1932

Abstract

Poxviruses, of which vaccinia virus is the prototype, are a large family of double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells. This physical and genetic autonomy from the host cell nucleus necessitates that these viruses encode most, if not all, of the proteins required for replication in the cytoplasm. In this review, we follow the life of the viral genome through space and time to address some of the unique challenges that arise from replicating a 195-kb DNA genome in the cytoplasm. We focus on how the genome is released from the incoming virion and deposited into the cytoplasm; how the endoplasmic reticulum is reorganized to form a replication factory, thereby compartmentalizing and helping to protect the replicating genome from immune sensors; how the cellular milieu is tailored to support high-fidelity replication of the genome; and finally, how newly synthesized genomes are faithfully and specifically encapsidated into new virions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-104752
2022-09-29
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-091919-104752.html?itemId=/content/journals/10.1146/annurev-virology-091919-104752&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Moss B, Smith GL 2021. Poxviridae: the viruses and their replication. Fields Virology: DNA Viruses, Vol. 2 PM Howley, DM Knipe, BA Damania, JI Cohen 573–613 Philadelphia: Wolters Kluwer. , 7th ed..
    [Google Scholar]
  2. 2.
    Condit RC, Moussatche N, Traktman P. 2006. In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66:31–124
    [Crossref] [Google Scholar]
  3. 3.
    Bidgood SR, Mercer J. 2015. Cloak and dagger: alternative immune evasion and modulation strategies of poxviruses. Viruses 7:4800–25
    [Crossref] [Google Scholar]
  4. 4.
    Najarro P, Traktman P, Lewis JA. 2001. Vaccinia virus blocks gamma interferon signal transduction: Viral VH1 phosphatase reverses Stat1 activation. J. Virol. 75:3185–96
    [Crossref] [Google Scholar]
  5. 5.
    Schmidt FI, Bleck CK, Reh L, Novy K, Wollscheid B et al. 2013. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies. Cell Rep. 4:464–76
    [Crossref] [Google Scholar]
  6. 6.
    Grubisha O, Traktman P. 2003. Genetic analysis of the vaccinia virus I6 telomere-binding protein uncovers a key role in genome encapsidation. J. Virol. 77:10929–42
    [Crossref] [Google Scholar]
  7. 7.
    Lanzer W, Holowczak JA. 1975. Polyamines in vaccinia virions and polypeptides released from viral cores by acid extraction. J. Virol. 16:1254–64
    [Crossref] [Google Scholar]
  8. 8.
    Mercer J, Helenius A. 2008. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–35
    [Crossref] [Google Scholar]
  9. 9.
    Schmidt FI, Bleck CKE, Helenius A, Mercer J. 2011. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J 30:3647–61
    [Crossref] [Google Scholar]
  10. 10.
    Janeczko RA, Rodriguez JF, Esteban M 1987. Studies on the mechanism of entry of vaccinia virus in animal cells. Arch. Virol. 92:135–50
    [Crossref] [Google Scholar]
  11. 11.
    Doms RW, Blumenthal R, Moss B. 1990. Fusion of intra- and extracellular forms of vaccinia virus with the cell membrane. J. Virol. 64:4884–92
    [Crossref] [Google Scholar]
  12. 12.
    Mallardo M, Schleich S, Krijnse LJ. 2001. Microtubule-dependent organization of vaccinia virus core-derived early mRNAs into distinct cytoplasmic structures. Mol. Biol. Cell 12:3875–91
    [Crossref] [Google Scholar]
  13. 13.
    Carter GC, Rodger G, Murphy BJ, Law M, Krauss O et al. 2003. Vaccinia virus cores are transported on microtubules. J. Gen. Virol. 84:2443–58
    [Crossref] [Google Scholar]
  14. 14.
    Boyle KA, Greseth MD, Traktman P. 2015. Genetic confirmation that the H5 protein is required for vaccinia virus DNA replication. J. Virol. 89:6312–27
    [Crossref] [Google Scholar]
  15. 15.
