1932

Abstract

Since its discovery in 1976, Ebola virus (EBOV) has caused numerous outbreaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record is the 2013–2016 epidemic in west Africa with almost 30,000 cases and over 11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone. The epidemic highlighted the need for licensed drugs or vaccines to quickly combat the disease. While at the beginning of the epidemic no licensed countermeasures were available, several experimental drugs with preclinical efficacy were accelerated into human clinical trials and used to treat patients with Ebola virus disease (EVD) toward the end of the epidemic. In the same manner, vaccines with preclinical efficacy were administered primarily to known contacts of EVD patients on clinical trial protocols using a ring-vaccination strategy. In this review, we describe the pathogenesis of EBOV and summarize the current status of EBOV vaccine development and treatment of EVD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015708
2019-09-29
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015708.html?itemId=/content/journals/10.1146/annurev-virology-092818-015708&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM 2017. The pathogenesis of Ebola virus disease. Annu. Rev. Pathol. Mech. Dis. 12:387–418
    [Google Scholar]
  2. 2. 
    Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S et al. 2014. Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Arch. Virol. 159:1229–37
    [Google Scholar]
  3. 3. 
    Burk R, Bollinger L, Johnson JC, Wada J, Radoshitzky SR et al. 2016. Neglected filoviruses. FEMS Microbiol. Rev. 40:494–519
    [Google Scholar]
  4. 4. 
    Goldstein T, Anthony SJ, Gbakima A, Bird BH, Bangura J et al. 2018. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3:1084–89
    [Google Scholar]
  5. 5. 
    Forbes KM, Webala PW, Jääskeläinen AJ, Abdurahmen S, Ogola J et al. 2019. Bombali ebola virus in Mops condylurus bat, Kenya. Emerg. Infect. Dis. 95:955–57
    [Google Scholar]
  6. 6. 
    Yang X, Tan CW, Anderson DE, Jiang R, Li B et al. 2019. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nat. Micro. 4:390–95
    [Google Scholar]
  7. 7. 
    Negredo A, Palacios G, Vazquez-Moron S, Gonzalez F, Dopazo H et al. 2011. Discovery of an ebolavirus-like filovirus in Europe. PLOS Pathog 7:e1002304
    [Google Scholar]
  8. 8. 
    Kemenesi G, Kurucz K, Dallos B, Zana B, Foldes F et al. 2018. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg. Microbes Infect. 7:66
    [Google Scholar]
  9. 9. 
    WHO (World Health Organ.) 1978. Ebola haemorrhagic fever in Sudan, 1976. Bull. World Health Organ. 56:247–70
    [Google Scholar]
  10. 10. 
    WHO (World Health Organ.) 1978. Ebola haemorrhagic fever in Zaire, 1976. Bull. World Health Organ. 56:271–93
    [Google Scholar]
  11. 11. 
    Towner JS, Sealy TK, Khristova ML, Albarino CG, Conlan S et al. 2008. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLOS Pathog 4:e1000212
    [Google Scholar]
  12. 12. 
    Del Rio C, Mehta AK, Lyon GM 3rd, Guarner J 2014. Ebola hemorrhagic fever in 2014: the tale of an evolving epidemic. Ann. Intern. Med. 161:746–48
    [Google Scholar]
  13. 13. 
    Coltart CE, Lindsey B, Ghinai I, Johnson AM, Heymann DL 2017. The Ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B Biol. Sci. 372:20160297
    [Google Scholar]
  14. 14. 
    WHO (World Health Organ.) 2016. Ebola situation report—30 March 2016 Rep., World Health Organ., Geneva Switz: http://apps.who.int/ebola/current-situation/ebola-situation-report-30-march-2016
    [Google Scholar]
  15. 15. 
    Suder E, Furuyama W, Feldmann H, Marzi A, de Wit E 2018. The vesicular stomatitis virus-based Ebola virus vaccine: from concept to clinical trials. Hum. Vaccines Immunother. 14:2107–13
    [Google Scholar]
  16. 16. 
    Venkatraman N, Silman D, Folegatti PM, Hill AVS 2018. Vaccines against Ebola virus. Vaccine 36:5454–59
    [Google Scholar]
  17. 17. 
    Branswell H. 2017. As foreign powers approve Ebola vaccines, U.S. drug makers lag in development pipeline. STAT Dec. 8. https://www.statnews.com/2017/12/08/ebola-vaccine-development/
    [Google Scholar]
  18. 18. 
    Saurabh S, Prateek S. 2017. Role of contact tracing in containing the 2014 Ebola outbreak: a review. Afr. Health Sci. 17:225–36
    [Google Scholar]
  19. 19. 
    Kortepeter MG, Bausch DG, Bray M 2011. Basic clinical and laboratory features of filoviral hemorrhagic fever. J. Infect. Dis. 204:Suppl. 3S810–16
    [Google Scholar]
  20. 20. 
    Dixon MG, Schafer IJ. 2014. Ebola viral disease outbreak—West Africa, 2014. MMWR Morb. Mortal. Wkly. Rep. 63:548–51
    [Google Scholar]
  21. 21. 
