1932

Abstract

Zika virus (ZIKV) and nonhuman primates have been inextricably linked since the virus was first discovered in a sentinel rhesus macaque in Uganda in 1947. Soon after ZIKV was epidemiologically associated with birth defects in Brazil late in 2015, researchers capitalized on the fact that rhesus macaques are commonly used to model viral immunity and pathogenesis, quickly establishing macaque models for ZIKV infection. Within months, the susceptibility of pregnant macaques to experimental ZIKV challenge and ZIKV-associated abnormalities in fetuses was confirmed. This review discusses key unanswered questions in ZIKV immunity and in the pathogenesis of thecongenital Zika virus syndrome. We focus on those questions that can be best addressed in pregnant nonhuman primates and lessons learned from developing macaque models for ZIKV amid an active epidemic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015732
2019-09-29
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015732.html?itemId=/content/journals/10.1146/annurev-virology-092818-015732&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Andersen K. 2009. The ten worst greatest-hits albums of all time. MTV http://www.mtv.com/news/2575998/the-ten-worst-greatest-hits-albums-of-all-time/
    [Google Scholar]
  2. 2. 
    Dick GW, Kitchen SF, Haddow AJ 1952. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46:509–20
    [Google Scholar]
  3. 3. 
    Zanluca C, Melo VC, Mosimann AL, Santos GI, Santos CN, Luz K 2015. First report of autochthonous transmission of Zika virus in Brazil. Mem. Inst. Oswaldo Cruz 110:569–72
    [Google Scholar]
  4. 4. 
    Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D et al. 2016. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat. Med. 22:1448–55
    [Google Scholar]
  5. 5. 
    Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E et al. 2016. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22:1256–59
    [Google Scholar]
  6. 6. 
    Koide F, Goebel S, Snyder B, Walters KB, Gast A et al. 2016. Development of a Zika virus infection model in cynomolgus macaques. Front. Microbiol. 7:2028
    [Google Scholar]
  7. 7. 
    Li XF, Dong HL, Huang XY, Qiu YF, Wang HJ et al. 2016. Characterization of a 2016 clinical isolate of Zika virus in non-human primates. EBioMedicine 12:170–77
    [Google Scholar]
  8. 8. 
    Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G et al. 2016. A rhesus macaque model of Asian-lineage Zika virus infection. Nat. Commun. 7:12204
    [Google Scholar]
  9. 9. 
    Abbink P, Larocca RA, De La Barrera RA, Bricault CA, Moseley ET et al. 2016. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353:1129–32
    [Google Scholar]
  10. 10. 
    Miranda-Filho DB, Martelli CM, Ximenes RA, Araújo TV, Rocha MA et al. 2016. Initial description of the presumed congenital Zika syndrome. Am. J. Public Health 106:598–600
    [Google Scholar]
  11. 11. 
    Cent. Dis. Control Prev 2018. Congenital Zika syndrome & other birth defects Rep., Cent. Dis. Control Prev Atlanta: https://www.cdc.gov/pregnancy/zika/testing-follow-up/zika-syndrome-birth-defects.html
    [Google Scholar]
  12. 12. 
    Saiz JC, Martín-Acebes MA. 2017. The race to find antivirals for Zika virus. Antimicrob. Agents Chemother. 61:e00411–17
    [Google Scholar]
  13. 13. 
    Alves MP, Vielle NJ, Thiel V, Pfaender S 2018. Research models and tools for the identification of antivirals and therapeutics against Zika virus infection. Viruses 10:593
    [Google Scholar]
  14. 14. 
    Pereira L. 2011. Have we overlooked congenital cytomegalovirus infection as a cause of stillbirth?. J. Infect. Dis. 203:1510–12
    [Google Scholar]
  15. 15. 
    Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV et al. 2017. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr 171:288–95
    [Google Scholar]
  16. 16. 
    Rice ME, Galang RR, Roth NM, Ellington SR, Moore CA et al. 2018. Vital signs: Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection—U.S. territories and freely associated states, 2018. MMWR Morb. Mortal. Wkly. Rep. 67:858–67
    [Google Scholar]
  17. 17. 
    Mohr EL, Block LN, Newman CM, Stewart LM, Koenig M et al. 2018. Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLOS ONE 13:e0190617
    [Google Scholar]
  18. 18. 
    Hirsch AJ, Roberts VHJ, Grigsby PL, Haese N, Schabel MC et al. 2018. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat. Commun. 9:263
    [Google Scholar]
  19. 19. 