    Greseth MD, Czarnecki MW, Bluma MS, Traktman P. 2018. Isolation and characterization of vΔI3 confirm that the vaccinia virus SSB plays an essential role in viral replication. J. Virol. 92:2e01719–17
    [Crossref] [Google Scholar]
  16. 16.
    Mercer J, Snijder B, Sacher R, Burkard C, Bleck CK et al. 2012. RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection. Cell Rep 2:1036–47
    [Crossref] [Google Scholar]
  17. 17.
    Kilcher S, Schmidt FI, Schneider C, Kopf M, Helenius A, Mercer J. 2014. siRNA screen of early poxvirus genes identifies the AAA+ ATPase D5 as the virus genome-uncoating factor. Cell Host Microbe 15:103–12
    [Crossref] [Google Scholar]
  18. 18.
    Satheshkumar PS, Anton LC, Sanz P, Moss B. 2009. Inhibition of the ubiquitin-proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes. J. Virol. 83:2469–79
    [Crossref] [Google Scholar]
  19. 19.
    Hyun JK, Coulibaly F, Turner AP, Baker EN, Mercer AA, Mitra AK. 2007. The structure of a putative scaffolding protein of immature poxvirus particles as determined by electron microscopy suggests similarity with capsid proteins of large icosahedral DNA viruses. J. Virol. 81:11075–83
    [Crossref] [Google Scholar]
  20. 20.
    Mallardo M, Leithe E, Schleich S, Roos N, Doglio L, Krijnse LJ. 2002. Relationship between vaccinia virus intracellular cores, early mRNAs, and DNA replication sites. J. Virol. 76:5167–83
    [Crossref] [Google Scholar]
  21. 21.
    Katsafanas GC, Moss B. 2007. Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2:221–28
    [Crossref] [Google Scholar]
  22. 22.
    Kilcher S, Mercer J. 2015. DNA virus uncoating. Virology 479–480:578–90
    [Crossref] [Google Scholar]
  23. 23.
    Snider J, Thibault G, Houry WA. 2008. The AAA+ superfamily of functionally diverse proteins. Genome Biol 9:216
    [Crossref] [Google Scholar]
  24. 24.
    Liu B, Panda D, Mendez-Rios JD, Ganesan S, Wyatt LS, Moss B. 2018. Identification of poxvirus genome uncoating and DNA replication factors with mutually redundant roles. J. Virol. 92:7e02152–17
    [Google Scholar]
  25. 25.
    Cairns J. 1960. The initiation of vaccinia infection. Virology 11:603–23
    [Crossref] [Google Scholar]
  26. 26.
    Beaud G, Beaud R. 1997. Preferential virosomal location of underphosphorylated H5R protein synthesized in vaccinia virus-infected cells. J. Gen. Virol. 78:Part 123297–302
    [Crossref] [Google Scholar]
  27. 27.
    Rochester SC, Traktman P. 1998. Characterization of the single-stranded DNA binding protein encoded by the vaccinia virus I3 gene. J. Virol. 72:2917–26
    [Crossref] [Google Scholar]
  28. 28.
    Domi A, Beaud G. 2000. The punctate sites of accumulation of vaccinia virus early proteins are precursors of sites of viral DNA synthesis. J. Gen. Virol. 81:Part 51231–35
    [Google Scholar]
  29. 29.
    Welsch S, Doglio L, Schleich S, Krijnse LJ. 2003. The vaccinia virus I3L gene product is localized to a complex endoplasmic reticulum-associated structure that contains the viral parental DNA. J. Virol. 77:6014–28
    [Crossref] [Google Scholar]
  30. 30.
    Tolonen N, Doglio L, Schleich S, Krijnse-Locker J. 2001. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol. Biol. Cell 12:2031–46
    [Crossref] [Google Scholar]
  31. 31.
    Greseth MD, Boyle KA, Bluma MS, Unger B, Wiebe MS et al. 2012. Molecular genetic and biochemical characterization of the vaccinia virus I3 protein, the replicative single-stranded DNA binding protein. J. Virol. 86:6197–209
    [Crossref] [Google Scholar]
  32. 32.
