1932

Abstract

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for major outbreaks of disease since 2004 in the Indian Ocean islands, South east Asia, and the Americas. CHIKV causes debilitating musculoskeletal disorders in humans that are characterized by fever, rash, polyarthralgia, and myalgia. The disease is often self-limiting and nonlethal; however, some patients experience atypical or severe clinical manifestations, as well as a chronic rheumatic syndrome. Unfortunately, no efficient antivirals against CHIKV infection are available so far, highlighting the importance of deepening our knowledge of CHIKV host cell interactions and viral replication strategies. In this review, we discuss recent breakthroughs in the molecular mechanisms that regulate CHIKV infection and lay down the foundations to understand viral pathogenesis. We describe the role of the recently identified host factors co-opted by the virus for infection and pathogenesis, and emphasize the importance of CHIKV nonstructural proteins in both replication complex assembly and host immune response evasion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-102021
2021-09-29
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-102021.html?itemId=/content/journals/10.1146/annurev-virology-091919-102021&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brault AC, Tesh RB, Powers AM, Weaver SC. 2000. Re-emergence of chikungunya and o'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 81:2471–79
    [Google Scholar]
  2. 2. 
    Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L et al. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLOS Med 3:7e263
    [Google Scholar]
  3. 3. 
    Powers AM, Logue CH. 2007. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88:92363–77
    [Google Scholar]
  4. 4. 
    Chretien J-P, Anyamba A, Bedno SA, Breiman RF, Sang R et al. 2007. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hyg. 76:3405–7
    [Google Scholar]
  5. 5. 
    Gérardin P, Guernier V, Perrau J, Fianu A, Le Roux K et al. 2008. Estimating Chikungunya prevalence in La Réunion Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect. Dis. 8:99
    [Google Scholar]
  6. 6. 
    Josseran L, Paquet C, Zehgnoun A, Caillere N, Le Tertre A et al. 2006. Chikungunya disease outbreak, Reunion Island. Emerg. Infect. Dis 12:121994–95
    [Google Scholar]
  7. 7. 
    Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM et al. 2007. Genetic divergence of Chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J. Gen. Virol. 88:71967–76
    [Google Scholar]
  8. 8. 
    Angelini P, Macini P, Finarelli AC, Pol C, Venturelli C et al. 2008. Chikungunya epidemic outbreak in Emilia-Romagna (Italy) during summer; 2007. Parassitologia 50:1–297–98
    [Google Scholar]
  9. 9. 
    Delisle E, Rousseau C, Broche B, Leparc-Goffart I, L'Ambert G et al. 2015. Chikungunya outbreak in Montpellier, France, September to October 2014. Eurosurveillance 20:1721108
    [Google Scholar]
  10. 10. 
    Cassadou S, Boucau S, Petit-Sinturel M, Huc P, Leparc-Goffart I, Ledrans M. 2014. Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013. Eurosurveillance 19:1320752
    [Google Scholar]
  11. 11. 
    Van Bortel W, Dorleans F, Rosine J, Blateau A, Rousset D et al. 2014. Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe. Eurosurveillance 19:1320759
    [Google Scholar]
  12. 12. 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog 3:12e201
    [Google Scholar]
  13. 13. 
    Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI et al. 2010. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol. 84:136497–504
    [Google Scholar]
  14. 14. 
    Weaver SC, Chen R, Diallo M 2020. Chikungunya virus: role of vectors in emergence from enzootic cycles. Annu. Rev. Entomol. 65:313–32
    [Google Scholar]
  15. 15. 
    Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL 2020. Epidemic alphaviruses: ecology, emergence and outbreaks. Microorganisms 8:81167
    [Google Scholar]
  16. 16. 
    Chen R, Mukhopadhyay S, Merits A, Bolling B, Nasar F et al. 2018. ICTV virus taxonomy profile: Togaviridae. J. Gen. Virol. 99:6761–62
    [Google Scholar]
  17. 17. 
    Suhrbier A. 2019. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat. Rev. Rheumatol. 15:10597–611
    [Google Scholar]
  18. 18. 
    Khan AH, Morita K, Parquet MDC, Hasebe F, Mathenge EGM, Igarashi A. 2002. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 83:123075–84
    [Google Scholar]
  19. 19. 