    Magnani DM, Rogers TF, Maness NJ, Grubaugh ND, Beutler N et al. 2018. Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques. Nat. Commun. 9:1624
    [Google Scholar]
  20. 20. 
    Martinot AJ, Abbink P, Afacan O, Prohl AK, Bronson R et al. 2018. Fetal neuropathology in Zika virus-infected pregnant female rhesus monkeys. Cell 173:1111–22
    [Google Scholar]
  21. 21. 
    Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP et al. 2018. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 24:368–74
    [Google Scholar]
  22. 22. 
    Nguyen SM, Antony KM, Dudley DM, Kohn S, Simmons HA et al. 2017. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLOS Pathog 13:e1006378
    [Google Scholar]
  23. 23. 
    Dudley DM, Van Rompay KK, Coffey LL, Ardeshir A, Keesler RI et al. 2018. Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nat. Med. 24:1104–7
    [Google Scholar]
  24. 24. 
    Coffey LL, Keesler RI, Pesavento PA, Woolard K, Singapuri A et al. 2018. Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat. Commun. 9:2414
    [Google Scholar]
  25. 25. 
    Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jääskeläinen AJ et al. 2016. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374:2142–51
    [Google Scholar]
  26. 26. 
    Suy A, Sulleiro E, Rodó C, É Vázquez, Bocanegra C et al. 2016. Prolonged Zika virus viremia during pregnancy. N. Engl. J. Med. 375:2611–13
    [Google Scholar]
  27. 27. 
    Oliveira DB, Almeida FJ, Durigon EL, Mendes ÉA, Braconi CT et al. 2016. Prolonged shedding of Zika virus associated with congenital infection. N. Engl. J. Med. 375:1202–4
    [Google Scholar]
  28. 28. 
    Baud D, Van Mieghem T, Musso D, Truttmann AC, Panchaud A, Vouga M 2016. Clinical management of pregnant women exposed to Zika virus. Lancet Infect. Dis. 16:523
    [Google Scholar]
  29. 29. 
    de Paula Freitas B, de Oliveira Dias JR, Prazeres J, Sacramento GA, Ko AI et al. 2016. Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. JAMA Ophthalmol 134:529–35
    [Google Scholar]
  30. 30. 
    Guevara JG, Agarwal-Sinha S. 2018. Ocular abnormalities in congenital Zika syndrome: a case report, and review of the literature. J. Med. Case Rep. 12:161
    [Google Scholar]
  31. 31. 
    Lin HZ, Tambyah PA, Yong EL, Biswas A, Chan SY 2017. A review of Zika virus infections in pregnancy and implications for antenatal care in Singapore. Singapore Med. J. 58:171–78
    [Google Scholar]
  32. 32. 
    Shapiro-Mendoza CK, Rice ME, Galang RR, Fulton AC, VanMaldeghem K et al. 2017. Pregnancy outcomes after maternal Zika virus infection during pregnancy—U.S. territories, January 1, 2016–April 25, 2017. MMWR Morb. Mortal. Wkly. Rep. 66:615–21
    [Google Scholar]
  33. 33. 
    Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L et al. 2016. Zika virus infection in pregnant women in Rio de Janeiro. N. Engl. J. Med. 375:2321–34
    [Google Scholar]
  34. 34. 
    Schaub B, Monthieux A, Najihoullah F, Harte C, Césaire R et al. 2016. Late miscarriage: another Zika concern. Eur. J. Obstet. Gynecol. Reprod. Biol. 207:240–41
    [Google Scholar]
  35. 35. 
    Hoen B, Schaub B, Funk AL, Ardillon V, Boullard M et al. 2018. Pregnancy outcomes after ZIKV infection in French territories in the Americas. N. Engl. J. Med. 378:985–94
    [Google Scholar]
  36. 36. 
    van der Eijk AA, van Genderen PJ, Verdijk RM, Reusken CB, Mögling R et al. 2016. Miscarriage associated with Zika virus infection. N. Engl. J. Med. 375:1002–4
    [Google Scholar]
  37. 37. 
    Sarno M, Sacramento GA, Khouri R, do Rosário MS, Costa F et al. 2016. Zika virus infection and stillbirths: a case of hydrops fetalis, hydranencephaly and fetal demise. PLOS Negl. Trop. Dis. 10:e0004517
    [Google Scholar]
  38. 38. 