    Kay NE, Bainbridge TW, Condit RC, Bubb MR, Judd RE et al. 2013. Biochemical and biophysical properties of a putative hub protein expressed by vaccinia virus. J. Biol. Chem. 288:11470–81
    [Crossref] [Google Scholar]
  33. 33.
    Lin YCJ, Evans DH. 2010. Vaccinia virus particles mix inefficiently, and in a way that would restrict viral recombination, in coinfected cells. J. Virol. 84:2432–43
    [Crossref] [Google Scholar]
  34. 34.
    Kieser Q, Noyce RS, Shenouda M, Lin YCJ, Evans DH. 2020. Cytoplasmic factories, virus assembly, and DNA replication kinetics collectively constrain the formation of poxvirus recombinants. PLOS ONE 15:e0228028
    [Crossref] [Google Scholar]
  35. 35.
    DeLange AM, McFadden G. 1987. Efficient resolution of replicated poxvirus telomeres to native hairpin structures requires two inverted symmetrical copies of a core target DNA sequence. J. Virol. 61:1957–63
    [Crossref] [Google Scholar]
  36. 36.
    Merchlinsky M, Moss B. 1989. Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. J. Virol. 63:4354–61
    [Crossref] [Google Scholar]
  37. 37.
    Baroudy BM, Venkatesan S, Moss B. 1982. Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28:315–24
    [Crossref] [Google Scholar]
  38. 38.
    Baroudy BM, Venkatesan S, Moss B. 1983. Structure and replication of vaccinia virus telomeres. Cold Spring Harb. Symp. Quant. Biol. 47:Part 2723–29
    [Crossref] [Google Scholar]
  39. 39.
    DeMasi J, Du S, Lennon D, Traktman P. 2001. Vaccinia virus telomeres: interaction with the viral I1, I6, and K4 proteins. J. Virol. 75:10090–105
    [Crossref] [Google Scholar]
  40. 40.
    Du S, Traktman P. 1996. Vaccinia virus DNA replication: Two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. PNAS 93:9693–98
    [Crossref] [Google Scholar]
  41. 41.
    Merchlinsky M, Moss B. 1986. Resolution of linear minichromosomes with hairpin ends from circular plasmids containing vaccinia virus concatemer junctions. Cell 45:879–84
    [Crossref] [Google Scholar]
  42. 42.
    Senkevich TG, Katsafanas G, Weisberg A, Olano LR, Moss B. 2017. Identification of vaccinia virus replisome and transcriptome proteins by iPOND coupled with mass spectrometry. J. Virol. 91:19e01015–17
    [Crossref] [Google Scholar]
  43. 43.
    Joklik WK, Becker Y. 1964. The replication and coating of vaccinia DNA. J. Mol. Biol. 10:452–74
    [Crossref] [Google Scholar]
  44. 44.
    Boyle K, Traktman P 2009. Poxviruses. Viral Genome Replication CE Cameron, M Gotte, KD Raney 225–47 New York: Springer
    [Google Scholar]
  45. 45.
    De Silva FS, Moss B. 2005. Origin-independent plasmid replication occurs in vaccinia virus cytoplasmic factories and requires all five known poxvirus replication factors. Virol. J. 2:23
    [Crossref] [Google Scholar]
  46. 46.
    DeLange AM, McFadden G. 1986. Sequence-nonspecific replication of transfected plasmid DNA in poxvirus-infected cells. PNAS 83:614–18
    [Crossref] [Google Scholar]
  47. 47.
    De Silva FS, Lewis W, Berglund P, Koonin EV, Moss B. 2007. Poxvirus DNA primase. PNAS 104:18724–29
    [Crossref] [Google Scholar]
  48. 48.
    Senkevich TG, Bruno D, Martens C, Porcella SF, Wolf YI, Moss B. 2015. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing. PNAS 112:3510908–13
    [Crossref] [Google Scholar]
  49. 49.
    Lant S, Maluquer de Motes C. 2021. Poxvirus interactions with the host ubiquitin system. Pathogens 10:81034
    [Crossref] [Google Scholar]
  50. 50.