    Feldmann H, Geisbert TW. 2011. Ebola haemorrhagic fever. Lancet 377:849–62
    [Google Scholar]
  22. 22. 
    Chertow DS, Kleine C, Edwards JK, Scaini R, Giuliani R, Sprecher A 2014. Ebola virus disease in West Africa—clinical manifestations and management. N. Engl. J. Med. 371:2054–57
    [Google Scholar]
  23. 23. 
    Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS et al. 2003. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 163:2347–70
    [Google Scholar]
  24. 24. 
    Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T et al. 2003. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am. J. Pathol. 163:2371–82
    [Google Scholar]
  25. 25. 
    McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A 2015. Type I interferons in infectious disease. Nat. Rev. Immunol. 15:87–103
    [Google Scholar]
  26. 26. 
    Mahanty S, Gupta M, Paragas J, Bray M, Ahmed R, Rollin PE 2003. Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection. Virology 312:415–24
    [Google Scholar]
  27. 27. 
    Hutchinson KL, Rollin PE. 2007. Cytokine and chemokine expression in humans infected with Sudan Ebola virus. J. Infect. Dis. 196:Suppl. 2S357–63
    [Google Scholar]
  28. 28. 
    Ansari AA. 2014. Clinical features and pathobiology of Ebolavirus infection. J. Autoimmun. 55:1–9
    [Google Scholar]
  29. 29. 
    Harcourt BH, Sanchez A, Offermann MK 1999. Ebola virus selectively inhibits responses to interferons, but not to interleukin-1beta, in endothelial cells. J. Virol. 73:3491–96
    [Google Scholar]
  30. 30. 
    Gupta M, Mahanty S, Ahmed R, Rollin PE 2001. Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1α and TNF-α and inhibit poly-IC-induced IFN-α in vitro. Virology 284:20–25
    [Google Scholar]
  31. 31. 
    Basler CF, Wang X, Muhlberger E, Volchkov V, Paragas J et al. 2000. The Ebola virus VP35 protein functions as a type I IFN antagonist. PNAS 97:12289–94
    [Google Scholar]
  32. 32. 
    Prins KC, Cardenas WB, Basler CF 2009. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKε and TBK-1. J. Virol. 83:3069–77
    [Google Scholar]
  33. 33. 
    Schumann M, Gantke T, Muhlberger E 2009. Ebola virus VP35 antagonizes PKR activity through its C-terminal interferon inhibitory domain. J. Virol. 83:8993–97
    [Google Scholar]
  34. 34. 
    Reid SP, Valmas C, Martinez O, Sanchez FM, Basler CF 2007. Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin α proteins with activated STAT1. J. Virol. 81:13469–77
    [Google Scholar]
  35. 35. 
    Wahl-Jensen V, Kurz S, Feldmann F, Buehler LK, Kindrachuk J et al. 2011. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression. PLOS Negl. Trop. Dis. 5:e1359
    [Google Scholar]
  36. 36. 
    Wong G, Kobinger GP, Qiu X 2014. Characterization of host immune responses in Ebola virus infections. Expert Rev. Clin. Immunol. 10:781–90
    [Google Scholar]
  37. 37. 
    Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S et al. 2004. Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23:2175–84
    [Google Scholar]
  38. 38. 
    Escudero-Perez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE 2014. Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLOS Pathog 10:e1004509
    [Google Scholar]
  39. 39. 
    Falasca L, Agrati C, Petrosillo N, Di Caro A, Capobianchi MR et al. 2015. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death. Cell Death Differ 22:1250–59
    [Google Scholar]
  40. 40. 
    Tsiotou AG, Sakorafas GH, Anagnostopoulos G, Bramis J 2005. Septic shock: current pathogenetic concepts from a clinical perspective. Med. Sci. Monit. 11:RA76–85
    [Google Scholar]
  41. 41. 
    Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN et al. 2013. The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J. Virol. 87:7471–85
    [Google Scholar]
  42. 42. 
    Bosio CM, Aman MJ, Grogan C, Hogan R, Ruthel G et al. 2003. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J. Infect. Dis. 188:1630–38
    [Google Scholar]
  43. 43. 
    Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B 2003. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J. Immunol. 170:2797–801
    [Google Scholar]
  44. 44. 
    Bixler SL, Goff AJ. 2015. The role of cytokines and chemokines in filovirus infection. Viruses 7:5489–507
    [Google Scholar]
  45. 45. 
    Bente D, Gren J, Strong JE, Feldmann H 2009. Disease modeling for Ebola and Marburg viruses. Dis. Model. Mech. 2:12–17
    [Google Scholar]
  46. 46. 
    Bradfute SB, Warfield KL, Bray M 2012. Mouse models for filovirus infections. Viruses 4:1477–508
    [Google Scholar]
  47. 47. 