    Solignat M, Gay B, Higgs S, Briant L, Devaux C. 2009. Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393:2183–97
    [Google Scholar]
  20. 20. 
    Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C et al. 2010. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468:7324709–12
    [Google Scholar]
  21. 21. 
    Ahola T, Merits A. 2016. Functions of chikungunya virus nonstructural proteins. Chikungunya Virus: Advances in Biology, Pathogenesis, and Treatment CM Okeoma 75–98 Cham, Switz: Springer
    [Google Scholar]
  22. 22. 
    Okeoma CM 2016. Chikungunya Virus: Advances in Biology, Pathogenesis, and Treatment Cham, Switz: Springer
    [Google Scholar]
  23. 23. 
    Thaa B, Biasiotto R, Eng K, Neuvonen M, Gotte B et al. 2015. Differential phosphatidylinositol-3-kinase-Akt-mTOR activation by Semliki Forest and chikungunya viruses is dependent on nsP3 and connected to replication complex internalization. J. Virol. 89:2211420–37
    [Google Scholar]
  24. 24. 
    Soonsawad P, Xing L, Milla E, Espinoza JM, Kawano M et al. 2010. Structural evidence of glycoprotein assembly in cellular membrane compartments prior to alphavirus budding. J. Virol. 84:2111145–51
    [Google Scholar]
  25. 25. 
    Rall GF, Racaniello VR, Skalka AM, Flint J. 2015. Principles of Virology, Vol. 2: Pathogenesis & Control Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  26. 26. 
    Abraham R, Mudaliar P, Padmanabhan A, Sreekumar E. 2013. Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus. PLOS ONE 8:9e75854
    [Google Scholar]
  27. 27. 
    Abraham R, Singh S, Nair SR, Hulyalkar NV, Surendran A et al. 2017. Nucleophosmin (NPM1)/B23 in the proteome of human astrocytic cells restricts chikungunya virus replication. J. Proteome Res. 16:114144–55
    [Google Scholar]
  28. 28. 
    Abere B, Wikan N, Ubol S, Auewarakul P, Paemanee A et al. 2012. Proteomic analysis of chikungunya virus infected microgial cells. PLOS ONE 7:4e34800
    [Google Scholar]
  29. 29. 
    Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F et al. 2007. Characterization of reemerging chikungunya virus. PLOS Pathog 3:6e89
    [Google Scholar]
  30. 30. 
    Wikan N, Sakoonwatanyoo P, Ubol S, Yoksan S, Smith DR. 2012. Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage. PLOS ONE 7:1e31102
    [Google Scholar]
  31. 31. 
    Briant L, Desprès P, Choumet V, Missé D. 2014. Role of skin immune cells on the host susceptibility to mosquito-borne viruses. Virology 464–465:26–32
    [Google Scholar]
  32. 32. 
    Bernard E, Hamel R, Neyret A, Ekchariyawat P, Molès J-P et al. 2015. Human keratinocytes restrict chikungunya virus replication at a post-fusion step. Virology 476:1–10
    [Google Scholar]
  33. 33. 
    Ekchariyawat P, Hamel R, Bernard E, Wichit S, Surasombatpattana P et al. 2015. Inflammasome signaling pathways exert antiviral effect against Chikungunya virus in human dermal fibroblasts. Infect. Genet. Evol. 32:401–8
    [Google Scholar]
  34. 34. 
    Young AR, Locke MC, Cook LE, Hiller BE, Zhang R et al. 2019. Dermal and muscle fibroblasts and skeletal myofibers survive chikungunya virus infection and harbor persistent RNA. PLOS Pathog 15:8e1007993
    [Google Scholar]
  35. 35. 
    Wichit S, Diop F, Hamel R, Talignani L, Ferraris P et al. 2017. Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway. Infect. Genet. Evol. 55:68–70
    [Google Scholar]
  36. 36. 
    Broeckel R, Haese N, Messaoudi I, Streblow D. 2015. Nonhuman primate models of Chikungunya virus infection and disease (CHIKV NHP model). Pathogens 4:3662–81
    [Google Scholar]
  37. 37. 
    Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M et al. 2008. A mouse model for Chikungunya: Young age and inefficient type-I interferon signaling are risk factors for severe disease. PLOS Pathog 4:2e29
    [Google Scholar]
  38. 38. 
