1932

Abstract

Bacteriophages and bacterial biofilms are widely present in natural environments, a fact that has accelerated the evolution of phages and their bacterial hosts in these particular niches. Phage-host interactions in biofilm communities are rather complex, where phages are not always merely predators but also can establish symbiotic relationships that induce and strengthen biofilms. In this review we provide an overview of the main features affecting phage-biofilm interactions as well as the currently available methods of studying these interactions. In addition, we address the applications of phages for biofilm control in different contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-074222
2021-09-29
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-074222.html?itemId=/content/journals/10.1146/annurev-virology-091919-074222&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Flemming H-C, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17:4247–60
    [Google Scholar]
  2. 2. 
    Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:295–108
    [Google Scholar]
  3. 3. 
    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:9563–75
    [Google Scholar]
  4. 4. 
    Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF 1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. PNAS 96:52192–97
    [Google Scholar]
  5. 5. 
    Mushegian AR. 2020. Are there 1031 virus particles on Earth, or more, or fewer?. J. Bacteriol. 202:92192–97
    [Google Scholar]
  6. 6. 
    Pires D, Melo LDR, Vilas Boas D, Sillankorva S, Azeredo J 2017. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 39:48–56
    [Google Scholar]
  7. 7. 
    Clokie MR, Millard AD, Letarov AV, Heaphy S. 2011. Phages in nature. Bacteriophage 1:131–45
    [Google Scholar]
  8. 8. 
    Koskella B, Brockhurst MA. 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38:5916–31
    [Google Scholar]
  9. 9. 
    Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. 2016. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 100:52141–51
    [Google Scholar]
  10. 10. 
    Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:5317–27
    [Google Scholar]
  11. 11. 
    Stern A, Sorek R. 2011. The phage-host arms race: shaping the evolution of microbes. Bioessays 33:143–51
    [Google Scholar]
  12. 12. 
    Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature 577:7790327–36
    [Google Scholar]
  13. 13. 
    Obeng N, Pratama AA, van Elsas JD. 2016. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24:6440–49
    [Google Scholar]
  14. 14. 
    Sutherland IW, Hughes KA, Skillman LC, Tait K. 2004. The interaction of phage and biofilms. FEMS Microbiol. Lett. 232:11–6
    [Google Scholar]
  15. 15. 
    Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8:9623–33
    [Google Scholar]
  16. 16. 
    Dunsing V, Irmscher T, Barbirz S, Chiantia S. 2019. Purely polysaccharide-based biofilm matrix provides size-selective diffusion barriers for nanoparticles and bacteriophages. Biomacromolecules 20:103842–54
    [Google Scholar]
  17. 17. 
    González S, Fernández L, Gutiérrez D, Campelo AB, Rodríguez A, García P. 2018. Analysis of different parameters affecting diffusion, propagation and survival of staphylophages in bacterial biofilms. Front. Microbiol 9:2348
    [Google Scholar]
  18. 18. 
    Manning AJ, Kuehn MJ. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11:1258
    [Google Scholar]
  19. 19. 
    Reyes-Robles T, Dillard RS, Cairns LS, Silva-Valenzuela CA, Housman M et al. 2018. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol. 200:15e00792-17
    [Google Scholar]
  20. 20. 
    Melo LDR, Pinto G, Oliveira F, Vilas-Boas D, Almeida C et al. 2020. The protective effect of Staphylococcus epidermidis biofilm matrix against phage predation. Viruses 12:101076
    [Google Scholar]
  21. 21. 
    Hansen MF, Svenningsen SL, Røder HL, Middelboe M, Burmølle M. 2019. Big impact of the tiny: bacteriophage–bacteria interactions in biofilms. Trends Microbiol. 27:9739–52
    [Google Scholar]
  22. 22. 
    Taylor BP, Penington CJ, Weitz JS. 2017. Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts. Phys. Biol. 13:6066014
    [Google Scholar]
  23. 23. 
    Łoś M, Golec P, Łoś JM, Weglewska-Jurkiewicz A, Czyz A et al. 2007. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol 7:13
    [Google Scholar]
  24. 24. 
    Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM. 2016. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front. Microbiol. 7:1391
    [Google Scholar]
  25. 25. 
    Melo LDR, França A, Brandão A, Sillankorva S, Cerca N, Azeredo J. 2018. Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiol. Ecol. 94:10fiy143
    [Google Scholar]
  26. 26. 