    Connolly BM, Steele KE, Davis KJ, Geisbert TW, Kell WM et al. 1999. Pathogenesis of experimental Ebola virus infection in guinea pigs. J. Infect. Dis. 179:Suppl. 1S203–17
    [Google Scholar]
  48. 48. 
    Wahl-Jensen V, Bollinger L, Safronetz D, de Kok-Mercado F, Scott DP, Ebihara H 2012. Use of the Syrian hamster as a new model of Ebola virus disease and other viral hemorrhagic fevers. Viruses 4:3754–84
    [Google Scholar]
  49. 49. 
    Cross RW, Mire CE, Borisevich V, Geisbert JB, Fenton KA, Geisbert TW 2016. The domestic ferret (Mustela putorius furo) as a lethal infection model for 3 species of Ebolavirus. J. Infect. Dis 214:565–69
    [Google Scholar]
  50. 50. 
    Kozak R, He S, Kroeker A, de La Vega MA, Audet J et al. 2016. Ferrets infected with Bundibugyo virus or Ebola virus recapitulate important aspects of human filovirus disease. J. Virol. 90:9209–23
    [Google Scholar]
  51. 51. 
    Shurtleff AC, Warren TK, Bavari S 2011. Nonhuman primates as models for the discovery and development of ebolavirus therapeutics. Expert Opin. Drug Discov. 6:233–50
    [Google Scholar]
  52. 52. 
    Bray M. 2001. The role of the type I interferon response in the resistance of mice to filovirus infection. J. Gen. Virol. 82:1365–73
    [Google Scholar]
  53. 53. 
    Banadyga L, Dolan MA, Ebihara H 2016. Rodent-adapted filoviruses and the molecular basis of pathogenesis. J. Mol. Biol. 428:3449–66
    [Google Scholar]
  54. 54. 
    Raymond J, Bradfute S, Bray M 2011. Filovirus infection of STAT-1 knockout mice. J. Infect. Dis. 204:Suppl. 3S986–90
    [Google Scholar]
  55. 55. 
    Brannan JM, Froude JW, Prugar LI, Bakken RR, Zak SE et al. 2015. Interferon α/β receptor-deficient mice as a model for Ebola virus disease. J. Infect. Dis. 212:Suppl. 2S282–94
    [Google Scholar]
  56. 56. 
    Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J 1998. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 178:651–61
    [Google Scholar]
  57. 57. 
    Gibb TR, Bray M, Geisbert TW, Steele KE, Kell WM et al. 2001. Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J. Comp. Pathol. 125:233–42
    [Google Scholar]
  58. 58. 
    Bradfute SB, Warfield KL, Bavari S 2008. Functional CD8+ T cell responses in lethal Ebola virus infection. J. Immunol. 180:4058–66
    [Google Scholar]
  59. 59. 
    Bradfute SB, Braun DR, Shamblin JD, Geisbert JB, Paragas J et al. 2007. Lymphocyte death in a mouse model of Ebola virus infection. J. Infect. Dis. 196:Suppl. 2S296–304
    [Google Scholar]
  60. 60. 
    Ebihara H, Takada A, Kobasa D, Jones S, Neumann G et al. 2006. Molecular determinants of Ebola virus virulence in mice. PLOS Pathog 2:e73
    [Google Scholar]
  61. 61. 
    Shurtleff AC, Bavari S. 2015. Animal models for ebolavirus countermeasures discovery: What defines a useful model?. Expert Opin. Drug Discov. 10:685–702
    [Google Scholar]
  62. 62. 
    Bradfute SB, Swanson PE, Smith MA, Watanabe E, McDunn JE et al. 2010. Mechanisms and consequences of ebolavirus-induced lymphocyte apoptosis. J. Immunol. 184:327–35
    [Google Scholar]
  63. 63. 
    Bowen ET, Lloyd G, Harris WJ, Platt GS, Baskerville A, Vella EE 1977. Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent. Lancet 1:571–73
    [Google Scholar]
  64. 64. 
    Cheresiz SV, Semenova EA, Chepurnov AA 2016. Adapted lethality: what we can learn from guinea pig-adapted Ebola virus infection model. Adv. Virol. 2016:8059607
    [Google Scholar]
  65. 65. 
    Mateo M, Carbonnelle C, Reynard O, Kolesnikova L, Nemirov K et al. 2011. VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J. Infect. Dis. 204:Suppl. 3S1011–20
    [Google Scholar]
  66. 66. 
    Cross RW, Fenton KA, Geisbert JB, Mire CE, Geisbert TW 2015. Modeling the disease course of Zaire ebolavirus infection in the outbred guinea pig. J. Infect. Dis. 212:Suppl. 2S305–15
    [Google Scholar]
  67. 67. 
    Subbotina E, Dadaeva A, Kachko A, Chepurnov A 2010. Genetic factors of Ebola virus virulence in guinea pigs. Virus Res 153:121–33
    [Google Scholar]
  68. 68. 
    Volchkov VE, Chepurnov AA, Volchkova VA, Ternovoj VA, Klenk HD 2000. Molecular characterization of guinea pig-adapted variants of Ebola virus. Virology 277:147–55
    [Google Scholar]
  69. 69. 
    Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB et al. 2006. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J. Infect. Dis. 193:1650–57
    [Google Scholar]
  70. 70. 
    Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN et al. 2010. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375:1896–905
    [Google Scholar]
  71. 71. 
    Qiu X, Fernando L, Melito PL, Audet J, Feldmann H et al. 2012. Ebola GP-specific monoclonal antibodies protect mice and guinea pigs from lethal Ebola virus infection. PLOS Negl. Trop. Dis. 6:e1575
    [Google Scholar]
  72. 72. 
    Qiu X, Wong G, Audet J, Bello A, Fernando L et al. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53
    [Google Scholar]
  73. 73. 
    Ebihara H, Zivcec M, Gardner D, Falzarano D, LaCasse R et al. 2013. A Syrian golden hamster model recapitulating ebola hemorrhagic fever. J. Infect. Dis. 207:306–18
    [Google Scholar]
  74. 74. 
    Cross RW, Speranza E, Borisevich V, Widen SG, Wood TG et al. 2018. Comparative transcriptomics in Ebola Makona-infected ferrets, nonhuman primates, and humans. J. Infect. Dis. 218:S486–95
    [Google Scholar]
  75. 75. 
    Nakayama E, Saijo M. 2013. Animal models for Ebola and Marburg virus infections. Front. Microbiol. 4:267
    [Google Scholar]
  76. 76. 
    Yamaoka S, Banadyga L, Bray M, Ebihara H 2017. Small animal models for studying filovirus pathogenesis. Curr. Top. Microbiol. Immunol. 411:195–227
    [Google Scholar]
  77. 77. 
    Bowen ET, Platt GS, Simpson DI, McArdell LB, Raymond RT 1978. Ebola haemorrhagic fever: experimental infection of monkeys. Trans. R. Soc. Trop. Med. Hyg. 72:188–91
    [Google Scholar]
  78. 78. 
    Ellis DS, Bowen ET, Simpson DI, Stamford S 1978. Ebola virus: a comparison, at ultrastructural level, of the behaviour of the Sudan and Zaire strains in monkeys. Br. J. Exp. Pathol. 59:584–93
    [Google Scholar]
  79. 79. 
    Carrion R Jr, Ro Y, Hoosien K, Ticer A, Brasky K et al. 2011. A small nonhuman primate model for filovirus-induced disease. Virology 420:117–24
    [Google Scholar]
  80. 80. 
    Ryabchikova EI, Kolesnikova LV, Luchko SV 1999. An analysis of features of pathogenesis in two animal models of Ebola virus infection. J. Infect. Dis. 179:Suppl. 1S199–202
    [Google Scholar]
  81. 81. 
    St Claire MC, Ragland DR, Bollinger L, Jahrling PB 2017. Animal models of ebolavirus infection. Comp. Med. 67:253–62
    [Google Scholar]
  82. 82. 
    Ignatiev GM, Dadaeva AA, Luchko SV, Chepurnov AA 2000. Immune and pathophysiological processes in baboons experimentally infected with Ebola virus adapted to guinea pigs. Immunol. Lett. 71:131–40
    [Google Scholar]
  83. 83. 
    Geisbert TW, Strong JE, Feldmann H 2015. Considerations in the use of nonhuman primate models of Ebola virus and Marburg virus infection. J. Infect. Dis. 212:Suppl. 2S91–97
    [Google Scholar]
  84. 84. 
    Eddy GA, Cole FEJ. 1978. The development of a vaccine against African hemorrhagic fever. Ebola Virus Haemorrhagic Fever—Proceedings of an International Colloquium on Ebola Virus Infection and Other Haemorrhagic Fevers Held in Antwerp, Belgium, December 6–8, 1977 SR Pattyn 162–66 New York: Elsevier/North-Holland Biomed.
    [Google Scholar]
  85. 85. 
    Brès P. 1977. Report of the Informal Consultation on the Marburg virus-like disease outbreaks in the Sudan and Zaire in 1976, held at the London School of Hygiene and Tropical Medicine, 4 and 5 January 1977 Doc. VIR/77.1, World Health Organ., Geneva Switz:.
    [Google Scholar]
  86. 86. 
    Lupton HW, Lambert RD, Bumgardner DL, Moe JB, Eddy GA 1980. Inactivated vaccine for Ebola virus efficacious in guineapig model. Lancet 2:1294–95
    [Google Scholar]
  87. 87. 
    Reynolds P, Marzi A. 2017. Ebola and Marburg virus vaccines. Virus Genes 53:501–15
    [Google Scholar]
  88. 88. 
    Xu L, Sanchez A, Yang Z, Zaki SR, Nabel EG et al. 1998. Immunization for Ebola virus infection. Nat. Med. 4:37–42
    [Google Scholar]
  89. 89. 
    Vanderzanden L, Bray M, Fuller D, Roberts T, Custer D et al. 1998. DNA vaccines expressing either the GP or NP genes of Ebola virus protect mice from lethal challenge. Virology 246:134–44
    [Google Scholar]
  90. 90. 