    Goncé A, Martínez MJ, Marbán-Castro E, Saco A, Soler A et al. 2018. Spontaneous abortion associated with Zika virus infection and persistent viremia. Emerg. Infect. Dis. 24:933–35
    [Google Scholar]
  39. 39. 
    Castro MC, Han QC, Carvalho LR, Victora CG, França GVA 2018. Implications of Zika virus and congenital Zika syndrome for the number of live births in Brazil. PNAS 115:6177–82
    [Google Scholar]
  40. 40. 
    World Health Organ 2018. Maternal, newborn, child and adolescent health: stillbirths Data Stat. Epidemiol., World Health Organ Geneva, Switz: https://www.who.int/maternal_child_adolescent/epidemiology/stillbirth/en/
    [Google Scholar]
  41. 41. 
    Alliance Matern. Newborn Health Improv. Mortal. Study Group 2018. Population-based rates, timing, and causes of maternal deaths, stillbirths, and neonatal deaths in south Asia and sub-Saharan Africa: a multi-country prospective cohort study. Lancet Glob. Health 6:e1297–1308
    [Google Scholar]
  42. 42. 
    Goldenberg RL, McClure EM, Saleem S, Reddy UM 2010. Infection-related stillbirths. Lancet 375:1482–90
    [Google Scholar]
  43. 43. 
    Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P et al. 2016. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387:2125–32
    [Google Scholar]
  44. 44. 
    Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP et al. 2016. Possible association between Zika virus infection and microcephaly—Brazil, 2015. MMWR Morb. Mortal. Wkly. Rep. 65:59–62
    [Google Scholar]
  45. 45. 
    Martines RB, Bhatnagar J, de Oliveira Ramos AM, Davi HP, Iglezias SD et al. 2016. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 388:898–904
    [Google Scholar]
  46. 46. 
    Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN 2016. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem. Inst. Oswaldo Cruz 111:287–93
    [Google Scholar]
  47. 47. 
    Oliveira Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de Filippis AM 2016. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg. Ultrasound Obstet. Gynecol. 47:6–7
    [Google Scholar]
  48. 48. 
    Soares de Oliveira-Szejnfeld P, Levine D, Melo AS, Amorim MM, Batista AG et al. 2016. Congenital brain abnormalities and Zika virus: what the radiologist can expect to see prenatally and postnatally. Radiology 281:203–18
    [Google Scholar]
  49. 49. 
    Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M et al. 2016. Zika virus associated with microcephaly. N. Engl. J. Med. 374:951–58
    [Google Scholar]
  50. 50. 
    Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C et al. 2016. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 20:155–66
    [Google Scholar]
  51. 51. 
    Platt DJ, Smith AM, Arora N, Diamond MS, Coyne CB, Miner JJ 2018. Zika virus–related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Sci. Transl. Med. 10:eaao7090
    [Google Scholar]
  52. 52. 
    Weisblum Y, Oiknine-Djian E, Vorontsov OM, Haimov-Kochman R, Zakay-Rones Z et al. 2017. Zika virus infects early- and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface. J. Virol. 91:e01905–16
    [Google Scholar]
  53. 53. 
    El Costa H, Gouilly J, Mansuy JM, Chen Q, Levy C et al. 2016. ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci. Rep. 6:35296
    [Google Scholar]
  54. 54. 
    Yockey LJ, Jurado KA, Arora N, Millet A, Rakib T et al. 2018. Type I interferons instigate fetal demise after Zika virus infection. Sci. Immunol. 3:eaao1680
    [Google Scholar]
  55. 55. 
    Szaba FM, Tighe M, Kummer LW, Lanzer KG, Ward JM et al. 2018. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLOS Pathog 14:e1006994
    [Google Scholar]
  56. 56. 
    Am. Coll. Obstet. Gynecol 2013. ACOG practice bulletin no. 134: fetal growth restriction. Obstet. Gynecol 121:1122–33
    [Google Scholar]
  57. 57. 
    Morgan TK. 2016. Role of the placenta in preterm birth: a review. Am. J. Perinatol. 33:258–66
    [Google Scholar]
  58. 58. 
    Salafia CM, Charles AK, Maas EM 2006. Placenta and fetal growth restriction. Clin. Obstet. Gynecol. 49:236–56
    [Google Scholar]
  59. 59. 
    Silver RM. 2018. Examining the link between placental pathology, growth restriction, and stillbirth. Best Pract. Res. Clin. Obstet. Gynaecol. 49:89–102
    [Google Scholar]
  60. 60. 