    Hoarau J-J, Bandjee M-CJ, Trotot PK, Das T, Li-Pat-Yuen G et al. 2010. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184:105914–27
    [Google Scholar]
  39. 39. 
    Phuklia W, Kasisith J, Modhiran N, Rodpai E, Thannagith M et al. 2013. Osteoclastogenesis induced by CHIKV-infected fibroblast-like synoviocytes: a possible interplay between synoviocytes and monocytes/macrophages in CHIKV-induced arthralgia/arthritis. Virus Res 177:2179–88
    [Google Scholar]
  40. 40. 
    Roy E, Shi W, Duan B, Reid SP. 2020. Chikungunya virus infection impairs the function of osteogenic cells. mSphere 5:3e00347-20
    [Google Scholar]
  41. 41. 
    Ozden S, Huerre M, Riviere J-P, Coffey LL, Afonso PV et al. 2007. Human muscle satellite cells as targets of Chikungunya virus infection. PLOS ONE 2:6e527
    [Google Scholar]
  42. 42. 
    Lohachanakul J, Phuklia W, Thannagith M, Thongsakulprasert T, Smith DR, Ubol S. 2015. Differences in response of primary human myoblasts to infection with recent epidemic strains of Chikungunya virus isolated from patients with and without myalgia: viral factor in CHIKV-induced myalgia. J. Med. Virol. 87:5733–39
    [Google Scholar]
  43. 43. 
    Roberts GC, Zothner C, Remenyi R, Merits A, Stonehouse NJ, Harris M. 2017. Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research. Sci. Rep. 7:114641
    [Google Scholar]
  44. 44. 
    Lentscher AJ, McCarthy MK, May NA, Davenport BJ, Montgomery SA et al. 2020. Chikungunya virus replication in skeletal muscle cells is required for disease development. J. Clin. Invest. 130:31466–78
    [Google Scholar]
  45. 45. 
    Rohatgi A, Corbo JC, Monte K, Higgs S, Vanlandingham DL et al. 2014. Infection of myofibers contributes to increased pathogenicity during infection with an epidemic strain of chikungunya virus. J. Virol. 88:52414–25
    [Google Scholar]
  46. 46. 
    Nair S, Poddar S, Shimak RM, Diamond MS. 2017. Interferon regulatory factor 1 protects against chikungunya virus-induced immunopathology by restricting infection in muscle cells. J. Virol. 91:22e01419-17
    [Google Scholar]
  47. 47. 
    Herrero LJ, Nelson M, Srikiatkhachorn A, Gu R, Anantapreecha S et al. 2011. Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. PNAS 108:2912048–53
    [Google Scholar]
  48. 48. 
    Zaid A, Tharmarajah K, Mostafavi H, Freitas JR, Sheng K-C et al. 2020. Modulation of monocyte-driven myositis in alphavirus infection reveals a role for CX3CR1+ macrophages in tissue repair. mBio 11:2e03353-19
    [Google Scholar]
  49. 49. 
    Chow A, Her Z, Ong EKS, Chen J, Dimatatac F et al. 2011. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis. 203:2149–57
    [Google Scholar]
  50. 50. 
    Chen W, Foo S-S, Rulli NE, Taylor A, Sheng K-C et al. 2014. Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. PNAS 111:166040–45
    [Google Scholar]
  51. 51. 
    Borgherini G, Poubeau P, Jossaume A, Gouix A, Cotte L et al. 2008. Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on Reunion Island. Clin. Infect. Dis. 47:4469–75
    [Google Scholar]
  52. 52. 
    Davenport BJ, Bullock C, McCarthy MK, Hawman DW, Murphy KM et al. 2020. Chikungunya virus evades antiviral CD8+ T cell responses to establish persistent infection in joint-associated tissues. J. Virol. 94:9e02036-19
    [Google Scholar]
  53. 53. 
    Hawman DW, Stoermer KA, Montgomery SA, Pal P, Oko L et al. 2013. Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J. Virol. 87:2413878–88
    [Google Scholar]
  54. 54. 
    Labadie K, Larcher T, Joubert C, Mannioui A, Delache B et al. 2010. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Invest. 120:3894–906
    [Google Scholar]
  55. 55. 
    Couderc T, Lecuit M. 2015. Chikungunya virus pathogenesis: from bedside to bench. Antivir. Res. 121:120–31
    [Google Scholar]
  56. 56. 