    Tkhilaishvili T, Lombardi L, Klatt AB, Trampuz A, Di Luca M. 2018. Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int. J. Antimicrob. Agents 52:6842–53
    [Google Scholar]
  27. 27. 
    Elias S, Banin E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36:5990–1004
    [Google Scholar]
  28. 28. 
    Testa S, Berger S, Piccardi P, Oechslin F, Resch G, Mitri S. 2019. Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa. Commun. Biol. 2:1405
    [Google Scholar]
  29. 29. 
    Knecht LE, Veljkovic M, Fieseler L. 2020. Diversity and function of phage encoded depolymerases. Front. Microbiol. 10:2949
    [Google Scholar]
  30. 30. 
    Hughes KA, Sutherland IW, Jones MV. 1998. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–47
    [Google Scholar]
  31. 31. 
    Cornelissen A, Ceyssens P-J, Krylov VN, Noben J-P, Volckaert G, Lavigne R. 2012. Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology 434:2251–56
    [Google Scholar]
  32. 32. 
    Gutiérrez D, Briers Y, Rodríguez-Rubio L, Martínez B, Rodríguez A et al. 2015. Role of the pre-neck appendage protein (Dpo7) from phage vB_SepiS-phiIPLA7 as an anti-biofilm agent in staphylococcal species. Front. Microbiol. 6:1315
    [Google Scholar]
  33. 33. 
    Wu Y, Wang R, Xu M, Liu Y, Zhu X et al. 2019. A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front. Microbiol. 10:2768
    [Google Scholar]
  34. 34. 
    Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:101147–71
    [Google Scholar]
  35. 35. 
    Olsen NMC, Thiran E, Hasler T, Vanzieleghem T, Belibasakis GN et al. 2018. Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses 10:8438
    [Google Scholar]
  36. 36. 
    Vilas Boas D, Almeida C, Sillankorva S, Nicolau A, Azeredo J, Azevedo NF 2016. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling 32:2179–90
    [Google Scholar]
  37. 37. 
    Lacqua A, Wanner O, Colangelo T, Martinotti MG, Landini P. 2006. Emergence of biofilm-forming subpopulations upon exposure of Escherichia coli to environmental bacteriophages. Appl. Environ. Microbiol. 72:956–59
    [Google Scholar]
  38. 38. 
    Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. 2010. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54:1397–404
    [Google Scholar]
  39. 39. 
    Le S, Yao X, Lu S, Tan Y, Rao X et al. 2014. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Sci. Rep. 4:4738
    [Google Scholar]
  40. 40. 
    Hosseinidoust Z, Tufenkji N, van de Ven TGM. 2013. Predation in homogeneous and heterogeneous phage environments affects virulence determinants of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 79:2862–71
    [Google Scholar]
  41. 41. 
    Pires DP, Dötsch A, Anderson EM, Hao Y, Khursigara CM et al. 2017. A genotypic analysis of five P. aeruginosa strains after biofilm infection by phages targeting different cell surface receptors. Front. Microbiol. 8:1229
    [Google Scholar]
  42. 42. 
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  43. 43. 
    Ng W-L, Bassler BL. 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43:197–222
    [Google Scholar]
  44. 44. 
    Fernández L, Rodríguez A, García P. 2018. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 12:51171–79
    [Google Scholar]
  45. 45. 
    Moreau P, Diggle SP, Friman VP. 2017. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages. Ecol. Evol. 7:61936–41
    [Google Scholar]
  46. 46. 
    Sakuragi Y, Kolter R. 2007. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J. Bacteriol. 189:145383–86
    [Google Scholar]
  47. 47. 
    Parsek MR, Greenberg EP. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13:27–33
    [Google Scholar]
  48. 48. 
    Høyland-Kroghsbo NM, Maerkedahl RB, Svenningsen SL. 2013. A quorum-sensing-induced bacteriophage defense mechanism. mBio 4:1e00362-12
    [Google Scholar]
  49. 49. 
    Tan D, Svenningsen SL, Middelboe M. 2015. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum. mBio 6:3e00627-15
    [Google Scholar]
  50. 50. 
    Qin X, Sun Q, Yang B, Pan X, He Y, Yang H. 2017. Quorum sensing influences phage infection efficiency via affecting cell population and physiological state. J. Basic Microbiol. 57:2162–70
    [Google Scholar]
  51. 51. 
    Høyland-Kroghsbo NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E et al. 2017. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. PNAS 114:1131–35
    [Google Scholar]
  52. 52. 