    Lo JO, Roberts VHJ, Schabel MC, Wang X, Morgan TK et al. 2018. Novel detection of placental insufficiency by magnetic resonance imaging in the nonhuman primate. Reprod. Sci. 25:64–73
    [Google Scholar]
  61. 61. 
    Ludwig KD, Fain SB, Nguyen SM, Golos TG, Reeder SB et al. 2018. Perfusion of the placenta assessed using arterial spin labeling and ferumoxytol dynamic contrast enhanced magnetic resonance imaging in the rhesus macaque. Magn. Reson. Med. 6:e1297–308
    [Google Scholar]
  62. 62. 
    Macdonald JA, Corrado PA, Nguyen SM, Johnson KM, Francois CJ et al. 2019. Uteroplacental and fetal 4D flow MRI in the pregnant rhesus macaque. J. Magn. Reson. Imaging 49:534–45
    [Google Scholar]
  63. 63. 
    Seferovic M, Sánchez-San Martín C, Tardif SD, Rutherford J, Castro ECC et al. 2018. Experimental Zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Sci. Rep. 8:6851
    [Google Scholar]
  64. 64. 
    Abbink P, Larocca RA, Visitsunthorn K, Boyd M, De La Barrera RA et al. 2017. Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Sci. Transl. Med. 9:eaao4163
    [Google Scholar]
  65. 65. 
    World Health Organ 2013. Recommendations to assure the quality, safety and efficacy of live attenuated yellow fever vaccines WHO Tech. Rep. Ser. 978, World Health Organ Geneva, Switz: https://www.who.int/biologicals/areas/vaccines/TRS_978_Annex_5.pdf?ua=1
    [Google Scholar]
  66. 66. 
    World Health Organ 2014. Recommendations to assure the quality, safety and efficacy of Japanese encephalitis vaccines (live, attenuated) for human use WHO Tech. Rep. Ser. 980, World Health Organ Geneva, Switz: https://www.who.int/biologicals/vaccines/JE-Recommendations_TRS_980_Annex_7.pdf?ua=1
    [Google Scholar]
  67. 67. 
    Leonova GN, Pavlenko EV, Maistrovskaya OS, Chausov EV 2011. Protective antibody titer for patients vaccinated against tick-borne encephalitis virus. Procedia Vaccinol 4:84–91
    [Google Scholar]
  68. 68. 
    Aliota MT, Dudley DM, Newman CM, Mohr EL, Gellerup DD et al. 2016. Heterologous protection against Asian Zika virus challenge in rhesus macaques. PLOS Negl. Trop. Dis. 10:e0005168
    [Google Scholar]
  69. 69. 
    Larocca RA, Abbink P, Peron JP, Zanotto PM, Iampietro MJ et al. 2016. Vaccine protection against Zika virus from Brazil. Nature 536:474–78
    [Google Scholar]
  70. 70. 
    Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H et al. 2017. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543:248–51
    [Google Scholar]
  71. 71. 
    Modjarrad K, Lin L, George SL, Stephenson KE, Eckels KH et al. 2018. Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet 391:563–71
    [Google Scholar]
  72. 72. 
    Tebas P, Roberts CC, Muthumani K, Reuschel EL, Kudchodkar SB et al. 2017. Safety and immunogenicity of an anti-Zika virus DNA vaccine—preliminary report. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1708120
    [Crossref] [Google Scholar]
  73. 73. 
    Gaudinski MR, Houser KV, Morabito KM, Hu Z, Yamshchikov G et al. 2018. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet 391:552–62
    [Google Scholar]
  74. 74. 
    Omer SB, Salmon DA, Orenstein WA, deHart MP, Halsey N 2009. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. N. Engl. J. Med. 360:1981–88
    [Google Scholar]
  75. 75. 
    Abbink P, Larocca RA, Dejnirattisai W, Peterson R, Nkolola JP et al. 2018. Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. Nat. Med. 24:721–23
    [Google Scholar]
  76. 76. 
    Leask J, McIntyre PB. 2009. Vaccine refusal and the risks of vaccine-preventable diseases. N. Engl. J. Med. 361:723–24
    [Google Scholar]
  77. 77. 
    Larson HJ, Hartigan-Go K, de Figueiredo A 2019. Vaccine confidence plummets in the Philippines following dengue vaccine scare: why it matters to pandemic preparedness. Hum. Vaccines Immunother. 15:625–27
    [Google Scholar]
  78. 78. 