    Teale A, Campbell S, Van Buuren N, Magee WC, Watmough K et al. 2009. Orthopoxviruses require a functional ubiquitin-proteasome system for productive replication. J. Virol. 83:2099–108
    [Crossref] [Google Scholar]
  51. 51.
    Barry M, van Buuren N, Burles K, Mottet K, Wang Q, Teale A. 2010. Poxvirus exploitation of the ubiquitin-proteasome system. Viruses 2:2356–80
    [Crossref] [Google Scholar]
  52. 52.
    Moss B. 2013. Poxvirus DNA replication. Cold Spring Harb. Perspect. Biol. 5:9a010199
    [Crossref] [Google Scholar]
  53. 53.
    Wiebe MS, Traktman P. 2007. Poxviral B1 kinase overcomes barrier to autointegration factor, a host defense against virus replication. Cell Host Microbe 1:187–97
    [Crossref] [Google Scholar]
  54. 54.
    Nichols RJ, Wiebe MS, Traktman P. 2006. The vaccinia-related kinases phosphorylate the N′ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol. Biol. Cell 17:2451–64
    [Crossref] [Google Scholar]
  55. 55.
    Boyle KA, Traktman P. 2004. Members of a novel family of mammalian protein kinases complement the DNA-negative phenotype of a vaccinia virus ts mutant defective in the B1 kinase. J. Virol. 78:1992–2005
    [Crossref] [Google Scholar]
  56. 56.
    Wiebe MS, Jamin A. 2016. The barrier to autointegration factor: interlocking antiviral defense with genome maintenance. J. Virol. 90:3806–9
    [Crossref] [Google Scholar]
  57. 57.
    Jamin A, Wiebe MS. 2015. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr. Opin. Cell Biol. 34:61–68
    [Crossref] [Google Scholar]
  58. 58.
    Ibrahim N, Wicklund A, Jamin A, Wiebe MS. 2013. Barrier to autointegration factor (BAF) inhibits vaccinia virus intermediate transcription in the absence of the viral B1 kinase. Virology 444:363–73
    [Crossref] [Google Scholar]
  59. 59.
    Jamin A, Wicklund A, Wiebe MS. 2014. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity. J. Virol. 88:5342–55
    [Crossref] [Google Scholar]
  60. 60.
    Ibrahim N, Wicklund A, Wiebe MS. 2011. Molecular characterization of the host defense activity of the barrier to autointegration factor against vaccinia virus. J. Virol. 85:11588–600
    [Crossref] [Google Scholar]
  61. 61.
    Banham AH, Smith GL. 1993. Characterization of vaccinia virus gene B12R. J. Gen. Virol. 74:Part 122807–12
    [Crossref] [Google Scholar]
  62. 62.
    Olson AT, Wang Z, Rico AB, Wiebe MS. 2019. A poxvirus pseudokinase represses viral DNA replication via a pathway antagonized by its paralog kinase. PLOS Pathog 15:e1007608
    [Crossref] [Google Scholar]
  63. 63.
    Rico AB, Linville AC, Olson AT, Wang Z, Wiebe MS. 2021. The vaccinia virus B12 pseudokinase represses viral replication via interaction with the cellular kinase VRK1 and activation of the antiviral effector BAF. J. Virol. 95:3e02114–20
    [Crossref] [Google Scholar]
  64. 64.
    Czarnecki MW, Traktman P. 2017. The vaccinia virus DNA polymerase and its processivity factor. Virus Res 234:193–206
    [Crossref] [Google Scholar]
  65. 65.
    Earl PL, Jones EV, Moss B. 1986. Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene. PNAS 83:3659–63
    [Crossref] [Google Scholar]
  66. 66.
    Challberg MD, Englund PT. 1979. Purification and properties of the deoxyribonucleic acid polymerase induced by vaccinia virus. J. Biol. Chem. 254:7812–19
    [Crossref] [Google Scholar]
  67. 67.
    McDonald WF, Traktman P. 1994. Overexpression and purification of the vaccinia virus DNA polymerase. Protein Expr. Purif. 5:409–21
    [Crossref] [Google Scholar]
  68. 68.
    Hamilton MD, Evans DH. 2005. Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase. Nucleic Acids Res 33:2259–68
    [Crossref] [Google Scholar]
  69. 69.
