1932

Abstract

Bacteriophages or phages—viruses of bacteria—are abundant and considered to be highly diverse. Interestingly, a particular group of lytic –specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in ; notably, this includes ICP1’s CRISPR-Cas system. The ongoing association of ICP1 and in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-072020
2021-09-29
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-072020.html?itemId=/content/journals/10.1146/annurev-virology-091919-072020&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    d'Herelle F, Malone RH. 1927. A preliminary report of work carried out by the cholera bacteriophage enquiry. Ind. Med. Gaz. 62:614–16
    [Google Scholar]
  2. 2. 
    Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:52701910–13
    [Google Scholar]
  3. 3. 
    Faruque SM, Naser IB, Islam MJ, Faruque ASG, Ghosh AN et al. 2005a. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. PNAS 102:51702–7
    [Google Scholar]
  4. 4. 
    Faruque SM, Islam MJ, Ahmad QS, Faruque ASG, Sack DA et al. 2005b. Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. PNAS 102:176119–24
    [Google Scholar]
  5. 5. 
    Basu S, Mukerjee S. 1968. Bacteriophage typing of Vibrio eltor. Experientia 24:299–300
    [Google Scholar]
  6. 6. 
    Yen M, Cairns LS, Camilli A. 2017. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat. Commun. 8:14187
    [Google Scholar]
  7. 7. 
    Weil AA, LaRocque RC 2020. Cholera and other vibrios. Hunter's Tropical Medicine and Emerging Infectious Diseases ET Ryan, DR Hill, T Solomon, TP Endy, N Aronson 448–53 Edinburgh, Scotl: Elsevier, 9th ed..
    [Google Scholar]
  8. 8. 
    Chiang SL, Mekalanos JJ. 1998. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27:4797–805
    [Google Scholar]
  9. 9. 
    Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A. 2013. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLOS Pathog 9:12e1003800
    [Google Scholar]
  10. 10. 
    Seed KD, Bodi KL, Kropinski AM. 2011. Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. mBio 2:1e00334-10
    [Google Scholar]
  11. 11. 
    Seed KD, Lazinski DW, Calderwood SB, Camilli A. 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:7438489–91
    [Google Scholar]
  12. 12. 
    Angermeyer A, Das MM, Singh DV, Seed KD. 2018. Analysis of 19 highly conserved Vibrio cholerae bacteriophages isolated from environmental and patient sources over a twelve-year period. Viruses 10:6299
    [Google Scholar]
  13. 13. 
    McKitterick AC, LeGault KN, Angermeyer A, Alam M, Seed KD. 2019. Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race. Philos. Trans. R. Soc. B 374: 1772.20180089
    [Google Scholar]
  14. 14. 
    McKitterick AC, Hays SG, Johura FT, Alam M, Seed KD. 2019. Viral satellites exploit phage proteins to escape degradation of the bacterial host chromosome. Cell Host Microbe 26:4504–14.e4
    [Google Scholar]
  15. 15. 
    LeGault KN, Hays SG, Angermeyer A, McKitterick AC, Johura F et al. 2021. Temporal shifts in antibiotic resistance elements govern virus-pathogen conflicts. Science 373:eabg2166
    [Google Scholar]
  16. 16. 
    Chattopadhyay DJ, Sarkar BL, Ansari MQ, Chakrabarti BK, Roy MK et al. 1993. New phage typing scheme for Vibrio cholerae O1 biotype El Tor strains. J. Clin. Microbiol. 31:61579–85
    [Google Scholar]
  17. 17. 
    Nelson EJ, Grembi JA, Chao DL, Andrews JR, Alexandrova L et al. 2020. Gold-standard diagnostics are tarnished by lytic bacteriophage and antibiotics. J. Clin. Microbiol. 58:9e00412-20
    [Google Scholar]
  18. 18. 
    Dion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18:3125–38
    [Google Scholar]
  19. 19. 
    Box AM, McGuffie MJ, O'Hara BJ, Seed KD 2016. Functional analysis of bacteriophage immunity through a type I-E CRISPR-Cas system in Vibrio cholerae and its application in bacteriophage genome engineering. J. Bacteriol. 198:3578–90
    [Google Scholar]
  20. 20. 
    Netter Z, Boyd CM, Silvas TV, Seed KD. 2021. A phage satellite tunes inducing phage gene expression using a domesticated endonuclease to balance inhibition and virion hijacking. Nucleic Acids Res 49:4386401
    [Google Scholar]
  21. 21. 
    Barth ZK, Silvas TV, Angermeyer A, Seed KD. 2019. Genome replication dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral restriction. Nucleic Acids Res 48:1249–63
    [Google Scholar]
  22. 22. 
    Barth ZK, Netter Z, Angermeyer A, Bhardwaj P, Seed KD. 2020. A family of viral satellites manipulates invading virus gene expression and affects cholera toxin mobilization. mSystems 5:5e00358-20
    [Google Scholar]
  23. 23. 