    Grant-Klein RJ, Altamura LA, Badger CV, Bounds CE, Van Deusen NM et al. 2015. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Hum. Vaccines Immunother. 11:1991–2004
    [Google Scholar]
  91. 91. 
    Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ 2000. Development of a preventive vaccine for Ebola virus infection in primates. Nature 408:605–9
    [Google Scholar]
  92. 92. 
    Patel A, Reuschel EL, Kraynyak KA, Racine T, Park DH et al. 2018. Protective efficacy and long-term immunogenicity in cynomolgus macaques by Ebola virus glycoprotein synthetic DNA vaccines. J. Infect. Dis. 219:544–55
    [Google Scholar]
  93. 93. 
    Tebas P, Kraynyak KA, Patel A, Maslow JN, Morrow MP et al. 2019. Intradermal SynCon Ebola GP DNA vaccine is temperature stable and safely demonstrates cellular and humoral immunogenicity advantages in healthy volunteers. J. Infect. Dis. 220:400–10
    [Google Scholar]
  94. 94. 
    Warfield KL, Perkins JG, Swenson DL, Deal EM, Bosio CM et al. 2004. Role of natural killer cells in innate protection against lethal ebola virus infection. J. Exp. Med. 200:169–79
    [Google Scholar]
  95. 95. 
    Ayithan N, Bradfute SB, Anthony SM, Stuthman KS, Dye JM et al. 2014. Ebola virus-like particles stimulate type I interferons and proinflammatory cytokine expression through the toll-like receptor and interferon signaling pathways. J. Interferon Cytokine Res. 34:79–89
    [Google Scholar]
  96. 96. 
    Swenson DL, Warfield KL, Negley DL, Schmaljohn A, Aman MJ, Bavari S 2005. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine 23:3033–42
    [Google Scholar]
  97. 97. 
    Warfield KL, Bosio CM, Welcher BC, Deal EM, Mohamadzadeh M et al. 2003. Ebola virus-like particles protect from lethal Ebola virus infection. PNAS 100:15889–94
    [Google Scholar]
  98. 98. 
    Warfield KL, Olinger G, Deal EM, Swenson DL, Bailey M et al. 2005. Induction of humoral and CD8+ T cell responses are required for protection against lethal Ebola virus infection. J. Immunol. 175:1184–91
    [Google Scholar]
  99. 99. 
    Warfield KL, Swenson DL, Olinger GG, Kalina WV, Aman MJ, Bavari S 2007. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge. J. Infect. Dis. 196:Suppl. 2S430–37
    [Google Scholar]
  100. 100. 
    Halfmann P, Kim JH, Ebihara H, Noda T, Neumann G et al. 2008. Generation of biologically contained Ebola viruses. PNAS 105:1129–33
    [Google Scholar]
  101. 101. 
    Halfmann P, Ebihara H, Marzi A, Hatta Y, Watanabe S et al. 2009. Replication-deficient ebolavirus as a vaccine candidate. J. Virol. 83:3810–15
    [Google Scholar]
  102. 102. 
    Marzi A, Halfmann P, Hill-Batorski L, Feldmann F, Shupert WL et al. 2015. An Ebola whole-virus vaccine is protective in nonhuman primates. Science 348:439–42
    [Google Scholar]
  103. 103. 
    Devitt T. 2018. Ebola vaccine inches toward human clinical trials News Release, Feb. 21, Univ. Wisconsin–Madison. https://news.wisc.edu/ebola-vaccine-inches-toward-human-clinical-trials/
    [Google Scholar]
  104. 104. 
    Pushko P, Bray M, Ludwig GV, Parker M, Schmaljohn A et al. 2000. Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine 19:142–53
    [Google Scholar]
  105. 105. 
    Herbert AS, Kuehne AI, Barth JF, Ortiz RA, Nichols DK et al. 2013. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus. J. Virol. 87:4952–64
    [Google Scholar]
  106. 106. 
    Singh S, Kumar R, Agrawal B 2018. Adenoviral vector-based vaccines and gene therapies: current status and future prospects. Adenovirus YA Desheva. London: IntechOpen https://doi.org/10.5772/intechopen.79697
    [Crossref] [Google Scholar]
  107. 107. 
    Sullivan NJ, Geisbert TW, Geisbert JB, Xu L, Yang ZY et al. 2003. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 424:681–84
    [Google Scholar]
  108. 108. 
    Geisbert TW, Bailey M, Hensley L, Asiedu C, Geisbert J et al. 2011. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J. Virol. 85:4222–33
    [Google Scholar]
  109. 109. 
    Stanley DA, Honko AN, Asiedu C, Trefry JC, Lau-Kilby AW et al. 2014. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat. Med. 20:1126–29
    [Google Scholar]
  110. 110. 
    Feldmann H, Feldmann F, Marzi A 2018. Ebola: lessons on vaccine development. Annu. Rev. Microbiol. 72:423–46
    [Google Scholar]
  111. 111. 