    Wilson JAC, Prow NA, Schroder WA, Ellis JJ, Cumming HE et al. 2017. RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLOS Pathog 13:2e1006155
    [Google Scholar]
  57. 57. 
    Zhang R, Kim AS, Fox JM, Nair S, Basore K et al. 2018. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557:7706570–74
    [Google Scholar]
  58. 58. 
    Basore K, Kim AS, Nelson CA, Zhang R, Smith BK et al. 2019. Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell 177:71725–37.e16
    [Google Scholar]
  59. 59. 
    Song H, Zhao Z, Chai Y, Jin X, Li C et al. 2019. Molecular basis of arthritogenic alphavirus receptor MXRA8 binding to chikungunya virus envelope protein. Cell 177:71714–24.e12
    [Google Scholar]
  60. 60. 
    Zhang R, Earnest JT, Kim AS, Winkler ES, Desai P et al. 2019. Expression of the Mxra8 receptor promotes alphavirus infection and pathogenesis in mice and Drosophila. Cell Rep 28:102647–58.e5
    [Google Scholar]
  61. 61. 
    Powell LA, Miller A, Fox JM, Kose N, Klose T et al. 2020. Human mAbs broadly protect against arthritogenic alphaviruses by recognizing conserved elements of the Mxra8 receptor-binding site. Cell Host Microbe 28:5699–711.e7
    [Google Scholar]
  62. 62. 
    McAllister N, Liu Y, Silva LM, Lentscher AJ, Chai W et al. 2020. Chikungunya virus strains from each genetic clade bind sulfated glycosaminoglycans as attachment factors. J. Virol. 94:24e01500-20
    [Google Scholar]
  63. 63. 
    Sahoo B, Chowdary TK. 2019. Conformational changes in Chikungunya virus E2 protein upon heparan sulfate receptor binding explain mechanism of E2–E1 dissociation during viral entry. Biosci. Rep. 39:6BSR20191077
    [Google Scholar]
  64. 64. 
    Meertens L, Hafirassou ML, Couderc T, Bonnet-Madin L, Kril V et al. 2019. FHL1 is a major host factor for chikungunya virus infection. Nature 574:7777259–63
    [Google Scholar]
  65. 65. 
    Tanaka A, Tumkosit U, Nakamura S, Motooka D, Kishishita N et al. 2017. Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection. J. Virol. 91:13e00432-17
    [Google Scholar]
  66. 66. 
    Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD. 2003. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J. Virol. 77:2212022–32
    [Google Scholar]
  67. 67. 
    Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W et al. 2013. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLOS Pathog 9:3e1003232
    [Google Scholar]
  68. 68. 
    Moller-Tank S, Maury W 2014. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470:565–80
    [Google Scholar]
  69. 69. 
    Grimley PM, Berezesky IK, Friedman RM. 1968. Cytoplasmic structures associated with an arbovirus infection: loci of viral ribonucleic acid synthesis. J. Virol. 2:111326–38
    [Google Scholar]
  70. 70. 
    Salonen A, Ahola T, Kääriäinen L. 2005. Viral RNA replication in association with cellular membranes. Membr. Traffick. Viral Replication 285:139–73
    [Google Scholar]
  71. 71. 
    Decroly E, Ferron F, Lescar J, Canard B. 2011. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 10:151–65
    [Google Scholar]
  72. 72. 
    Peranen J, Laakkonen P, Hyvonen M, Kaariainen L. 1995. The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology 208:2610–20
    [Google Scholar]
  73. 73. 
    Tomar S, Narwal M, Harms E, Smith JL, Kuhn RJ. 2011. Heterologous production, purification and characterization of enzymatically active Sindbis virus nonstructural protein nsP1. Protein Expr. Purif. 79:2277–84
    [Google Scholar]
  74. 74. 
    Ahola T, Lampio A, Auvinen P, Kaariainen L. 1999. Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO J 18:113164–72
    [Google Scholar]
  75. 75. 
    Belov GA, Nair V, Hansen BT, Hoyt FH, Fischer ER, Ehrenfeld E. 2012. Complex dynamic development of poliovirus membranous replication complexes. J. Virol. 86:1302–12
    [Google Scholar]
  76. 76. 
    Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y et al. 2008. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLOS Biol 6:9e226
    [Google Scholar]
  77. 77. 
    Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P. 2007. Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. PLOS Biol 5:9e220
    [Google Scholar]
  78. 78. 
    Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P et al. 2012. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLOS Pathog 8:12e1003056
    [Google Scholar]
  79. 79. 
    Sachse M, Fernández de Castro I, Tenorio R, Risco C. 2019. The viral replication organelles within cells studied by electron microscopy. Adv. Virus Res. 105:1–33
    [Google Scholar]
  80. 80. 
    Snijder EJ, Limpens RWAL, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC et al. 2020. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. PLOS Biol. 18:6e3000715
    [Google Scholar]
  81. 81. 
    Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK et al. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:4365–75
    [Google Scholar]
  82. 82. 
    Jones R, Bragagnolo G, Arranz R, Reguera J. 2021. Capping pores of alphavirus nsP1 gate membranous viral replication factories. Nature 589:7843615–19
    [Google Scholar]
  83. 83. 
    Ertel KJ, Benefield D, Castano-Diez D, Pennington JG, Horswill M et al. 2017. Cryo-electron tomography reveals novel features of a viral RNA replication compartment. eLife 6:e25940
    [Google Scholar]
  84. 84. 
    Unchwaniwala N, Zhan H, Pennington J, Horswill M, den Boon JA, Ahlquist P 2020. Subdomain cryo-EM structure of nodaviral replication protein A crown complex provides mechanistic insights into RNA genome replication. PNAS 117:3118680–91
    [Google Scholar]
  85. 85. 
    Hellstrom K, Kallio K, Utt A, Quirin T, Jokitalo E et al. 2017. Partially uncleaved alphavirus replicase forms spherule structures in the presence and absence of RNA template. J. Virol. 91:18e00787-17
    [Google Scholar]
  86. 86. 
    Kallio K, Hellstrom K, Balistreri G, Spuul P, Jokitalo E, Ahola T. 2013. Template RNA length determines the size of replication complex spherules for Semliki Forest virus. J. Virol. 87:169125–34
    [Google Scholar]
  87. 87. 
    Ahola T, Kujala P, Tuittila M, Blom T, Laakkonen P et al. 2000. Effects of palmitoylation of replicase protein nsP1 on alphavirus infection. J. Virol. 74:156725–33
    [Google Scholar]
  88. 88. 
    Gottipati K, Woodson M, Choi KH. 2020. Membrane binding and rearrangement by chikungunya virus capping enzyme nsP1. Virology 544:31–41
    [Google Scholar]
  89. 89. 
    Laakkonen P, Ahola T, Kaariainen L. 1996. The effects of palmitoylation on membrane association of Semliki Forest virus RNA capping enzyme. J. Biol. Chem. 271:4528567–71
    [Google Scholar]
  90. 90. 
    Bouraï M, Lucas-Hourani M, Gad HH, Drosten C, Jacob Y et al. 2012. Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component. J. Virol. 86:63121–34
    [Google Scholar]
  91. 91. 
    Cristea IM, Carroll JW, Rout MP, Rice CM, Chait BT, MacDonald MR. 2006. Tracking and elucidating alphavirus-host protein interactions. J. Biol. Chem. 281:4030269–78
    [Google Scholar]
  92. 92. 
    Neuvonen M, Kazlauskas A, Martikainen M, Hinkkanen A, Ahola T, Saksela K. 2011. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication. PLOS Pathog 7:11e1002383
    [Google Scholar]
  93. 93. 
    Bakhache W, Neyret A, Bernard E, Merits A, Briant L. 2020. Palmitoylated cysteines in chikungunya virus nsP1 are critical for targeting to cholesterol-rich plasma membrane microdomains with functional consequences for viral genome replication. J. Virol. 94:10e02183-19
    [Google Scholar]
  94. 94. 
    Van Huizen E, McInerney GM. 2020. Activation of the PI3K-AKT pathway by Old World alphaviruses. Cells 9:4970
    [Google Scholar]
  95. 95. 
    Gorchakov R, Garmashova N, Frolova E, Frolov I. 2008. Different types of nsP3-containing protein complexes in Sindbis virus-infected cells. J. Virol. 82:2010088–101
    [Google Scholar]
  96. 96. 
