]
  16. 16.
    Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10:277
    [Google Scholar]
  17. 17.
    Barouch DH, Ghneim K, Bosche WJ, Li Y, Berkemeier B et al. 2016. Rapid inflammasome activation following mucosal SIV infection of rhesus monkeys. Cell 165:656–67
    [Google Scholar]
  18. 18.
    Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR et al. 1998. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280:427–31
    [Google Scholar]
  19. 19.
    Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J et al. 2003. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77:11708–17
    [Google Scholar]
  20. 20.
    Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G et al. 2008. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J. Infect. Dis. 197:714–20
    [Google Scholar]
  21. 21.
    Human Microbiome Proj. Consort 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14
    [Google Scholar]
  22. 22.
    McHardy IH, Li X, Tong M, Ruegger P, Jacobs J et al. 2013. HIV infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome 1:26
    [Google Scholar]
  23. 23.
    Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS et al. 2016. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe 19:311–22
    [Google Scholar]
  24. 24.
    Sortino O, Phanuphak N, Schuetz A, Ortiz AM, Chomchey N et al. 2020. Impact of acute HIV infection and early antiretroviral therapy on the human gut microbiome. Open Forum Infect. Dis. 7:ofz367
    [Google Scholar]
  25. 25.
    Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B et al. 2014. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLOS Pathog. 10:e1003829
    [Google Scholar]
  26. 26.
    Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG et al. 2013. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl. Med. 5:193ra91
    [Google Scholar]
  27. 27.
    Lee SC, Chua LL, Yap SH, Khang TF, Leng CY et al. 2018. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals. Sci. Rep. 8:14277
    [Google Scholar]
  28. 28.
    Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D et al. 2013. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14:329–39
    [Google Scholar]
  29. 29.
    Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z et al. 2014. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 7:983–94
    [Google Scholar]
  30. 30.
    Lu W, Feng Y, Jing F, Han Y, Lyu N et al. 2018. Association between gut microbiota and CD4 recovery in HIV-1 infected patients. Front. Microbiol. 9:1451
    [Google Scholar]
  31. 31.
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB et al. 2019. A new genomic blueprint of the human gut microbiota. Nature 568:499–504
    [Google Scholar]
  32. 32.
    Handley SA, Desai C, Zhao G, Droit L, Monaco CL et al. 2016. SIV infection-mediated changes in gastrointestinal bacterial microbiome and virome are associated with immunodeficiency and prevented by vaccination. Cell Host Microbe 19:323–35
    [Google Scholar]
  33. 33.
    Weiner LD, Retuerto M, Hager CL, El Kamari V, Shan L et al. 2019. Fungal translocation is associated with immune activation and systemic inflammation in treated HIV. AIDS Res. Hum. Retrovir. 35:461–72
    [Google Scholar]
  34. 34.
    Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B et al. 2008. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112:2826–35
    [Google Scholar]
  35. 35.
    Kim CJ, Nazli A, Rojas OL, Chege D, Alidina Z et al. 2012. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol. 5:670–80
    [Google Scholar]
  36. 36.
    Sandler N, Douek D. 2012. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat. Rev. Microbiol. 10:655–66
    [Google Scholar]
  37. 37.
    Klatt NR, Harris LD, Vinton CL, Sung H, Briant JA et al. 2010. Compromised gastrointestinal integrity in pigtail macaques is associated with increased microbial translocation, immune activation, and IL-17 production in the absence of SIV infection. Mucosal Immunol. 3:387–98
    [Google Scholar]
  38. 38.
    Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G et al. 2006. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12:1365–71
    [Google Scholar]
  39. 39.
    Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S et al. 2010. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLOS Pathog. 6:e1001052
    [Google Scholar]
  40. 40.
    Morou A, Brunet-Ratnasingham E, Dubé M, Charlebois R, Mercier E et al. 2019. Altered differentiation is central to HIV-specific CD4+ T cell dysfunction in progressive disease. Nat. Immunol. 20:1059–70
    [Google Scholar]
  41. 41.
    Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K et al. 2009. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J. Infect. Dis. 199:1177–85
    [Google Scholar]
  42. 42.
    Borges ÁH, O'Connor JL, Phillips AN, Rönsholt FF, Pett S et al. 2015. Factors associated with plasma IL-6 levels during HIV infection. J. Infect. Dis. 212:585–95
    [Google Scholar]
  43. 43.