    Domi A, Feldmann F, Basu R, McCurley N, Shifflett K et al. 2018. A single dose of modified vaccinia Ankara expressing Ebola virus like particles protects nonhuman primates from lethal Ebola virus challenge. Sci. Rep. 8:864
    [Google Scholar]
  112. 112. 
    Letchworth GJ, Rodriguez LL, Del C Barrera J 1999. Vesicular stomatitis. Vet. J. 157:239–60
    [Google Scholar]
  113. 113. 
    Geisbert TW, Feldmann H. 2011. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J. Infect. Dis. 204:Suppl. 3S1075–81
    [Google Scholar]
  114. 114. 
    Mire CE, Miller AD, Carville A, Westmoreland SV, Geisbert JB et al. 2012. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates. PLOS Negl. Trop. Dis. 6:e1567
    [Google Scholar]
  115. 115. 
    Garbutt M, Liebscher R, Wahl-Jensen V, Jones S, Moller P et al. 2004. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J. Virol. 78:5458–65
    [Google Scholar]
  116. 116. 
    Geisbert TW, Daddario-DiCaprio KM, Geisbert JB, Reed DS, Feldmann F et al. 2008. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine 26:6894–900
    [Google Scholar]
  117. 117. 
    Geisbert TW, Daddario-DiCaprio KM, Lewis MG, Geisbert JB, Grolla A et al. 2008. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLOS Pathog 4:e1000225
    [Google Scholar]
  118. 118. 
    Geisbert TW, Geisbert JB, Leung A, Daddario-DiCaprio KM, Hensley LE et al. 2009. Single-injection vaccine protects nonhuman primates against infection with Marburg virus and three species of Ebola virus. J. Virol. 83:7296–304
    [Google Scholar]
  119. 119. 
    Marzi A, Robertson SJ, Haddock E, Feldmann F, Hanley PW et al. 2015. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science 349:739–42
    [Google Scholar]
  120. 120. 
    Blaney JE, Wirblich C, Papaneri AB, Johnson RF, Myers CJ et al. 2011. Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and Ebola viruses. J. Virol. 85:10605–16
    [Google Scholar]
  121. 121. 
    Blaney JE, Marzi A, Willet M, Papaneri AB, Wirblich C et al. 2013. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine. PLOS Pathog 9:e1003389
    [Google Scholar]
  122. 122. 
    Willet M, Kurup D, Papaneri A, Wirblich C, Hooper JW et al. 2015. Preclinical development of inactivated rabies virus-based polyvalent vaccine against rabies and filoviruses. J. Infect. Dis. 212:Suppl. 2S414–24
    [Google Scholar]
  123. 123. 
    Skiadopoulos MH, Surman SR, Riggs JM, Orvell C, Collins PL, Murphy BR 2002. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology 297:136–52
    [Google Scholar]
  124. 124. 
    Bukreyev A, Yang L, Zaki SR, Shieh WJ, Rollin PE et al. 2006. A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose Ebola virus challenge. J. Virol. 80:2267–79
    [Google Scholar]
  125. 125. 
    Bukreyev A, Rollin PE, Tate MK, Yang L, Zaki SR et al. 2007. Successful topical respiratory tract immunization of primates against Ebola virus. J. Virol. 81:6379–88
    [Google Scholar]
  126. 126. 
    Meyer M, Garron T, Lubaki NM, Mire CE, Fenton KA et al. 2015. Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. J. Clin. Invest. 125:3241–55
    [Google Scholar]
  127. 127. 
    Martin JE, Sullivan NJ, Enama ME, Gordon IJ, Roederer M et al. 2006. A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clin. Vaccine Immunol. 13:1267–77
    [Google Scholar]
  128. 128. 
    Ledgerwood JE, Costner P, Desai N, Holman L, Enama ME et al. 2010. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults. Vaccine 29:304–13
    [Google Scholar]
  129. 129. 
    Sarwar UN, Costner P, Enama ME, Berkowitz N, Hu Z et al. 2015. Safety and immunogenicity of DNA vaccines encoding Ebolavirus and Marburgvirus wild-type glycoproteins in a phase I clinical trial. J. Infect. Dis. 211:549–57
    [Google Scholar]
  130. 130. 
    Kibuuka H, Berkowitz NM, Millard M, Enama ME, Tindikahwa A et al. 2015. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet 385:1545–54
    [Google Scholar]
  131. 131. 
    Marzi A, Mire CE. 2019. Current Ebola virus vaccine progress. BioDrugs 33:9–14
    [Google Scholar]
  132. 132. 
    Milligan ID, Gibani MM, Sewell R, Clutterbuck EA, Campbell D et al. 2016. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia Ankara-vectored Ebola vaccines: a randomized clinical trial. JAMA 315:1610–23
    [Google Scholar]
  133. 133. 