    Fernandez E, Dejnirattisai W, Cao B, Scheaffer SM, Supasa P et al. 2017. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nat. Immunol. 18:1261–69
    [Google Scholar]
  79. 79. 
    Keeffe JR, Van Rompay KKA, Olsen PC, Wang Q, Gazumyan A et al. 2018. A combination of two human monoclonal antibodies prevents Zika virus escape mutations in non-human primates. Cell Rep 25:1385–94
    [Google Scholar]
  80. 80. 
    Magnani DM, Rogers TF, Beutler N, Ricciardi MJ, Bailey VK et al. 2017. Neutralizing human monoclonal antibodies prevent Zika virus infection in macaques. Sci. Transl. Med. 9:eaan8184
    [Google Scholar]
  81. 81. 
    Hezareh M, Hessell AJ, Jensen RC, van de Winkel JG, Parren PW 2001. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J. Virol. 75:12161–68
    [Google Scholar]
  82. 82. 
    Whitehead SS, Blaney JE, Durbin AP, Murphy BR 2007. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol. 5:518–28
    [Google Scholar]
  83. 83. 
    Cent. Dis. Control Prevent 2013. Updated recommendations for use of VariZIG–United States, 2013. MMWR Morb. Mortal. Wkly. Rep 62:574–76
    [Google Scholar]
  84. 84. 
    Nelson CS, Cruz DV, Tran D, Bialas KM, Stamper L et al. 2017. Preexisting antibodies can protect against congenital cytomegalovirus infection in monkeys. JCI Insight 2:e94002
    [Google Scholar]
  85. 85. 
    da Silva S, Oliveira Silva Martins D, Jardim ACG 2018. A review of the ongoing research on Zika virus treatment. Viruses 10:89–102
    [Google Scholar]
  86. 86. 
    Zmurko J, Marques RE, Schols D, Verbeken E, Kaptein SJ, Neyts J 2016. The viral polymerase inhibitor 7-deaza-2′-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLOS Negl. Trop. Dis. 10:e0004695
    [Google Scholar]
  87. 87. 
    Eyer L, Nencka R, Huvarová I, Palus M, Joao Alves M et al. 2016. Nucleoside inhibitors of Zika virus. J. Infect. Dis. 214:707–11
    [Google Scholar]
  88. 88. 
    Hercík K, Kozak J, Sála M, Dejmek M, Hrebabecky H et al. 2017. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral Res 137:131–33
    [Google Scholar]
  89. 89. 
    Julander JG, Siddharthan V, Evans J, Taylor R, Tolbert K et al. 2017. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res 137:14–22
    [Google Scholar]
  90. 90. 
    Onorati M, Li Z, Liu F, Sousa AMM, Nakagawa N et al. 2016. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep 16:2576–92
    [Google Scholar]
  91. 91. 
    Bullard-Feibelman KM, Govero J, Zhu Z, Salazar V, Veselinovic M et al. 2017. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res 137:134–40
    [Google Scholar]
  92. 92. 
    Sacramento CQ, de Melo GR, de Freitas CS, Rocha N, Hoelz LV et al. 2017. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci. Rep. 7:40920
    [Google Scholar]
  93. 93. 
    Adcock RS, Chu YK, Golden JE, Chung DH 2017. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res 138:47–56
    [Google Scholar]
  94. 94. 
    Pascoalino BS, Courtemanche G, Cordeiro MT, Gil LH, Freitas-Junior L 2016. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Research 5:2523
    [Google Scholar]
  95. 95. 
    Carneiro BM, Batista MN, Braga ACS, Nogueira ML, Rahal P 2016. The green tea molecule EGCG inhibits Zika virus entry. Virology 496:215–18
    [Google Scholar]
  96. 96. 
    Coutard B, Barral K, Lichière J, Selisko B, Martin B et al. 2017. Zika virus methyltransferase: structure and functions for drug design perspectives. J. Virol. 91:e02202–16
    [Google Scholar]
  97. 97. 
    Lee H, Ren J, Nocadello S, Rice AJ, Ojeda I et al. 2017. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res 139:49–58
    [Google Scholar]
  98. 98. 
    Delvecchio R, Higa LM, Pezzuto P, Valadão AL, Garcez PP et al. 2016. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 8:322
    [Google Scholar]
  99. 99. 