    O'Hara BJ, Barth ZK, McKitterick AC, Seed KD. 2017. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLOS Genet 13:6e1006838
    [Google Scholar]
  24. 24. 
    Hinton DM. 2010. Transcriptional control in the prereplicative phase of T4 development. Virol. J. 7:e1006838
    [Google Scholar]
  25. 25. 
    Hercules K, Munro JL, Mendelsohn S, Wiberg JS. 1971. Mutants in a nonessential gene of bacteriophage T4 which are defective in the degradation of Escherichia coli deoxyribonucleic acid. J. Virol. 7:195–105
    [Google Scholar]
  26. 26. 
    Das S, Ghosh AN. 2018. Preliminary characterization of El Tor vibriophage M4. Intervirology 60:4149–55
    [Google Scholar]
  27. 27. 
    Das S, Dutta M, Sen A, Ghosh AN. 2019. Structural analysis and proteomics studies on the Myoviridae vibriophage M4. Arch. Virol. 164:2523–34
    [Google Scholar]
  28. 28. 
    Casjens S, Hendrix R 1988. Control mechanisms in dsDNA bacteriophage assembly. The Bacteriophages R Calendar 15–91 New York: Plenum
    [Google Scholar]
  29. 29. 
    Arisaka F, Yap ML, Kanamaru S, Rossmann MG. 2016. Molecular assembly and structure of the bacteriophage T4 tail. Biophys. Rev. 8:4385–96
    [Google Scholar]
  30. 30. 
    Mahony J, Alqarni M, Stockdale S, Spinelli S, Feyereisen M et al. 2016. Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Sci. Rep. 6:36667
    [Google Scholar]
  31. 31. 
    Dokland T. 1999. Scaffolding proteins and their role in viral assembly. Cell. Mol. Life Sci. 56:7–8580–603
    [Google Scholar]
  32. 32. 
    Dedeo CL, Cingolani G, Teschke CM. 2019. Portal protein: the orchestrator of capsid assembly for the dsDNA tailed bacteriophages and herpesviruses. Annu. Rev. Virol. 6:141–60
    [Google Scholar]
  33. 33. 
    Black LW. 2015. Old, new, and widely true: the bacteriophage T4 DNA packaging mechanism. Virology 479:650–56
    [Google Scholar]
  34. 34. 
    Fokine A, Rossmann MG. 2016. Common evolutionary origin of procapsid proteases, phage tail tubes, and tubes of bacterial type VI secretion systems. Structure 24:111928–35
    [Google Scholar]
  35. 35. 
    Ray K, Oram M, Ma J, Black LW 2009. Portal control of viral prohead expansion and DNA packaging. Virology 391:144–50
    [Google Scholar]
  36. 36. 
    Lokareddy RK, Sankhala RS, Roy A, Afonine PV, Motwani T et al. 2017. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat. Commun. 8:14310
    [Google Scholar]
  37. 37. 
    Dedeo CL, Teschke CM, Alexandrescu AT. 2020. Keeping it together : structures, functions, and applications of viral decoration proteins. Viruses 12:106–9
    [Google Scholar]
  38. 38. 
    Lo Piano A, Martínez-Jiménez MI, Zecchi L, Ayora S. 2011. Recombination-dependent concatemeric viral DNA replication. Virus Res 160:1–21–14
    [Google Scholar]
  39. 39. 
    Cahill J, Young R. 2019. Phage lysis: multiple genes for multiple barriers. Adv. Virus Res. 103:33–70
    [Google Scholar]
  40. 40. 
    Young R. 2014. Phage lysis: three steps, three choices, one outcome. J. Microbiol. 52:3243–58
    [Google Scholar]
  41. 41. 
    Hays SG, Seed KD 2020. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 9:e53200
    [Google Scholar]
  42. 42. 
    Barth ZK, Nguyen MHT, Seed KD. 2021. A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence specific immunity against subviral parasites. eLife 10:e68339
    [Google Scholar]
  43. 43. 
    Bellas CM, Schroeder DC, Edwards A, Barker G, Anesio AM. 2020. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 11:4403
    [Google Scholar]
  44. 44. 
    Stoddard BL. 2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:17–15
    [Google Scholar]
  45. 45. 
    Edgell DR, Gibb EA, Belfort M. 2010. Mobile DNA elements in T4 and related phages. Virol. J. 7:290
    [Google Scholar]
  46. 46. 
    Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. 2010. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol. J. 7:292
    [Google Scholar]
  47. 47. 
    Formosa T, Alberts BM. 1986. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47:5793–806
    [Google Scholar]
  48. 48. 
    Gogarten JP, Hilario E 2006. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol. Biol. 6:94
    [Google Scholar]
  49. 49. 
    Wu B, Hao W. 2019. Mitochondrial-encoded endonucleases drive recombination of protein-coding genes in yeast. Environ. Microbiol. 21:114233–40
    [Google Scholar]
  50. 50. 
    Dwivedi B, Xue B, Lundin D, Edwards RA, Breitbart M. 2013. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol. Biol. 13:3333
    [Google Scholar]
  51. 51. 
    Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. 2017. ViPTree: the viral proteomic tree server. Bioinformatics 33:152379–80
    [Google Scholar]
  52. 52. 
    Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. 2003. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev 67:186–156
    [Google Scholar]
  53. 53. 
    Senčilo A, Luhtanen AM, Saarijärvi M, Bamford DH, Roine E. 2015. Cold-active bacteriophages from the Baltic Sea ice have diverse genomes and virus–host interactions. Environ. Microbiol. 17:103628–41
    [Google Scholar]
  54. 54. 
    Ramphul C, Casareto BE, Dohra H, Suzuki T, Yoshimatsu K et al. 2017. Genome analysis of three novel lytic Vibrio coralliilyticus phages isolated from seawater, Okinawa, Japan. Mar. Genom. 35:69–75
    [Google Scholar]
  55. 55. 
    Kauffman KM, Brown JM, Sharma RS, VanInsberghe D, Elsherbini J et al. 2018. Viruses of the Nahant Collection, characterization of 251 marine Vibrionaceae viruses. Sci. Data 5:180114
    [Google Scholar]
  56. 56. 
    Gao L, Altae-Tran H, Böhning F, Makarova KS, Segel M et al. 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369:65071077–84
    [Google Scholar]
  57. 57. 
    Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S et al. 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3:90–98
    [Google Scholar]
  58. 58. 
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:6379eaar4120
    [Google Scholar]
  59. 59. 
    Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M et al. 2020. Bacterial retrons function in anti-phage defense. Cell 183:1551–61
    [Google Scholar]
  60. 60. 
    Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y et al. 2019. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574:7780691–95
    [Google Scholar]
  61. 61. 
    Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. 2012. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLOS Pathog 8:9e1002917
    [Google Scholar]
  62. 62. 
    Reyes-Robles T, Dillard RS, Cairns LS, Silva-Valenzuela CA, Housman M et al. 2018. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol. 200:15e00792-17
    [Google Scholar]
  63. 63. 
    Zingl FG, Kohl P, Cakar F, Leitner DR, Mitterer F et al. 2020. Outer membrane vesiculation facilitates surface exchange and in vivo adaptation of Vibrio cholerae. Cell Host Microbe 27:2225–37.e8
    [Google Scholar]
  64. 64. 
    Waldor MK, Tschäpe H, Mekalanos JJ. 1996. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178:144157–65
    [Google Scholar]
  65. 65. 
    McKitterick AC, Seed KD. 2018. Anti-phage islands force their target phage to directly mediate island excision and spread. Nat. Commun. 9:2348
    [Google Scholar]
  66. 66. 
    Penadés JR, Christie GE. 2015. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. Annu. Rev. Virol. 2:181–201
    [Google Scholar]
  67. 67. 
    Dziewit L, Radlinska M. 2016. Two inducible prophages of an antarctic Pseudomonas sp. ANT-H14 use the same capsid for packaging their genomes—characterization of a novel phage helper-satellite system. PLOS ONE 11:7e0158889
    [Google Scholar]
  68. 68. 
    Fischer MG, Hackl T. 2016. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540:7632288–91
    [Google Scholar]
  69. 69. 
    Fillol-Salom A, Martínez-Rubio R, Abdulrahman RF, Chen J, Davies R, Penadés JR. 2018. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J 12:92114–28
    [Google Scholar]
  70. 70. 
    Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G et al. 2017. Phage-inducible islands in the Gram-positive cocci. ISME J 11:41029–42
    [Google Scholar]
  71. 71. 
    Isaev A, Drobiazko A, Sierro N, Gordeeva J, Qimron U et al. 2020. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Res 48:5397–406
    [Google Scholar]
  72. 72. 
    Makarova KS, Koonin EV. 2015. Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 1311:45–75
    [Google Scholar]
  73. 73. 
    Faure G, Shmakov SA, Yan WX, Cheng DR, Scott DA et al. 2019. CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nat. Rev. Microbiol. 17:8513–25
    [Google Scholar]
  74. 74. 
    Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P et al. 2020. Clades of huge phages from across Earth's ecosystems. Nature 578:7795425–31
    [Google Scholar]
  75. 75. 
    Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z et al. 2020. CRISPR-Cas ϕ from huge phages is a hypercompact genome editor. Science 369:6501333–37
    [Google Scholar]
  76. 76. 
    Zahid SHM, Nashir Udden SM, Faruque ASG, Calderwood SB, Mekalanos JJ, Faruque SM. 2008. Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect. Immun. 76:115266–73
    [Google Scholar]
  77. 77. 
    Nelson EJ, Chowdhury A, Flynn J, Schild S, Bourassa L et al. 2008. Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLOS Pathog 4:10e1000187
    [Google Scholar]
  78. 78. 
    Pasricha CL, De Monte AJ, Gupta SK. 1931. Seasonal variations of cholera bacteriophage in natural waters and in man, in Calcutta during the year 1930. Ind. Med. Gaz. 66:543–46
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-072020
Loading
/content/journals/10.1146/annurev-virology-091919-072020
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error