    Patterson AG, Jackson SA, Taylor C, Evans GB, Salmond GPC et al. 2016. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol. Cell 64:61102–8
    [Google Scholar]
  53. 53. 
    Deveau H, Garneau JE, Moineau S. 2010. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64:475–93
    [Google Scholar]
  54. 54. 
    Seed KD. 2015. Battling phages: how bacteria defend against viral attack. PLOS Pathog 11:6e1004847
    [Google Scholar]
  55. 55. 
    Rostøl JT, Marraffini L. 2019. Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25:2184–94
    [Google Scholar]
  56. 56. 
    Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA et al. 2016. Lytic to temperate switching of viral communities. Nature 531:7595466–70
    [Google Scholar]
  57. 57. 
    Simmons EL, Bond MC, Koskella B, Drescher K, Bucci V, Nadell CD. 2020. Biofilm structure promotes coexistence of phage-resistant and phage-susceptible bacteria. mSystems 5:3e00877-19
    [Google Scholar]
  58. 58. 
    Hosseinidoust Z, Tufenkji N, van de Ven TGM. 2013. Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling 29:4457–68
    [Google Scholar]
  59. 59. 
    Henriksen K, Rørbo N, Rybtke ML, Martinet MG, Tolker-Nielsen T et al. 2019. P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage–ciprofloxacin combination: monitoring the phage–P. aeruginosa biofilms interactions. Pathog. Dis. 77:2ftz011
    [Google Scholar]
  60. 60. 
    Tan D, Dahl A, Middelboe M. 2015. Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains. Appl. Environ. Microbiol. 81:134489–97
    [Google Scholar]
  61. 61. 
    Fernández L, González S, Campelo AB, Martínez B, Rodríguez A, García P. 2017. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci. Rep. 7:40965
    [Google Scholar]
  62. 62. 
    Carrolo M, Frias MJ, Pinto FR, Melo-Cristino J, Ramirez M. 2010. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae. PLOS ONE 5:12e15678
    [Google Scholar]
  63. 63. 
    Okshevsky M, Meyer RL. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 41:3341–52
    [Google Scholar]
  64. 64. 
    Gödeke J, Paul K, Lassak J, Thormann KM. 2011. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J 5:4613–26
    [Google Scholar]
  65. 65. 
    Shen M, Yang Y, Shen W, Cen L, McLean JS et al. 2018. A linear plasmid-like prophage of Actinomyces odontolyticus promotes biofilm assembly. Appl. Environ. Microbiol. 84:17e01263-18
    [Google Scholar]
  66. 66. 
    Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J et al. 2009. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–82
    [Google Scholar]
  67. 67. 
    Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D et al. 2015. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe 18:5549–59
    [Google Scholar]
  68. 68. 
    Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr., Hatfull GF. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:5861–73
    [Google Scholar]
  69. 69. 
    Rossmann FS, Racek T, Wobser D, Puchalka J, Rabener EM et al. 2015. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLOS Pathog 11:e1004653
    [Google Scholar]
  70. 70. 
    Tan D, Hansen MF, de Carvalho LN, Røder HL, Burmølle M et al. 2020. High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. ISME J 14:71731–42
    [Google Scholar]
  71. 71. 
    Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O'Toole GA. 2009. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. . J. Bacteriol. 91:1210–19
    [Google Scholar]
  72. 72. 
    Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T et al. 2017. Critical review on biofilm methods. Crit. Rev. Microbiol. 43:3313–51
    [Google Scholar]
  73. 73. 
    Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P. 2008. Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl. Environ. Microbiol. 74:144491–97
    [Google Scholar]
  74. 74. 
    Yang J, Cheng S, Li C, Sun Y, Huang H. 2019. Shear stress affects biofilm structure and consequently current generation of bioanode in microbial electrochemical systems (MESs). Front. Microbiol. 10:398
    [Google Scholar]
  75. 75. 
    Jones SM, Yerly J, Hu Y, Ceri H, Martinuzzi R. 2007. Structure of Proteus mirabilis biofilms grown in artificial urine and standard laboratory media. FEMS Microbiol. Lett. 268:116–21
    [Google Scholar]
  76. 76. 
    Melo LDR, Ferreira R, Costa AR, Oliveira H, Azeredo J. 2019. Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci. Rep. 9:16643
    [Google Scholar]
  77. 77. 
    Lehman SM, Donlan RM. 2015. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob. Agents Chemother. 59:21127–37
    [Google Scholar]
  78. 78. 
    Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C et al. 2016. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front. Microbiol. 7:1024
    [Google Scholar]
  79. 79. 