    Gammon DB, Evans DH. 2009. The 3′-to-5′ exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination. J. Virol. 83:4236–50
    [Crossref] [Google Scholar]
  70. 70.
    McDonald WF, Traktman P. 1994. Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity. J. Biol. Chem. 269:31190–97
    [Crossref] [Google Scholar]
  71. 71.
    Stanitsa ES, Arps L, Traktman P. 2006. Vaccinia virus uracil DNA glycosylase interacts with the A20 protein to form a heterodimeric processivity factor for the viral DNA polymerase. J. Biol. Chem. 281:3439–51
    [Crossref] [Google Scholar]
  72. 72.
    Tarbouriech N, Ducournau C, Hutin S, Mas PJ, Man P et al. 2017. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Nat. Commun. 8:1455
    [Crossref] [Google Scholar]
  73. 73.
    Bersch B, Tarbouriech N, Burmeister WP, Iseni F. 2021. Solution structure of the C-terminal domain of A20, the missing brick for the characterization of the interface between vaccinia virus DNA polymerase and its processivity factor. J. Mol. Biol. 433:167009
    [Crossref] [Google Scholar]
  74. 74.
    Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Burmeister WP, Peyrefitte CN, Iseni F. 2016. Structural analysis of point mutations at the Vaccinia virus A20/D4 interface. Acta Crystallogr. F Struct. Biol. Commun. 72:687–91
    [Crossref] [Google Scholar]
  75. 75.
    Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F. 2015. Crystal structure of the vaccinia virus uracil-DNA glycosylase in complex with DNA. J. Biol. Chem. 290:17923–34
    [Crossref] [Google Scholar]
  76. 76.
    Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Betzi S, Morelli X et al. 2014. Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. PLOS Pathog 10:e1003978
    [Crossref] [Google Scholar]
  77. 77.
    Sele C, Gabel F, Gutsche I, Ivanov I, Burmeister WP et al. 2013. Low-resolution structure of vaccinia virus DNA replication machinery. J. Virol. 87:1679–89
    [Crossref] [Google Scholar]
  78. 78.
    Cohan B, Frappier L. 2021. Herpesvirus DNA polymerase processivity factors: not just for DNA synthesis. Virus Res 298:198394
    [Crossref] [Google Scholar]
  79. 79.
    Boyle KA, Stanitsa ES, Greseth MD, Lindgren JK, Traktman P. 2011. Evaluation of the role of the vaccinia virus uracil DNA glycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme. J. Biol. Chem. 286:24702–13
    [Crossref] [Google Scholar]
  80. 80.
    Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D. 2015. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase. BMC Struct. Biol. 15:10
    [Crossref] [Google Scholar]
  81. 81.
    Boyle KA, Arps L, Traktman P. 2007. Biochemical and genetic analysis of the vaccinia virus D5 protein: Multimerization-dependent ATPase activity is required to support viral DNA replication. J. Virol. 81:844–59
    [Crossref] [Google Scholar]
  82. 82.
    Hutin S, Ling WL, Round A, Effantin G, Reich S et al. 2016. Domain organization of vaccinia virus helicase-primase D5. J. Virol. 90:4604–13
    [Crossref] [Google Scholar]
  83. 83.
    De Silva FS, Paran N, Moss B. 2009. Products and substrate/template usage of vaccinia virus DNA primase. Virology 383:136–41
    [Crossref] [Google Scholar]
  84. 84.
    Evans E, Klemperer N, Ghosh R, Traktman P. 1995. The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acid-independent nucleoside triphosphatase. J. Virol. 69:5353–61
    [Crossref] [Google Scholar]
  85. 85.
    Harrison ML, Desaulniers MA, Noyce RS, Evans DH. 2016. The acidic C-terminus of vaccinia virus I3 single-strand binding protein promotes proper assembly of DNA-protein complexes. Virology 489:212–22
    [Crossref] [Google Scholar]
  86. 86.