    Ferrari B, Da Silva AC, Liu KH, Saidakova EV, Korolevskaya LB et al. 2022. Gut-derived bacterial toxins impair memory CD4+ T cell mitochondrial function in HIV-1 infection. J. Clin. Invest. 132:e149571
    [Google Scholar]
  44. 44.
    Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA et al. 2009. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15:893–900
    [Google Scholar]
  45. 45.
    Ghneim K, Sharma AA, Ribeiro SP, Fourati S, Ahlers J et al. 2020. Microbiome and Metabolome driven differentiation of TGF-β producing Tregs leads to Senescence and HIV latency. bioRxiv 2020.2012.2015.422949 https://doi.org/10.1101/2020.12.15.422949
    [Crossref]
  46. 46.
    Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG et al. 2015. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine 2:874–83
    [Google Scholar]
  47. 47.
    Kulpa DA, Talla A, Brehm JH, Ribeiro SP, Yuan S et al. 2019. Differentiation into an effector memory phenotype potentiates HIV-1 latency reversal in CD4+ T cells. J. Virol. 93:e00969–19
    [Google Scholar]
  48. 48.
    Corrêa-Oliveira R, Fachi J, Vieira A, Sato F, Vinolo M. 2016. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 5:e73
    [Google Scholar]
  49. 49.
    Godlewska U, Bulanda E, Wypych T. 2022. Bile acids in immunity: bidirectional mediators between the host and the microbiota. Front. Immunol. 13:949033
    [Google Scholar]
  50. 50.
    Collins S, Stine J, Bisanz J, Okafor C, Patterson A. 2022. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21:236–47
    [Google Scholar]
  51. 51.
    Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. 2021. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD?. EBioMedicine 66:103293
    [Google Scholar]
  52. 52.
    Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD et al. 2010. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 285:22082–90
    [Google Scholar]
  53. 53.
    Louis P, Flint H. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett.2941–48
    [Google Scholar]
  54. 54.
    Louis P, Flint H. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19:29–41
    [Google Scholar]
  55. 55.
    Vidali G, Boffa L, Bradbury E, Allfrey V. 1978. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. PNAS 75:2239–43
    [Google Scholar]
  56. 56.
    Candido E, Reeves R, Davie J 1978. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–13
    [Google Scholar]
  57. 57.
    He J, Zhang P, Shen L, Niu L, Tan Y et al. 2020. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 21:6356
    [Google Scholar]
  58. 58.
    Kim C, Park J, Kim M. 2014. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Network 14:277–78
    [Google Scholar]
  59. 59.
    Park J, Kim M, Kang SG, Jannasch AH, Cooper B et al. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8:80–93
    [Google Scholar]
  60. 60.
    Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M et al. 2015. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5:16148
    [Google Scholar]
  61. 61.
    Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L et al. 2003. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312–19
    [Google Scholar]
  62. 62.
    Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP et al. 2009. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69:2826–32
    [Google Scholar]
  63. 63.
    Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A et al. 2013. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. PNAS 110:4410–15
    [Google Scholar]
  64. 64.
    Mirmonsef P, Zariffard MR, Gilbert D, Makinde H, Landay AL et al. 2012. Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with Toll-like receptor ligands. Am. J. Reprod. Immunol. 67:391–400
    [Google Scholar]
  65. 65.
    Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K et al. 2011. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLOS ONE 6:e21205
    [Google Scholar]
  66. 66.
    Vinolo M, Hatanaka E, Lambertucci R, Newsholme P, Curi R. 2009. Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochem. Funct. 27:48–55
    [Google Scholar]
  67. 67.
    Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I et al. 2019. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50:432–45
    [Google Scholar]
  68. 68.
    Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E et al. 2015. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220:1161–69
    [Google Scholar]
  69. 69.
    Chang P, Hao L, Offermanns S, Medzhitov R. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS 111:2247–52
    [Google Scholar]
  70. 70.
    Lührs H, Gerke T, Müller JG, Melcher R, Schauber J et al. 2002. Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37:458–66
    [Google Scholar]
  71. 71.
    Millard AL, Mertes PM, Ittelet D, Villard F, Jeannesson P et al. 2002. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin. Exp. Immunol. 130:245–55
    [Google Scholar]
  72. 72.
    Liu L, Li L, Min J, Wang J, Wu H et al. 2012. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell. Immunol. 277:66–73
    [Google Scholar]
  73. 73.
    Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW et al. 2012. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G1384–92
    [Google Scholar]
  74. 74.