    Winslow RL, Milligan ID, Voysey M, Luhn K, Shukarev G et al. 2017. Immune responses to novel adenovirus type 26 and modified vaccinia virus Ankara-vectored Ebola vaccines at 1 year. JAMA 317:1075–77
    [Google Scholar]
  134. 134. 
    Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM et al. 2017. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: an open phase I/II trial in healthy adults in Russia. Hum. Vaccines Immunother. 13:613–20
    [Google Scholar]
  135. 135. 
    Regules JA, Beigel JH, Paolino KM, Voell J, Castellano AR et al. 2017. A recombinant vesicular stomatitis virus Ebola vaccine. N. Engl. J. Med. 376:330–41
    [Google Scholar]
  136. 136. 
    Agnandji ST, Fernandes JF, Bache EB, Obiang Mba RM, Brosnahan JS et al. 2017. Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: a phase I randomised trial. PLOS Med 14:e1002402
    [Google Scholar]
  137. 137. 
    Agnandji ST, Huttner A, Zinser ME, Njuguna P, Dahlke C et al. 2016. Phase 1 trials of rVSV Ebola vaccine in Africa and Europe. N. Engl. J. Med. 374:1647–60
    [Google Scholar]
  138. 138. 
    Dahlke C, Kasonta R, Lunemann S, Krahling V, Zinser ME et al. 2017. Dose-dependent T-cell dynamics and cytokine cascade following rVSV-ZEBOV immunization. EBioMedicine 19:107–18
    [Google Scholar]
  139. 139. 
    ElSherif MS, Brown C, MacKinnon-Cameron D, Li L, Racine T et al. 2017. Assessing the safety and immunogenicity of recombinant vesicular stomatitis virus Ebola vaccine in healthy adults: a randomized clinical trial. CMAJ 189:E819–27
    [Google Scholar]
  140. 140. 
    Heppner DG Jr, Kemp TL, Martin BK, Ramsey WJ, Nichols R et al. 2017. Safety and immunogenicity of the rVSVG-ZEBOV-GP Ebola virus vaccine candidate in healthy adults: a phase 1b randomised, multicentre, double-blind, placebo-controlled, dose-response study. Lancet Infect. Dis. 17:854–66
    [Google Scholar]
  141. 141. 
    Huttner A, Combescure C, Grillet S, Haks MC, Quinten E et al. 2017. A dose-dependent plasma signature of the safety and immunogenicity of the rVSV-Ebola vaccine in Europe and Africa. Sci. Transl. Med. 9:eaaj1701
    [Google Scholar]
  142. 142. 
    Huttner A, Dayer JA, Yerly S, Combescure C, Auderset F et al. 2015. The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infect. Dis. 15:1156–66
    [Google Scholar]
  143. 143. 
    Kennedy SB, Bolay F, Kieh M, Grandits G, Badio M et al. 2017. Phase 2 placebo-controlled trial of two vaccines to prevent Ebola in Liberia. N. Engl. J. Med. 377:1438–47
    [Google Scholar]
  144. 144. 
    Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ et al. 2017. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial. Lancet 389:505–18
    [Google Scholar]
  145. 145. 
    Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ et al. 2015. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 386:857–66
    [Google Scholar]
  146. 146. 
    Carter RJ, Idriss A, Widdowson MA, Samai M, Schrag SJ et al. 2018. Implementing a multisite clinical trial in the midst of an Ebola outbreak: lessons learned from the Sierra Leone trial to introduce a vaccine against Ebola. J. Infect. Dis. 217:S16–23
    [Google Scholar]
  147. 147. 
    Halperin SA, Arribas JR, Rupp R, Andrews CP, Chu L et al. 2017. Six-month safety data of recombinant vesicular stomatitis virus–Zaire Ebola virus envelope glycoprotein vaccine in a phase 3 double-blind, placebo-controlled randomized study in healthy adults. J. Infect. Dis. 215:1789–98
    [Google Scholar]
  148. 148. 
    WHO (World Health Organ.) 2019. Ebola situation report—2 April 2019 Rep., World Health Organ., Geneva Switz: https://apps.who.int/iris/bitstream/handle/10665/311641/SITREP_EVD_DRC_20190331-eng.pdf?ua=1
    [Google Scholar]
  149. 149. 
    Mupapa K, Massamba M, Kibadi K, Kuvula K, Bwaka A et al. 1999. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. J. Infect. Dis. 179:Suppl. 1S18–23
    [Google Scholar]
  150. 150. 
    van Griensven J, Edwards T, de Lamballerie X, Semple MG, Gallian P et al. 2016. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N. Engl. J. Med. 374:33–42
    [Google Scholar]
  151. 151. 
    van Griensven J, De Weiggheleire A, Delamou A, Smith PG, Edwards T et al. 2016. The use of Ebola convalescent plasma to treat Ebola virus disease in resource-constrained settings: a perspective from the field. Clin. Infect. Dis. 62:69–74
    [Google Scholar]
  152. 152. 