    Balasubramanian A, Teramoto T, Kulkarni AA, Bhattacharjee AK, Padmanabhan R 2017. Antiviral activities of selected antimalarials against dengue virus type 2 and Zika virus. Antiviral Res 137:141–50
    [Google Scholar]
  100. 100. 
    Watterson D, Modhiran N, Young PR 2016. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Res 130:7–18
    [Google Scholar]
  101. 101. 
    Saiz JC, Oya NJ, Blázquez AB, Escribano-Romero E, Martín-Acebes MA 2018. Host-directed antivirals: a realistic alternative to fight Zika virus. Viruses 10:453
    [Google Scholar]
  102. 102. 
    Li C, Deng YQ, Wang S, Ma F, Aliyari R et al. 2017. 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity 46:446–56
    [Google Scholar]
  103. 103. 
    Best K, Guedj J, Madelain V, de Lamballerie X, Lim SY et al. 2017. Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies. PNAS 114:8847–52
    [Google Scholar]
  104. 104. 
    Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL et al. 2017. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358:933–36
    [Google Scholar]
  105. 105. 
    Pulla P. 2018. Ground Zero | Stopping the virus—muddled science, poor public health communication mar India's response to Zika outbreak. Hindu Nov. 27. https://www.thehindu.com/sci-tech/health/stopping-the-virus/article25580955.ece
    [Google Scholar]
  106. 106. 
    Nutt C, Adams P. 2017. Zika in Africa—the invisible epidemic?. Lancet 389:1595–96
    [Google Scholar]
  107. 107. 
    Wongsurawat T, Athipanyasilp N, Jenjaroenpun P, Jun SR, Kaewnapan B et al. 2018. Case of microcephaly after congenital infection with Asian lineage Zika virus, Thailand. Emerg. Infect. Dis. 24:e0201495
    [Google Scholar]
  108. 108. 
    Moi ML, Nguyen TTT, Nguyen CT, Vu TBH, Tun MMN et al. 2017. Zika virus infection and microcephaly in Vietnam. Lancet Infect. Dis. 17:805–6
    [Google Scholar]
  109. 109. 
    Goodfellow FT, Willard KA, Wu X, Scoville S, Stice SL, Brindley MA 2018. Strain-dependent consequences of Zika virus infection and differential impact on neural development. Viruses 10:550
    [Google Scholar]
  110. 110. 
    Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX 2018. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 19:206–24
    [Google Scholar]
  111. 111. 
    Kouri GP, Guzmán MG, Bravo JR 1987. Why dengue haemorrhagic fever in Cuba? 2. An integral analysis. Trans. R. Soc. Trop. Med. Hyg. 81:821–23
    [Google Scholar]
  112. 112. 
    Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S et al. 1984. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J. Epidemiol. 120:653–69
    [Google Scholar]
  113. 113. 
    Halstead SB. 1989. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev. Infect. Dis. 11:Suppl. 4S830–39
    [Google Scholar]
  114. 114. 
    Halstead SB, O'Rourke EJ. 1977. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265:739–41
    [Google Scholar]
  115. 115. 
    Halstead SB. 2003. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 60:421–67
    [Google Scholar]
  116. 116. 
    Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S et al. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 181:2–9
    [Google Scholar]
  117. 117. 
    Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S et al. 2002. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J. Infect. Dis. 185:1213–21
    [Google Scholar]
  118. 118. 
    Halstead SB. 2017. Biologic evidence required for Zika disease enhancement by dengue antibodies. Emerg. Infect. Dis. 23:569–73
    [Google Scholar]
  119. 119. 
    Dowd KA, DeMaso CR, Pelc RS, Speer SD, Smith ARY et al. 2016. Broadly neutralizing activity of Zika virus-immune sera identifies a single viral serotype. Cell Rep 16:1485–91
    [Google Scholar]
  120. 120. 
    Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A et al. 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823–26
    [Google Scholar]
  121. 121. 
    Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ et al. 2017. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356:175–80
    [Google Scholar]
  122. 122. 
    Charles AS, Christofferson RC. 2016. Utility of a dengue-derived monoclonal antibody to enhance Zika infection in vitro. PLOS Curr 2016:8
    [Google Scholar]
  123. 123. 
    Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G et al. 2016. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat. Immunol. 17:1102–8
    [Google Scholar]
  124. 124. 