    Kaisar M, Pelgrom L, van der Ham A, Yazdanbakhsh M, Everts B. 2017. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front. Immunol. 8:1429
    [Google Scholar]
  75. 75.
    Nastasi C, Fredholm S, Willerslev-Olsen A, Hansen M, Bonefeld CM et al. 2017. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci. Rep. 7:14516
    [Google Scholar]
  76. 76.
    Yang W, Yu T, Huang X, Bilotta AJ, Xu L et al. 2020. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11:4457
    [Google Scholar]
  77. 77.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73
    [Google Scholar]
  78. 78.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50
    [Google Scholar]
  79. 79.
    Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–55
    [Google Scholar]
  80. 80.
    Fontenot J, Gavin M, Rudensky A. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4:330–36
    [Google Scholar]
  81. 81.
    Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, Jamet A, Ledue F et al. 2018. Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci. Rep. 8:9742
    [Google Scholar]
  82. 82.
    Bailón E, Cueto-Sola M, Utrilla P, Rodríguez-Cabezas ME, Garrido-Mesa N et al. 2010. Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis. Immunobiology 215:863–73
    [Google Scholar]
  83. 83.
    Luu M, Weigand K, Wedi F, Breidenbend C, Leister H et al. 2018. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8:14430
    [Google Scholar]
  84. 84.
    Kim M, Qie Y, Park J, Kim C. 2016. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20:202–14
    [Google Scholar]
  85. 85.
    Sanchez HN, Moroney JB, Gan H, Shen T, Im JL et al. 2020. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat. Commun. 11:60
    [Google Scholar]
  86. 86.
    Konkel J, Chen W. 2011. Balancing acts: the role of TGF-β in the mucosal immune system. Trends Mol. Med. 17:668–76
    [Google Scholar]
  87. 87.
    Van Grevenynghe J, Procopio FA, He Z, Chomont N, Riou C et al. 2008. Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nat. Med. 14:266–74
    [Google Scholar]
  88. 88.
    Kleinman A, Sivanandham R, Pandrea I, Chougnet C, Apetrei C. 2018. Regulatory T cells as potential targets for HIV cure research. Front. Immunol. 9:734
    [Google Scholar]
  89. 89.
    Qing Y, Xie H, Su C, Wang Y, Yu Q et al. 2019. Gut microbiome, short-chain fatty acids, and mucosa injury in young adults with human immunodeficiency virus infection. Dig. Dis. Sci. 64:1830–43
    [Google Scholar]
  90. 90.
    Newman J, Verdin E. 2014. β-Hydroxybutyrate: much more than a metabolite. Diabetes Res. Clin. Pract. 106:173–81
    [Google Scholar]
  91. 91.
    Ash RJ. 1986. Butyrate-induced reversal of herpes simplex virus restriction in neuroblastoma cells. Virology 155:584–92
    [Google Scholar]
  92. 92.
    Chemudupati M, Kenney AD, Smith AC, Fillinger RJ, Zhang L et al. 2020. Butyrate reprograms expression of specific interferon-stimulated genes. J. Virol. 94:e00326–20
    [Google Scholar]
  93. 93.
    Saemundsen A, Kallin B, Klein G. 1980. Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein-Barr virus. Virology 107:557–61
    [Google Scholar]
  94. 94.
    Antunes KH, Stein RT, Franceschina C, da Silva EF, de Freitas DN et al. 2022. Short-chain fatty acid acetate triggers antiviral response mediated by RIG-I in cells from infants with respiratory syncytial virus bronchiolitis. EBioMedicine 77:103891
    [Google Scholar]
  95. 95.
    Antunes KH, Fachi JL, de Paula R, da Silva EF, Pral LP et al. 2019. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 10:3273
    [Google Scholar]
  96. 96.
    Prow NA, Hirata TD, Tang B, Larcher T, Mukhopadhyay P et al. 2019. Exacerbation of chikungunya virus rheumatic immunopathology by a high fiber diet and butyrate. Front. Immunol. 10:2736
    [Google Scholar]
  97. 97.
    Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48:992–1005
    [Google Scholar]
  98. 98.
    Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. 2021. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 101:683–731
    [Google Scholar]
  99. 99.
    Guzior D, Quinn R. 2021. Review: microbial transformations of human bile acids. Microbiome 9:140
    [Google Scholar]
  100. 100.
    Ridlon J, Harris S, Bhowmik S, Kang D, Hylemon P. 2016. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7:22–39
    [Google Scholar]
  101. 101.