    Tseng M, Palaniyar N, Zhang W, Evans DH. 1999. DNA binding and aggregation properties of the vaccinia virus I3L gene product. J. Biol. Chem. 274:21637–44
    [Crossref] [Google Scholar]
  87. 87.
    Yao XD, Evans DH. 2001. Effects of DNA structure and homology length on vaccinia virus recombination. J. Virol. 75:6923–32
    [Crossref] [Google Scholar]
  88. 88.
    DeMasi J, Traktman P. 2000. Clustered charge-to-alanine mutagenesis of the vaccinia virus H5 gene: isolation of a dominant, temperature-sensitive mutant with a profound defect in morphogenesis. J. Virol. 74:2393–405
    [Crossref] [Google Scholar]
  89. 89.
    Ishii K, Moss B. 2002. Mapping interaction sites of the A20R protein component of the vaccinia virus DNA replication complex. Virology 303:232–39
    [Crossref] [Google Scholar]
  90. 90.
    Kerr SM, Johnston LH, Odell M, Duncan SA, Law KM, Smith GL. 1991. Vaccinia DNA ligase complements Saccharomyces cerevisiae cdc9, localizes in cytoplasmic factories and affects virulence and virus sensitivity to DNA damaging agents. EMBO J 10:4343–50
    [Crossref] [Google Scholar]
  91. 91.
    Skinner MA, Moore JB, Binns MM, Smith GL, Boursnell ME. 1994. Deletion of fowlpox virus homologues of vaccinia virus genes between the 3βhydroxysteroid dehydrogenase (A44L) and DNA ligase (A50R) genes. J. Gen. Virol. 75:Part 92495–98
    [Crossref] [Google Scholar]
  92. 92.
    Kerr SM, Smith GL. 1991. Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 180:625–32
    [Crossref] [Google Scholar]
  93. 93.
    Paran N, De Silva FS, Senkevich TG, Moss B. 2009. Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication. Cell Host Microbe 6:563–69
    [Crossref] [Google Scholar]
  94. 94.
    DeLange AM, Carpenter MS, Choy J, Newsway VE. 1995. An etoposide-induced block in vaccinia virus telomere resolution is dependent on the virus-encoded DNA ligase. J. Virol. 69:2082–91
    [Crossref] [Google Scholar]
  95. 95.
    Lin YC, Li J, Irwin CR, Jenkins H, DeLange L, Evans DH. 2008. Vaccinia virus DNA ligase recruits cellular topoisomerase II to sites of viral replication and assembly. J. Virol. 82:5922–32
    [Crossref] [Google Scholar]
  96. 96.
    Da SM, Shen L, Tcherepanov V, Watson C, Upton C. 2006. Predicted function of the vaccinia virus G5R protein. Bioinformatics 22:2846–50
    [Crossref] [Google Scholar]
  97. 97.
    Iyer LM, Balaji S, Koonin EV, Aravind L. 2006. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–84
    [Crossref] [Google Scholar]
  98. 98.
    Senkevich TG, Koonin EV, Moss B. 2009. Predicted poxvirus FEN1-like nuclease required for homologous recombination, double-strand break repair and full-size genome formation. PNAS 106:17921–26
    [Crossref] [Google Scholar]
  99. 99.
    Culyba MJ, Harrison JE, Hwang Y, Bushman FD. 2006. DNA cleavage by the A22R resolvase of vaccinia virus. Virology 352:466–76
    [Crossref] [Google Scholar]
  100. 100.
    Garcia AD, Aravind L, Koonin EV, Moss B. 2000. Bacterial-type DNA Holliday junction resolvases in eukaryotic viruses. PNAS 97:8926–31
    [Crossref] [Google Scholar]
  101. 101.
    Garcia AD, Moss B. 2001. Repression of vaccinia virus Holliday junction resolvase inhibits processing of viral DNA into unit-length genomes. J. Virol. 75:6460–71
    [Crossref] [Google Scholar]
  102. 102.
    Stuart D, Ellison K, Graham K, McFadden G 1992. In vitro resolution of poxvirus replicative intermediates into linear minichromosomes with hairpin termini by a virally induced Holliday junction endonuclease. J. Virol. 66:1551–63
    [Crossref] [Google Scholar]
  103. 103.