    Lebeaux D, Chauhan A, Rendueles O, Beloin C. 2013. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:2288–356
    [Google Scholar]
  80. 80. 
    Alves DR, Booth SP, Scavone P, Schellenberger P, Salvage J et al. 2018. Development of a high-throughput ex-vivo burn wound model using porcine skin, and its application to evaluate new approaches to control wound infection. Front. Cell. Infect. Microbiol. 8:196
    [Google Scholar]
  81. 81. 
    Milho C, Andrade M, Vilas Boas D, Alves D, Sillankorva S 2019. Antimicrobial assessment of phage therapy using a porcine model of biofilm infection. Int. J. Pharm. 557:112–23
    [Google Scholar]
  82. 82. 
    Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. 2020. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit. Rev. Microbiol. 46:78–99
    [Google Scholar]
  83. 83. 
    Bjarnsholt T. 2013. The role of bacterial biofilms in chronic infections. APMIS 121:s1361–51
    [Google Scholar]
  84. 84. 
    Ayrapetyan M, Williams T, Oliver JD 2018. Relationship between the viable but nonculturable state and antibiotic persister cells. J. Bacteriol. 200:20e00249-18
    [Google Scholar]
  85. 85. 
    Freitas AI, Vasconcelos C, Vilanova M, Cerca N. 2014. Optimization of an automatic counting system for the quantification of Staphylococcus epidermidis cells in biofilms. J. Basic Microbiol. 54:7750–57
    [Google Scholar]
  86. 86. 
    Klein MI, Scott-Anne KM, Gregoire S, Rosalen PL, Koo H 2012. Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries. Mol. Oral Microbiol. 27:5350–61
    [Google Scholar]
  87. 87. 
    Magin V, Garrec N, Andrés Y. 2019. Selection of bacteriophages to control in vitro 24 h old biofilm of Pseudomonas aeruginosa isolated from drinking and thermal water. Viruses 11:8749
    [Google Scholar]
  88. 88. 
    Cerca F, Trigo G, Correia A, Cerca N, Azeredo J, Vilanova M. 2011. SYBR green as a fluorescent probe to evaluate the biofilm physiological state of Staphylococcus epidermidis, using flow cytometry. Can. J. Microbiol. 57:10850–56
    [Google Scholar]
  89. 89. 
    Pires DP, Melo LDR 2018. In vitro activity of bacteriophages against planktonic and biofilm populations assessed by flow cytometry. Bacteriophage Therapy J Azeredo, S Sillankorva 33–41 New York: Humana
    [Google Scholar]
  90. 90. 
    Sillankorva S, Neubauer P, Azeredo J. 2008. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8:79
    [Google Scholar]
  91. 91. 
    Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, García P, Ruas-Madiedo P. 2016. Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PLOS ONE 11:10e0163966
    [Google Scholar]
  92. 92. 
    Guła G, Szymanowska P, Piasecki T, Góras S, Gotszalk T, Drulis-Kawa Z. 2020. The application of impedance spectroscopy for Pseudomonas biofilm monitoring during phage infection. Viruses 12:4407
    [Google Scholar]
  93. 93. 
    Al-Zubidi M, Widziolek M, Court EK, Gains AF, Smith RE et al. 2019. Identification of novel bacteriophages with therapeutic potential that target Enterococcus faecalis. Infect. Immun. 87:11e00512-19
    [Google Scholar]
  94. 94. 
    Lewis R, Clooney AG, Stockdale SR, Buttimer C, Draper LA et al. 2020. Isolation of a novel jumbo bacteriophage effective against Klebsiella aerogenes. Front. Med. 7:67
    [Google Scholar]
  95. 95. 
    Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K. 2017. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat. Microbiol. 3:126–31
    [Google Scholar]
  96. 96. 
    Tkhilaishvili T, Wang L, Perka C, Trampuz A, Gonzalez Moreno M 2020. Using bacteriophages as a Trojan horse to the killing of dual-species biofilm formed by Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus. Front. Microbiol. 11:695
    [Google Scholar]
  97. 97. 
    Dubrovin EV, Popova AV, Kraevskiy SV, Ignatov SG, Ignatyuk TE et al. 2012. Atomic force microscopy analysis of the Acinetobacter baumannii bacteriophage AP22 lytic cycle. PLOS ONE 7:10e47348
    [Google Scholar]
  98. 98. 