    Molinaro A, Wahlström A, Marschall H. 2018. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 29:31–41
    [Google Scholar]
  102. 102.
    Hofmann A. 1999. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 159:2647–58
    [Google Scholar]
  103. 103.
    Schaap F, Trauner M, Jansen P. 2014. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 11:55–67
    [Google Scholar]
  104. 104.
    Ridlon J, Kang D, Hylemon P, Bajaj J. 2014. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30:332
    [Google Scholar]
  105. 105.
    Wan Y, Sheng L. 2018. Regulation of bile acid receptor activity. Liver Res. 2:180–85
    [Google Scholar]
  106. 106.
    Fiorucci S, Biagioli M, Zampella A, Distrutti E. 2018. Bile acids activated receptors regulate innate immunity. Front. Immunol. 9:1853
    [Google Scholar]
  107. 107.
    Daruich A, Picard E, Boatright J, Behar-Cohen F. 2019. The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol. Vis. 25:610
    [Google Scholar]
  108. 108.
    Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM et al. 1999. Identification of a nuclear receptor for bile acids. Science 284:1362–65
    [Google Scholar]
  109. 109.
    Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG et al. 1999. Bile acids: natural ligands for an orphan nuclear receptor. Science 284:1365–68
    [Google Scholar]
  110. 110.
    Wang H, Chen J, Hollister K, Sowers L, Forman B. 1999. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3:543–53
    [Google Scholar]
  111. 111.
    Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H et al. 2002. Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–16
    [Google Scholar]
  112. 112.
    Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI et al. 2001. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. PNAS 98:3369–74
    [Google Scholar]
  113. 113.
    Rose AJ, Díaz MB, Reimann A, Klement J, Walcher T et al. 2011. Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metabol. 14:123–30
    [Google Scholar]
  114. 114.
    Stauffer A, Rochat M, Dick B, Frey F, Odermatt A. 2002. Chenodeoxycholic acid and deoxycholic acid inhibit 11β-hydroxysteroid dehydrogenase type 2 and cause cortisol-induced transcriptional activation of the mineralocorticoid receptor. J. Biol. Chem. 277:26286–92
    [Google Scholar]
  115. 115.
    Guo GL, Lambert G, Negishi M, Ward JM, Brewer HB et al. 2003. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J. Biol. Chem. 278:45062–71
    [Google Scholar]
  116. 116.
    Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H et al. 2002. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298:714–19
    [Google Scholar]
  117. 117.
    Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Häussinger D. 2013. α5β1-Integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 57:1117–29
    [Google Scholar]
  118. 118.
    Nagahashi M, Takabe K, Liu R, Peng K, Wang X et al. 2015. Conjugated bile acid–activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 61:1216–26
    [Google Scholar]
  119. 119.
    Song X, Sun X, Oh SF, Wu M, Zhang Y et al. 2020. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577:410–15
    [Google Scholar]
  120. 120.
    Li W, Hang S, Fang Y, Bae S, Zhang Y et al. 2021. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29:1366–77
    [Google Scholar]
  121. 121.
    Pathak P, Liu H, Boehme S, Xie C, Krausz KW et al. 2017. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J. Biol. Chem. 292:11055–69
    [Google Scholar]
  122. 122.
    Copple B, Li T. 2016. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol. Res. 104:9–21
    [Google Scholar]
  123. 123.
    Lamba V, Yasuda K, Lamba JK, Assem M, Davila J et al. 2004. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicol. Appl. Pharmacol. 199:251–65
    [Google Scholar]
  124. 124.
    Bookout AL, Jeong Y, Downes M, Ruth TY, Evans RM, Mangelsdorf DJ. 2006. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–99
    [Google Scholar]
  125. 125.
    Calmus Y, Guechot J, Podevin P, Bonnefis MT, Giboudeau J, Poupon R. 1992. Differential effects of chenodeoxycholic and ursodeoxycholic acids on interleukin 1, interleukin 6 and tumor necrosis factor–α production by monocytes. Hepatology 16:719–23
    [Google Scholar]
  126. 126.
    Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V et al. 2013. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J. Leukocyte Biol. 94:1253–64
    [Google Scholar]
  127. 127.
    Wammers M, Schupp AK, Bode JG, Ehlting C, Wolf S et al. 2018. Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci. Rep. 8:255
    [Google Scholar]
  128. 128.