    Reyes ED, Kulej K, Pancholi NJ, Akhtar LN, Avgousti DC et al. 2017. Identifying host factors associated with DNA replicated during virus infection. Mol. Cell. Proteom. 16:122079–97
    [Crossref] [Google Scholar]
  104. 104.
    Klemperer N, Ward J, Evans E, Traktman P. 1997. The vaccinia virus I1 protein is essential for the assembly of mature virions. J. Virol. 71:9285–94
    [Crossref] [Google Scholar]
  105. 105.
    Gammon DB, Gowrishankar B, Duraffour S, Andrei G, Upton C, Evans DH 2010. Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLOS Pathog 6:e1000984
    [Crossref] [Google Scholar]
  106. 106.
    Broyles SS. 1993. Vaccinia virus encodes a functional dUTPase. Virology 195:863–65
    [Crossref] [Google Scholar]
  107. 107.
    De Silva FS, Moss B. 2008. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice. Virol. J. 5:145
    [Crossref] [Google Scholar]
  108. 108.
    Slabaugh MB, Roseman N, Mathews C. 1988. Vaccinia virus encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J. Virol. 62:519–27
    [Crossref] [Google Scholar]
  109. 109.
    Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS et al. 2012. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150:831–41
    [Crossref] [Google Scholar]
  110. 110.
    Brennan G, Kitzman JO, Rothenburg S, Shendure J, Geballe AP. 2014. Adaptive gene amplification as an intermediate step in the expansion of virus host range. PLOS Pathog 10:e1004002
    [Crossref] [Google Scholar]
  111. 111.
    Brennan G, Kitzman JO, Shendure J, Geballe AP 2015. Experimental evolution identifies vaccinia virus mutations in A24R and A35R that antagonize the protein kinase R pathway and accompany collapse of an extragenic gene amplification. J. Virol. 89:9986–97
    [Crossref] [Google Scholar]
  112. 112.
    Senkevich TG, Zhivkoplias EK, Weisberg AS, Moss B. 2020. Inactivation of genes by frameshift mutations provides rapid adaptation of an attenuated vaccinia virus. J. Virol. 94:18e01053–20
    [Crossref] [Google Scholar]
  113. 113.
    Stuart CA, Zhivkoplias EK, Senkevich TG, Wyatt LS, Moss B. 2018. RNA polymerase mutations selected during experimental evolution enhance replication of a hybrid vaccinia virus with an intermediate transcription factor subunit replaced by the myxoma virus ortholog. J. Virol. 92:20e01089–18
    [Crossref] [Google Scholar]
  114. 114.
    Cone KR, Kronenberg ZN, Yandell M, Elde NC, McFadden G. Emergence of a viral RNA polymerase variant during gene copy number amplification promotes rapid evolution of vaccinia virus. J. Virol. 91:e01428–16
    [Google Scholar]
  115. 115.
    Kaverin NV, Varich NL, Surgay VV, Chernos VI. 1975. A quantitative estimation of poxvirus genome fraction transcribed as “early” and “late” mRNA. Virology 65:112–19
    [Crossref] [Google Scholar]
  116. 116.
    Paoletti E, Grady LJ. 1977. Transcriptional complexity of vaccinia virus in vivo and in vitro. J. Virol. 23:608–15
    [Crossref] [Google Scholar]
  117. 117.
    Moss B, Salzman NP. 1968. Sequential protein synthesis following vaccinia virus infection. J. Virol. 2:1016–27
    [Crossref] [Google Scholar]
  118. 118.
    Pennington TH. 1974. Vaccinia virus polypeptide synthesis: sequential appearance and stability of pre- and post-replicative polypeptides. J. Gen. Virol. 25:433–44
    [Crossref] [Google Scholar]
  119. 119.
    Vos JC, Stunnenberg HG. 1988. Derepression of a novel class of vaccinia virus genes upon DNA replication. EMBO J 7:3487–92
    [Crossref] [Google Scholar]
  120. 120.