    Kawiecki AB, Christofferson RC. 2016. Zika virus-induced antibody response enhances dengue virus serotype 2 replication in vitro. J. Infect. Dis. 214:1357–60
    [Google Scholar]
  125. 125. 
    Priyamvada L, Quicke KM, Hudson WH, Onlamoon N, Sewatanon J et al. 2016. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. PNAS 113:7852–57
    [Google Scholar]
  126. 126. 
    Swanstrom JA, Plante JA, Plante KS, Young EF, McGowan E et al. 2016. Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus. mBio 7:e01123–16
    [Google Scholar]
  127. 127. 
    Zimmerman MG, Quicke KM, O'Neal JT, Arora N, Machiah D et al. 2018. Cross-reactive dengue virus antibodies augment Zika virus infection of human placental macrophages. Cell Host Microbe 24:731–42
    [Google Scholar]
  128. 128. 
    George J, Valiant WG, Mattapallil MJ, Walker M, Huang YS et al. 2017. Prior exposure to Zika virus significantly enhances peak dengue-2 viremia in rhesus macaques. Sci. Rep. 7:10498
    [Google Scholar]
  129. 129. 
    He D, Gao D, Lou Y, Zhao S, Ruan S 2017. A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Sci. Rep. 7:273
    [Google Scholar]
  130. 130. 
    Sariol CA, White LJ. 2014. Utility, limitations, and future of non-human primates for dengue research and vaccine development. Front. Immunol. 5:452
    [Google Scholar]
  131. 131. 
    Halstead SB, Shotwell H, Casals J 1973. Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J. Infect. Dis. 128:15–22
    [Google Scholar]
  132. 132. 
    Halstead SB. 1979. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 140:527–33
    [Google Scholar]
  133. 133. 
    Pantoja P, Pérez-Guzmán EX, Rodríguez IV, White LJ, González O et al. 2017. Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat. Commun. 8:15674
    [Google Scholar]
  134. 134. 
    McCracken MK, Gromowski GD, Friberg HL, Lin X, Abbink P et al. 2017. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLOS Pathog 13:e1006487
    [Google Scholar]
  135. 135. 
    Erlebacher A. 2013. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat. Rev. Immunol. 13:23–33
    [Google Scholar]
  136. 136. 
    Munoz-Suano A, Hamilton AB, Betz AG 2011. Gimme shelter: the immune system during pregnancy. Immunol. Rev. 241:20–38
    [Google Scholar]
  137. 137. 
    Moffett A, Loke C. 2006. Immunology of placentation in eutherian mammals. Nat. Rev. Immunol. 6:584–94
    [Google Scholar]
  138. 138. 
    Bauman MD, Schumann CM. 2018. Advances in nonhuman primate models of autism: integrating neuroscience and behavior. Exp. Neurol. 299:252–65
    [Google Scholar]
  139. 139. 
    Chang SW, Brent LJ, Adams GK, Klein JT, Pearson JM et al. 2013. Neuroethology of primate social behavior. PNAS 110:Suppl. 210387–94
    [Google Scholar]
  140. 140. 
    Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR 2016. Zika virus and birth defects—reviewing the evidence for causality. N. Engl. J. Med. 374:1981–87
    [Google Scholar]
  141. 141. 
    Schneider ML, Roughton EC, Lubach GR 1997. Moderate alcohol consumption and psychological stress during pregnancy induce attention and neuromotor impairments in primate infants. Child Dev 68:747–59
    [Google Scholar]
  142. 142. 
    Converse AK, Moore CF, Holden JE, Ahlers EO, Moirano JM et al. 2014. Moderate-level prenatal alcohol exposure induces sex differences in dopamine d1 receptor binding in adult rhesus monkeys. Alcohol Clin. Exp. Res. 38:2934–43
    [Google Scholar]
  143. 143. 
    Wheeler AC, Ventura CV, Ridenour T, Toth D, Nobrega LL et al. 2018. Skills attained by infants with congenital Zika syndrome: pilot data from Brazil. PLOS ONE 13:e0201495
    [Google Scholar]
  144. 144. 
    Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW et al. 2017. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8:14063
    [Google Scholar]
  145. 145. 
    Aiello AE, Chiu YL, Frasca D 2017. How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms?. Geroscience 39:261–71
    [Google Scholar]
  146. 146. 
    Russell WMS, Burch RL. 1959. The Principles of Humane Experimental Technique London: Methuen
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015732
Loading
/content/journals/10.1146/annurev-virology-092818-015732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error