    Guo C, Xie S, Chi Z, Zhang J, Liu Y et al. 2016. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45:802–16
    [Google Scholar]
  129. 129.
    Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT et al. 2012. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136:153–62
    [Google Scholar]
  130. 130.
    Allen K, Jaeschke H, Copple B. 2011. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol. 178:175–86
    [Google Scholar]
  131. 131.
    Wang Y, Chen W, Yu D, Forman B, Huang W. 2011. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54:1421–32
    [Google Scholar]
  132. 132.
    Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M et al. 2020. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581:475–79
    [Google Scholar]
  133. 133.
    Hang S, Paik D, Yao L, Kim E, Trinath J et al. 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:143–48
    [Google Scholar]
  134. 134.
    Paik D, Yao L, Zhang Y, Bae S, D'Agostino GD et al. 2022. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603:907–12
    [Google Scholar]
  135. 135.
    Pols TW, Puchner T, Korkmaz HI, Vos M, Soeters MR, de Vries CJ. 2017. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor. PLOS ONE 12:e0176715
    [Google Scholar]
  136. 136.
    Cheng X, Zhou L, Li Z, Shen S, Zhao Y et al. 2022. Gut microbiome and bile acid metabolism induced the activation of CXCR5+ CD4+ T follicular helper cells to participate in neuromyelitis optica spectrum disorder recurrence. Front. Immunol. 13:827865
    [Google Scholar]
  137. 137.
    Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C et al. 2019. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178:1313–28
    [Google Scholar]
  138. 138.
    Liu J, Fei Y, Zhou T, Ji H, Wu J et al. 2021. Bile acids impair vaccine response in children with biliary atresia. Front. Immunol. 12:642546
    [Google Scholar]
  139. 139.
    Mohammed AD, Mohammed Z, Roland MM, Chatzistamou I, Jolly A et al. 2022. Defective humoral immunity disrupts bile acid homeostasis which promotes inflammatory disease of the small bowel. Nat. Commun. 13:525
    [Google Scholar]
  140. 140.
    Scholtes C, Diaz O, Icard V, Kaul A, Bartenschlager R et al. 2008. Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. J. Hepatol. 48:192–99
    [Google Scholar]
  141. 141.
    Patton J, George D, Chang K. 2011. Bile acids promote HCV replication through the EGFR/ERK pathway in replicon-harboring cells. Intervirology 54:339–48
    [Google Scholar]
  142. 142.
    Chhatwal P, Bankwitz D, Gentzsch J, Frentzen A, Schult P et al. 2012. Bile acids specifically increase hepatitis C virus RNA-replication. PLOS ONE 7:e36029
    [Google Scholar]
  143. 143.
    Ramiere C, Scholtes C, Diaz O, Icard V, Perrin-Cocon L et al. 2008. Transactivation of the hepatitis B virus core promoter by the nuclear receptor FXRα. J. Virol. 82:10832–40
    [Google Scholar]
  144. 144.
    Winkler ES, Shrihari S, Hykes BL Jr., Handley SA, Andhey PS et al. 2020. The intestinal microbiome restricts alphavirus infection and dissemination through a bile acid-type I IFN signaling axis. Cell 182:901–18
    [Google Scholar]
  145. 145.
    Hu MM, He WR, Gao P, Yang Q, He K et al. 2019. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res. 29:193–205
    [Google Scholar]
  146. 146.
    Xiong Q, Huang H, Wang N, Chen R, Chen N et al. 2018. Metabolite-sensing G protein coupled receptor TGR5 protects host from viral infection through amplifying type I interferon responses. Front. Immunol. 9:2289
    [Google Scholar]
  147. 147.
    Renga B, Mencarelli A, Cipriani S, D'Amore C, Carino A et al. 2013. The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLOS ONE 8:e54472
    [Google Scholar]
  148. 148.
    Podevin P, Rosmorduc O, Conti F, Calmus Y, Meier PJ, Poupon R. 1999. Bile acids modulate the interferon signalling pathway. Hepatology 29:1840–47
    [Google Scholar]
  149. 149.
    Graf D, Haselow K, Münks I, Bode J, Häussinger D. 2010. Inhibition of interferon-α-induced signaling by hyperosmolarity and hydrophobic bile acids. Biol. Chem. 391:1175–87
    [Google Scholar]
  150. 150.
    Chang K, George D. 2007. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J. Virol. 81:9633–40
    [Google Scholar]
  151. 151.