    Rooney LM, Amos WB, Hoskisson PA, McConnell G. 2020. Intra-colony channels in E. coli function as a nutrient uptake system. ISME J 14:102461–73
    [Google Scholar]
  99. 99. 
    Akturk E, Oliveira H, Santos SB, Costa S, Kuyumcu S et al. 2019. Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics 8:3103
    [Google Scholar]
  100. 100. 
    Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N et al. 2013. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15:82306–18
    [Google Scholar]
  101. 101. 
    Heilmann S, Sneppen K, Krishna S 2012. Coexistence of phage and bacteria on the boundary of self-organized refuges. PNAS 109:3112828–33
    [Google Scholar]
  102. 102. 
    Li X, Gonzalez F, Esteves N, Scharf BE, Chen J. 2020. Formation of phage lysis patterns and implications on co-propagation of phages and motile host bacteria. PLOS Comput. Biol. 16:3e1007236
    [Google Scholar]
  103. 103. 
    Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, Kuehn S. 2020. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J 14:82007–18
    [Google Scholar]
  104. 104. 
    Eriksen RS, Svenningsen SL, Sneppen K, Mitarai N. 2017. A growing microcolony can survive and support persistent propagation of virulent phages. PNAS 115:2337–42
    [Google Scholar]
  105. 105. 
    Simmons M, Drescher K, Nadell CD, Bucci V. 2018. Phage mobility is a core determinant of phage-bacteria coexistence in biofilms. ISME J 12:2532–43
    [Google Scholar]
  106. 106. 
    Fernández L, Gutiérrez D, García P, Rodríguez A. 2021. Environmental pH is a key modulator of Staphylococcus aureus biofilm development under predation by the virulent phage phiIPLA-RODI. ISME J 15:1245–59
    [Google Scholar]
  107. 107. 
    Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S et al. 2021. Quantitative image analysis of microbial communities with BiofilmQ. Nat. Microbiol. 6:2151–56
    [Google Scholar]
  108. 108. 
    Lebeaux D, Ghigo J-M, Beloin C. 2014. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78:3510–43
    [Google Scholar]
  109. 109. 
    Tan D, Zhang Y, Cheng M, Le S, Gu J et al. 2019. Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses 11:111080
    [Google Scholar]
  110. 110. 
    Oechslin F. 2018. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10:7351
    [Google Scholar]
  111. 111. 
    Olszak T, Danis-Wlodarczyk K, Arabski M, Gula G, Maciejewska B et al. 2019. Pseudomonas aeruginosa PA5oct jumbo phage impacts planktonic and biofilm population and reduces its host virulence. Viruses 11:121089
    [Google Scholar]
  112. 112. 
    Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Future Microbiol 8:6769–83
    [Google Scholar]
  113. 113. 
    Morris JL, Letson HL, Elliott L, Grant AL, Wilkinson M et al. 2019. Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus. PLOS ONE 14:12e0226574
    [Google Scholar]
  114. 114. 
    Verma V, Harjai K, Chhibber S. 2009. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J. Antimicrob. Chemother. 64:61212–18
    [Google Scholar]
  115. 115. 
    Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG et al. 2020. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. PNAS 117:2111207–16
    [Google Scholar]
  116. 116. 
    Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z et al. 2013. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast. Reconstr. Surg. 131:225–34
    [Google Scholar]
  117. 117. 
    Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. 2019. Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses 11:118
    [Google Scholar]
  118. 118. 
    Francolini I, Donelli G. 2010. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 59:3227–38
    [Google Scholar]
  119. 119. 
    Curtin JJ, Donlan RM. 2006. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 50:41268–75
    [Google Scholar]
  120. 120. 
    Maszewska A, Zygmunt M, Grzejdziak I, Różalski A. 2018. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections. J. Appl. Microbiol. 125:51253–65
    [Google Scholar]
  121. 121. 
    Bouchart F, Vidal O, Lacroix JM, Spriet C, Chamary S et al. 2020. 3D printed bioceramic for phage therapy against bone nosocomial infections. Mater. Sci. Eng. C 111:110840
    [Google Scholar]
  122. 122. 
    Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P. 2016. Bacteriophages as weapons against bacterial biofilms in the food industry. Front. Microbiol. 7:825
    [Google Scholar]
  123. 123. 
    Soni KA, Nannapaneni R. 2010. Removal of Listeria monocytogenes biofilms with bacteriophage P100. J. Food Prot. 73:81519–24
    [Google Scholar]
  124. 124. 