    Keck JG, Baldick CJ Jr., Moss B. 1990. Role of DNA replication in vaccinia virus gene expression: A naked template is required for transcription of three late trans-activator genes. Cell 61:801–9
    [Crossref] [Google Scholar]
  121. 121.
    Morgan C, Ellison SA, Rose HM, Moore DH. 1955. Serial sections of vaccinia virus examined at one stage of development in the electron microscope. Exp. Cell Res. 9:572–78
    [Crossref] [Google Scholar]
  122. 122.
    Cassetti MC, Merchlinsky M, Wolffe EJ, Weisberg AS, Moss B. 1998. DNA packaging mutant: Repression of the vaccinia virus A32 gene results in noninfectious, DNA-deficient, spherical, enveloped particles. J. Virol. 72:5769–80
    [Crossref] [Google Scholar]
  123. 123.
    Unger B, Traktman P. 2004. Vaccinia virus morphogenesis: A13 phosphoprotein is required for assembly of mature virions. J. Virol. 78:8885–901
    [Crossref] [Google Scholar]
  124. 124.
    Derrien M, Punjabi A, Khanna M, Grubisha O, Traktman P. 1999. Tyrosine phosphorylation of A17 during vaccinia virus infection: involvement of the H1 phosphatase and the F10 kinase. J. Virol. 73:7287–96
    [Crossref] [Google Scholar]
  125. 125.
    Koonin EV, Senkevich TG, Chernos VI. 1993. Gene A32 product of vaccinia virus may be an ATPase involved in viral DNA packaging as indicated by sequence comparisons with other putative viral ATPases. Virus Genes 7:89–94
    [Crossref] [Google Scholar]
  126. 126.
    Iyer LM, Makarova KS, Koonin EV, Aravind L. 2004. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32:5260–79
    [Crossref] [Google Scholar]
  127. 127.
    Lin F-Y, Chan K-W, Wang C-Y, Wong M-L, Hsu W-L. 2011. Purification and functional motifs of the recombinant ATPase of orf virus. Protein Expr. Purif. 79:210–16
    [Crossref] [Google Scholar]
  128. 128.
    Lin F-Y, Chan K-W, Wang H-C, Hsu W-L, Wong M-L. 2010. Functional expression of the recombinant ATPase of orf virus. Arch. Virol. 155:1701–5
    [Crossref] [Google Scholar]
  129. 129.
    Lee M-L, Hsu W-L, Wang C-Y, Chen H-Y, Lin F-Y et al. 2016. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion. Virus Genes 52:625–32
    [Crossref] [Google Scholar]
  130. 130.
    Jensen ON, Houthaeve T, Shevchenko A, Cudmore S, Ashford T et al. 1996. Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J. Virol. 70:7485–97
    [Crossref] [Google Scholar]
  131. 131.
    Salmons T, Kuhn A, Wylie F, Schleich S, Rodriguez JR et al. 1997. Vaccinia virus membrane proteins p8 and p16 are cotranslationally inserted into the rough endoplasmic reticulum and retained in the intermediate compartment. J. Virol. 71:7404–20
    [Crossref] [Google Scholar]
  132. 132.
    Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Löwe J. 2006. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol. Cell 23:457–69
    [Crossref] [Google Scholar]
  133. 133.
    Chlanda P, Carbajal MA, Cyrklaff M, Griffiths G, Krijnse-Locker J. 2009. Membrane rupture generates single open membrane sheets during vaccinia virus assembly. Cell Host Microbe 6:81–90
    [Crossref] [Google Scholar]
  134. 134.
    Romero-Brey I, Bartenschlager R. 2014. Membranous replication factories induced by plus-strand RNA viruses. Viruses 6:2826–57
    [Crossref] [Google Scholar]
  135. 135.
    Romero-Brey I, Bartenschlager R. 2016. Endoplasmic reticulum: the favorite intracellular niche for viral replication and assembly. Viruses 8:160
    [Crossref] [Google Scholar]
  136. 136.
    Shulla A, Randall G. 2016. (+) RNA virus replication compartments: a safe home for (most) viral replication. Curr. Opin. Microbiol. 32:82–88
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-104752
Loading
/content/journals/10.1146/annurev-virology-091919-104752
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error