    WHO (World Health Organ.) 2015. Categorization and prioritization of drugs for consideration for testing or use in patients infected with Ebola Rep., World Health Organ., Geneva Switz: http://www.who.int/medicines/ebola-treatment/2015_0703TablesofEbolaDrugs.pdf?ua=1
    [Google Scholar]
  153. 153. 
    Li H, Ying T, Yu F, Lu L, Jiang S 2015. Development of therapeutics for treatment of Ebola virus infection. Microbes Infect 17:109–17
    [Google Scholar]
  154. 154. 
    Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M et al. 2016. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351:1339–42
    [Google Scholar]
  155. 155. 
    Misasi J, Gilman MS, Kanekiyo M, Gui M, Cagigi A et al. 2016. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 351:1343–46
    [Google Scholar]
  156. 156. 
    Marzi A, Yoshida R, Miyamoto H, Ishijima M, Suzuki Y et al. 2012. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLOS ONE 7:e36192
    [Google Scholar]
  157. 157. 
    Qiu X, Audet J, Wong G, Pillet S, Bello A et al. 2012. Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 4:138ra81
    [Google Scholar]
  158. 158. 
    Olinger GG Jr, Pettitt J, Kim D, Working C, Bohorov O et al. 2012. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. PNAS 109:18030–35
    [Google Scholar]
  159. 159. 
    Mendoza EJ, Qiu X, Kobinger GP 2016. Progression of Ebola therapeutics during the 2014–2015 outbreak. Trends Mol. Med. 22:164–73
    [Google Scholar]
  160. 160. 
    Li TC, Chan MC, Lee N 2015. Clinical implications of antiviral resistance in influenza. Viruses 7:4929–44
    [Google Scholar]
  161. 161. 
    Oestereich L, Ludtke A, Wurr S, Rieger T, Munoz-Fontela C, Gunther S 2014. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir. Res. 105:17–21
    [Google Scholar]
  162. 162. 
    Bixler SL, Bocan TM, Wells J, Wetzel KS, Van Tongeren SA et al. 2018. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antivir. Res. 151:97–104
    [Google Scholar]
  163. 163. 
    Sissoko D, Laouenan C, Folkesson E, M'Lebing AB, Beavogui AH et al. 2016. Experimental treatment with favipiravir for Ebola virus disease (the JIKI trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLOS Med 13:e1001967
    [Google Scholar]
  164. 164. 
    Bai CQ, Mu JS, Kargbo D, Song YB, Niu WK et al. 2016. Clinical and virological characteristics of Ebola virus disease patients treated with favipiravir (T-705)—Sierra Leone, 2014. Clin. Infect. Dis. 63:1288–94
    [Google Scholar]
  165. 165. 
    Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL et al. 2016. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531:381–85
    [Google Scholar]
  166. 166. 
    Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL et al. 2014. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 508:402–5
    [Google Scholar]
  167. 167. 
    Thi EP, Mire CE, Lee AC, Geisbert JB, Zhou JZ et al. 2015. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 521:362–65
    [Google Scholar]
  168. 168. 
    Kraft CS, Hewlett AL, Koepsell S, Winkler AM, Kratochvil CJ et al. 2015. The use of TKM-100802 and convalescent plasma in 2 patients with Ebola virus disease in the United States. Clin. Infect. Dis. 61:496–502
    [Google Scholar]
  169. 169. 
    Heald AE, Iversen PL, Saoud JB, Sazani P, Charleston JS et al. 2014. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against Ebola virus and Marburg virus: results of two single-ascending-dose studies. Antimicrob. Agents Chemother. 58:6639–47
    [Google Scholar]
  170. 170. 
    Jahrling PB, Geisbert TW, Geisbert JB, Swearengen JR, Bray M et al. 1999. Evaluation of immune globulin and recombinant interferon-α2b for treatment of experimental Ebola virus infections. J. Infect. Dis. 179:Suppl. 1S224–34
    [Google Scholar]
  171. 171. 
    Smith LM, Hensley LE, Geisbert TW, Johnson J, Stossel A et al. 2013. Interferon-β therapy prolongs survival in rhesus macaque models of Ebola and Marburg hemorrhagic fever. J. Infect. Dis. 208:310–18
    [Google Scholar]
  172. 172. 
    Qiu X, Wong G, Fernando L, Audet J, Bello A et al. 2013. mAbs and Ad-vectored IFN-α therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms. Sci. Transl. Med. 5:207ra143
    [Google Scholar]
  173. 173. 
    Konde MK, Baker DP, Traore FA, Sow MS, Camara A et al. 2017. Interferon β-1a for the treatment of Ebola virus disease: a historically controlled, single-arm proof-of-concept trial. PLOS ONE 12:e0169255
    [Google Scholar]
  174. 174. 
    CDC (Cent. Dis. Control Prevent.) 2018. 2018 Democratic Republic of the Congo, Bikoro Rep., Cent. Dis. Control Prev Atlanta: https://www.cdc.gov/vhf/ebola/outbreaks/drc/2018-may.html
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015708
Loading
/content/journals/10.1146/annurev-virology-092818-015708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error