    Montañez-Izquierdo VY, Salas-Vázquez DI, Rodríguez-Jerez JJ. 2012. Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control 23:2470–77
    [Google Scholar]
  125. 125. 
    Sadekuzzaman M, Yang S, Mizan MFR, Kim H-S, Ha S-D. 2017. Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control 78:256–63
    [Google Scholar]
  126. 126. 
    Rodríguez-Melcón C, Capita R, García-Fernández C, Alonso-Calleja C. 2018. Effects of bacteriophage P100 at different concentrations on the structural parameters of Listeria monocytogenes biofilms. J. Food Prot. 81:122040–44
    [Google Scholar]
  127. 127. 
    Sadekuzzaman M, Mizan MFR, Yang S, Kim HS, Ha S-D. 2018. Application of bacteriophages for the inactivation of Salmonella spp. in biofilms. Food Sci. Technol. Int. 24:5424–33
    [Google Scholar]
  128. 128. 
    Milho C, Silva MD, Alves D, Oliveira H, Sousa C et al. 2019. Escherichia coli and Salmonella Enteritidis dual-species biofilms: interspecies interactions and antibiofilm efficacy of phages. Sci. Rep. 9:118183
    [Google Scholar]
  129. 129. 
    González S, Fernández L, Campelo AB, Gutiérrez D, Martínez B et al. 2017. The behavior of Staphylococcus aureus dual-species biofilms treated with bacteriophage phiIPLA-RODI depends on the accompanying microorganism. Appl. Environ. Microbiol. 83:3e02821-16
    [Google Scholar]
  130. 130. 
    Yin Y, Ni P, Liu D, Yang S, Almeida A et al. 2019. Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control 98:156–63
    [Google Scholar]
  131. 131. 
    Milho C, Silva MD, Melo L, Santos S, Azeredo J, Sillankorva S. 2018. Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling 34:7753–68
    [Google Scholar]
  132. 132. 
    Endersen L, Buttimer C, Nevin E, Coffey A, Neve H et al. 2017. Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. Int. J. Food Microbiol. 253:1–11
    [Google Scholar]
  133. 133. 
    Zhang Y, Hu Z. 2013. Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol. Bioeng. 110:1286–95
    [Google Scholar]
  134. 134. 
    Agún S, Fernández L, González-Menéndez E, Martínez B, Rodríguez A, García P. 2018. Study of the interactions between bacteriophage phiIPLA-RODI and four chemical disinfectants for the elimination of Staphylococcus aureus contamination. Viruses 10:3103
    [Google Scholar]
  135. 135. 
    Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F. 2011. Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol 28:1149–57
    [Google Scholar]
  136. 136. 
    Li LL, Yu P, Wang X, Yu SS, Mathieu J et al. 2017. Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). Environ. Sci. Nano 4:91817–26
    [Google Scholar]
  137. 137. 
    Curtis T 1996. The fate of Vibrio cholerae in wastewater treatment systems. Cholera and the Ecology of Vibrio cholerae BS Drasar, BD Forrest 295–332 Dordrecht, Neth: Springer
    [Google Scholar]
  138. 138. 
    Melius EJ, Davis SI, Redd JT, Lewin M, Herlihy R et al. 2013. Estimating the prevalence of active Helicobacter pylori infection in a rural community with global positioning system technology-assisted sampling. Epidemiol. Infect. 141:3472–80
    [Google Scholar]
  139. 139. 
    Di Pippo F, Di Gregorio L, Congestri R, Tandoi V, Rossetti S. 2018. Biofilm growth and control in cooling water industrial systems. FEMS Microbiol. Ecol. 94:5fiy044
    [Google Scholar]
  140. 140. 
    Naser IB, Hoque MM, Abdullah A, Bari SMN, Ghosh AN, Faruque SM. 2017. Environmental bacteriophages active on biofilms and planktonic forms of toxigenic Vibrio cholerae: potential relevance in cholera epidemiology. PLOS ONE 12:7e0180838
    [Google Scholar]
  141. 141. 
    Mathieu J, Yu P, Zuo P, Da Silva MLB, Alvarez PJ 2019. Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Acc. Chem. Res. 52:4849–57
    [Google Scholar]
  142. 142. 
    Yu P, Mathieu J, Lu GW, Gabiatti N, Alvarez PJ. 2017. Control of antibiotic-resistant bacteria in activated sludge using polyvalent phages in conjunction with a production host. Environ. Sci. Technol. Lett. 4:4137–42
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-074222
Loading
/content/journals/10.1146/annurev-virology-091919-074222
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error