    Fulcher JA, Li F, Tobin NH, Zabih S, Elliott J et al. 2022. Gut dysbiosis and inflammatory blood markers precede HIV with limited changes after early seroconversion. EBioMedicine 84:104286
    [Google Scholar]
  152. 152.
    Nyström S, Govender M, Yap SH, Kamarulzaman A, Rajasuriar R, Larsson M. 2021. HIV-infected individuals on ART with impaired immune recovery have altered plasma metabolite profiles. Open Forum Infect. Dis. 8:ofab288
    [Google Scholar]
  153. 153.
    McRae M, Rezk NL, Bridges AS, Corbett AH, Tien HC et al. 2010. Plasma bile acid concentrations in patients with human immunodeficiency virus infection receiving protease inhibitor therapy: possible implications for hepatotoxicity. Pharmacotherapy 30:17–24
    [Google Scholar]
  154. 154.
    Mikaeloff F, Gelpi M, Benfeitas R, Knudsen AD, Vestad B et al. 2023. Network-based multi-omics integration reveals metabolic at-risk profile within treated HIV-infection. eLife 12:e82785
    [Google Scholar]
  155. 155.
    Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK et al. 2014. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 511:601–5
    [Google Scholar]
  156. 156.
    Swainson LA, Sharma AA, Ghneim K, Ribeiro SP, Wilkinson P et al. 2022. IFN-α blockade during ART-treated SIV infection lowers tissue vDNA, rescues immune function, and improves overall health. JCI Insight 7:e153046
    [Google Scholar]
  157. 157.
    Brevini T, Maes M, Webb GJ, John BV, Fuchs CD et al. 2022. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 615:134–42
    [Google Scholar]
  158. 158.
    Tabula Sapiens Consort 2022. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376:eabl4896
    [Google Scholar]
  159. 159.
    Missailidis C, Neogi U, Stenvinkel P, Trøseid M, Nowak P, Bergman P. 2018. The microbial metabolite trimethylamine-N-oxide in association with inflammation and microbial dysregulation in three HIV cohorts at various disease stages. AIDS 32:1589–98
    [Google Scholar]
  160. 160.
    Agus A, Clément K, Sokol H. 2021. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70:1174–82
    [Google Scholar]
  161. 161.
    Haissman JM, Haugaard AK, Ostrowski SR, Berge RK, Hov JR et al. 2017. Microbiota-dependent metabolite and cardiovascular disease marker trimethylamine-N-oxide (TMAO) is associated with monocyte activation but not platelet function in untreated HIV infection. BMC Infect. Dis. 17:445
    [Google Scholar]
  162. 162.
    Shan Z, Clish CB, Hua S, Scott JM, Hanna DB et al. 2018. Gut microbial-related choline metabolite trimethylamine-N-oxide is associated with progression of carotid artery atherosclerosis in HIV infection. J. Infect. Dis. 218:1474–79
    [Google Scholar]
  163. 163.
    Więdłocha M, Marcinowicz P, Janoska-Jaździk M, Szulc A. 2021. Gut microbiota, kynurenine pathway and mental disorders—review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 106:110145
    [Google Scholar]
  164. 164.
    Dagenais-Lussier X, Aounallah M, Mehraj V, El-Far M, Tremblay C et al. 2016. Kynurenine reduces memory CD4 T-cell survival by interfering with interleukin-2 signaling early during HIV-1 infection. J. Virol. 90:7967–79
    [Google Scholar]
  165. 165.
    Chen Q, Wu C, Zhu J, Li E, Xu Z. 2022. Therapeutic potential of indole derivatives as anti-HIV agents: a mini-review. Curr. Top. Med. Chem. 22:993–1008
    [Google Scholar]
  166. 166.
    d'Ettorre G, Ceccarelli G, Giustini N, Serafino S, Calantone N et al. 2015. Probiotics reduce inflammation in antiretroviral treated, HIV-infected individuals: results of the “Probio-HIV” clinical trial. PLOS ONE 10:e0137200
    [Google Scholar]
  167. 167.
    Ortiz AM, Simpson J, Langner CA, Baker PJ, Aguilar C et al. 2022. Butyrate administration is not sufficient to improve immune reconstitution in antiretroviral-treated SIV-infected macaques. Sci. Rep. 12:7491
    [Google Scholar]
  168. 168.
    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–8
    [Google Scholar]
/content/journals/10.1146/annurev-virology-040323-082822
Loading
/content/journals/10.1146/annurev-virology-040323-082822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error