    Wang YF, Sawicki SG, Sawicki DL. 1994. Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J. Virol. 68:106466–75
    [Google Scholar]
  97. 97. 
    Fros JJ, Domeradzka NE, Baggen J, Geertsema C, Flipse J et al. 2012. Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci. J. Virol. 86:1910873–79
    [Google Scholar]
  98. 98. 
    Scholte FEM, Tas A, Albulescu IC, Žusinaite E, Merits A et al. 2015. Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication. J. Virol. 89:84457–69
    [Google Scholar]
  99. 99. 
    Varjak M, Saul S, Arike L, Lulla A, Peil L, Merits A. 2013. Magnetic fractionation and proteomic dissection of cellular organelles occupied by the late replication complexes of Semliki Forest virus. J. Virol. 87:1810295–312
    [Google Scholar]
  100. 100. 
    Frolova E, Gorchakov R, Garmashova N, Atasheva S, Vergara LA, Frolov I. 2006. Formation of nsP3-specific protein complexes during Sindbis virus replication. J. Virol. 80:84122–34
    [Google Scholar]
  101. 101. 
    Meshram CD, Agback P, Shiliaev N, Urakova N, Mobley JA et al. 2018. Multiple host factors interact with the hypervariable domain of chikungunya virus nsP3 and determine viral replication in cell-specific mode. J. Virol. 92:16e00838-18
    [Google Scholar]
  102. 102. 
    Onomoto K, Yoneyama M, Fung G, Kato H, Fujita T. 2014. Antiviral innate immunity and stress granule responses. Trends Immunol 35:9420–28
    [Google Scholar]
  103. 103. 
    Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM et al. 2003. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160:6823–31
    [Google Scholar]
  104. 104. 
    Kim DY, Reynaud JM, Rasalouskaya A, Akhrymuk I, Mobley JA et al. 2016. New World and Old World alphaviruses have evolved to exploit different components of stress granules, FXR and G3BP proteins, for assembly of viral replication complexes. PLOS Pathog 12:8e1005810
    [Google Scholar]
  105. 105. 
    Götte B, Utt A, Fragkoudis R, Merits A, McInerney GM. 2020. Sensitivity of alphaviruses to G3BP deletion correlates with efficiency of replicase polyprotein processing. J. Virol. 94:7e01681-19
    [Google Scholar]
  106. 106. 
    Götte B, Panas MD, Hellström K, Liu L, Samreen B et al. 2019. Separate domains of G3BP promote efficient clustering of alphavirus replication complexes and recruitment of the translation initiation machinery. PLOS Pathog 15:6e1007842
    [Google Scholar]
  107. 107. 
    Foy NJ, Akhrymuk M, Akhrymuk I, Atasheva S, Bopda-Waffo A et al. 2013. Hypervariable domains of nsP3 proteins of New World and Old World alphaviruses mediate formation of distinct, virus-specific protein complexes. J. Virol. 87:41997–2010
    [Google Scholar]
  108. 108. 
    Remenyi R, Gao Y, Hughes RE, Curd A, Zothner C et al. 2018. Persistent replication of a chikungunya virus replicon in human cells is associated with presence of stable cytoplasmic granules containing nonstructural protein 3. J. Virol. 92:16e00477-18
    [Google Scholar]
  109. 109. 
    Jayabalan AK, Adivarahan S, Koppula A, Abraham R, Batish M et al. 2021. Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. PNAS 118:6e2021719118
    [Google Scholar]
  110. 110. 
    Mutso M, Morro AM, Smedberg C, Kasvandik S, Aquilimeba M et al. 2018. Mutation of CD2AP and SH3KBP1 binding motif in alphavirus nsP3 hypervariable domain results in attenuated virus. Viruses 10:5226
    [Google Scholar]
  111. 111. 
    Lukash T, Agback T, Dominguez F, Shiliaev N, Meshram C et al. 2020. Structural and functional characterization of host FHL1 protein interaction with hypervariable domain of chikungunya virus nsP3 protein. J. Virol. 95:1e01672-20
    [Google Scholar]
  112. 112. 
    Remenyi R, Roberts GC, Zothner C, Merits A, Harris M. 2017. SNAP-tagged chikungunya virus replicons improve visualisation of non-structural protein 3 by fluorescence microscopy. Sci. Rep. 7:5682
    [Google Scholar]
  113. 113. 
    Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP et al. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:1123–33
    [Google Scholar]
  114. 114. 
    Abraham R, Hauer D, McPherson RL, Utt A, Kirby IT et al. 2018. ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. PNAS 115:44E10457–66
    [Google Scholar]
  115. 115. 
    Eckei L, Krieg S, Butepage M, Lehmann A, Gross A et al. 2017. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci. Rep. 7:41746
    [Google Scholar]
  116. 116. 
    Kadrmas JL, Beckerle MC. 2004. The LIM domain: from the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5:11920–31
    [Google Scholar]
  117. 117. 
    Zheng Q, Zhao Y. 2007. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein–protein interaction. Biol. Cell 99:9489–502
    [Google Scholar]
  118. 118. 
    Cowling BS, McGrath MJ, Nguyen M-A, Cottle DL, Kee AJ et al. 2008. Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. J. Cell Biol. 183:61033–48
    [Google Scholar]
  119. 119. 
    Domenighetti AA, Chu P-H, Wu T, Sheikh F, Gokhin DS et al. 2014. Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice. Hum. Mol. Genet. 23:1209–25
    [Google Scholar]
  120. 120. 
    Ng LFP, Chow A, Sun Y-J, Kwek DJC, Lim P-L et al. 2009. IL-1β, IL-6, and RANTES as biomarkers of Chikungunya severity. PLOS ONE 4:1e4261
    [Google Scholar]
  121. 121. 
    Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N et al. 2010. Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J. Exp. Med. 207:2429–42
    [Google Scholar]
  122. 122. 
    Akhrymuk I, Frolov I, Frolova EI. 2016. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode. Virology 487:230–41
    [Google Scholar]
  123. 123. 
    Olagnier D, Scholte FEM, Chiang C, Albulescu IC, Nichols C et al. 2014. Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J. Virol. 88:84180–94
    [Google Scholar]
  124. 124. 
    White LK, Sali T, Alvarado D, Gatti E, Pierre P et al. 2011. Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J. Virol. 85:1606–20
    [Google Scholar]
  125. 125. 
    Fros JJ, van der Maten E, Vlak JM, Pijlman GP. 2013. The C-terminal domain of chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling. J. Virol. 87:1810394–400
    [Google Scholar]
  126. 126. 
    Utt A, Das PK, Varjak M, Lulla V, Lulla A, Merits A. 2015. Mutations conferring a noncytotoxic phenotype on chikungunya virus replicons compromise enzymatic properties of nonstructural protein 2. J. Virol. 89:63145–62 Erratum. 2016. J. Virol. 90(17):8030
    [Google Scholar]
  127. 127. 
    Akhrymuk I, Kulemzin SV, Frolova EI. 2012. Evasion of the innate immune response: The Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J. Virol. 86:137180–91
    [Google Scholar]
  128. 128. 
    Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M et al. 2010. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J. Virol. 84:2010877–87
    [Google Scholar]
  129. 129. 
    Goertz GP, McNally KL, Robertson SJ, Best SM, Pijlman GP, Fros JJ. 2018. The methyltransferase-like domain of chikungunya virus nsP2 inhibits the interferon response by promoting the nuclear export of STAT1. J. Virol. 92:17e01008-18
    [Google Scholar]
  130. 130. 
    Krieg S, Pott F, Eckei L, Verheirstraeten M, Bütepage M et al. 2020. Mono-ADP-ribosylation by ARTD10 restricts Chikungunya virus replication by interfering with the proteolytic activity of nsP2. bioRxiv 2020.01.07.896977. https://doi.org/10.1101/2020.01.07.896977
    [Crossref]
  131. 131. 
    Jupille HJ, Oko L, Stoermer KA, Heise MT, Mahalingam S et al. 2011. Mutations in nsP1 and PE2 are critical determinants of Ross River virus-induced musculoskeletal inflammatory disease in a mouse model. Virology 410:1216–27
    [Google Scholar]
  132. 132. 
    Webb LG, Veloz J, Pintado-Silva J, Zhu T, Rangel MV et al. 2020. Chikungunya virus antagonizes cGAS-STING mediated type-I interferon responses by degrading cGAS. PLOS Pathog 16:10e100899
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-102021
Loading
/content/journals/10.1146/annurev-virology-091919-102021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error